
A Unified Approach for Text- and Image-guided 4D Scene Generation

Yufeng Zheng1,2,3, Xueting Li1, Koki Nagano1, Sifei Liu1, Otmar Hilliges2, Shalini De Mello1

1NVIDIA, 2ETH Zurich, 3Max Planck Institute for Intelligent Systems

Figure 1. Text-to-4D. Our method provides a unified approach for generating 4D dynamic content from a text prompt with diffuion

guidance, supporting both unconstrained generation and controllable generation, where appearance is defined by one or multiple images.

Abstract

Large-scale diffusion generative models are greatly sim-

plifying image, video and 3D asset creation from user-

provided text prompts and images. However, the challeng-

ing problem of text-to-4D dynamic 3D scene generation

with diffusion guidance remains largely unexplored. We

propose Dream-in-4D, which features a novel two-stage ap-

proach for text-to-4D synthesis, leveraging (1) 3D and 2D

diffusion guidance to effectively learn a high-quality static

3D asset in the first stage; (2) a deformable neural radi-

ance field that explicitly disentangles the learned static as-

set from its deformation, preserving quality during motion

learning; and (3) a multi-resolution feature grid for the de-

formation field with a displacement total variation loss to

effectively learn motion with video diffusion guidance in the

second stage. Through a user preference study, we demon-

strate that our approach significantly advances image and

motion quality, 3D consistency and text fidelity for text-to-

4D generation compared to baseline approaches. Thanks to

its motion-disentangled representation, Dream-in-4D can

also be easily adapted for controllable generation where

appearance is defined by one or multiple images, without

the need to modify the motion learning stage. Thus, our

method offers, for the first time, a unified approach for text-

to-4D, image-to-4D and personalized 4D generation tasks.

1. Introduction

The advent of large-scale text-conditioned diffusion-based

generative models for images has ushered in a new era of

imaginative, high-quality image synthesis [1, 28, 30]. Their

simple and intuitive conditioning in the form of text prompts

are game-changers in democratizing visual content creation

for non-expert users. Subsequently, these developments

have also led to impressive progress in (1) text- or image-

conditioned static 3D content creation [15, 20, 24, 26],

achieved by leveraging guidance from generic and 3D-

aware [16, 17, 31] image diffusion models, and (2) video

content creation via video diffusion models [2–4, 32].

However, for various real-world applications such as

gaming, AR/VR, and advertising, synthesizing static 3D as-

sets alone does not suffice. It is desirable to also animate

3D assets using intuitive user-provided text prompts to fur-

ther save animators’ time and level-of-expertise. To go be-

yond static 3D content creation, we delve into the largely

unexplored problem of text-conditioned 4D scene genera-

tion, a.k.a., text-to-4D synthesis with diffusion guidance.

This is a challenging problem encompassing both text-to-

3D and text-to-video synthesis. It requires learning not only

a 3D-consistent representation of a static scene capable of

free-view rendering, but also its plausible and semantically-
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(a) Multi-view images of a gener-

ated 3D asset without 3D diffusion

guidance. It suffers from the Janus

problem.

(b) The presence of the Janus prob-

lem, further hinders learning of the

cape’s correct temporal motion (top

row).

Figure 2. We show the importance of a high-quality static asset for

4D content generation. The prompt for this scene is ‘A superhero

dog with a red cape is flying through the sky’.

correct dynamic 3D motion over time.

The pioneering work MAV3D [33] is the first attempt to

address this problem. It proposes a two-stage approach: the

first to learn a static 3D asset, and the second to optimize

its full dynamic representation with guidance from a video

diffusion model [32]. It further models the dynamic rep-

resentation via a neural hexplane [5]. While impressive in

demonstrating feasibility, this early work leaves much room

for improvement in terms of robustness, quality and realism.

Additionally, it does not solve the problems of image-to-4D

or personalized-4D content creation, wherein, in addition to

a text prompt, an image or a set of images is provided as

input to control the appearance of the 4D outcome.

To address these challenges, we propose a novel method

for text-to-4D dynamic scene synthesis, named Dream-in-

4D. It employs a two-stage approach, to first learn a static

scene representation and then its motion. Our first primary

insight is that achieving high-quality, 3D-consistent static

reconstruction in the first stage is crucial for successfully

learning motion in the second stage. For example, in Fig. 2

we show a a multi-view inconsistent 3D dog with two heads

due to the Janus problem learned in the first stage. It intro-

duces significant ambiguity for the second dynamic stage

and substantially undermines the quality of the learned mo-

tion (in the dog’s cape). However, relying solely on guid-

ance from image or video diffusion models for static text-

to-3D synthesis, as proposed in [33], easily encounters the

Janus problem (see the first row of Fig. 4). Therefore, we

leverage 3D-aware [16, 31] and standard image diffusion

models [1, 28] in stage-one to achieve high-quality view-

consistent text-to-3D synthesis, along with video diffusion

guidance [3] in stage-two to learn realistic motion. This

forms our first key contribution, which is to leverage guid-

ance from a carefully-designed combination of image, 3D,

and video diffusion models to effectively solve the task of

text-to-4D synthesis.

Our approach is further motivated by the observation that

fine-tuning the static model with video diffusion models in

stage-two leads to lower visual quality and prompt fidelity,

primarily because these models are trained with lower qual-

ity videos compared to image diffusion models. To address

this problem, our insight is to decompose the synthesis pro-

cess into two distinct training stages, the first of which is

designed to learn a high-quality static 3D asset and the sec-

ond dedicated to effectively animating it with the provided

text prompt, while keeping the pre-trained static 3D asset

unchanged. This, in turn, requires a 4D neural representa-

tion that fully disentangles the canonical static representa-

tion and its motion. However, this cannot be achieved with

the hexplane [5] representation proposed in [33], which en-

tangles the static representation and its motion. To this end,

we propose to use a variant of a deformable neural radi-

ance field (D-NeRF) [25] for the task of 4D content genera-

tion. A D-NeRF consists of a canonical 3D NeRF [21] and

a 4D deformation MLP that maps time-dependent deformed

space to the common canonical static space. With the pro-

posed disentangled representation for 4D scene synthesis,

we can freeze the pre-trained high-quality static 3D model

from stage-one and only optimize the deformation field us-

ing video diffusion guidance in stage-two. To successfully

learn detailed and realistic motion, we further encode the

4D deformation field with multi-resolution feature grids and

regularize motion using a novel total variation loss on the

rendered displacement maps. We find that the former en-

hances detailed motion while the latter reduces spatial and

temporal jitter.

Through a user preference study on diverse text prompts,

we show that our algorithm achieves significant improve-

ments in visual quality, 3D consistency, prompt matching

and motion quality compared to alternate baselines. Fur-

thermore, the ability to disentangle the canonical and mo-

tion representation allows for easy adaptation to image-

conditioned 4D generation, without requiring modifications

to the motion learning stage. Thus, we demonstrate image-

to-4D generation given a single-view image, and personal-

ized 4D generation using 4-6 casually captured images of a

subject (See Fig. 1) with our unified Dream-in-4D method.

In summary, our key contributions include:

1. We propose to combine image, 3D-aware and video

diffusion priors for the text-to-4D task, significantly

improving the visual quality, 3D consistency and text-

fidelity of the learned static assets in the first stage.

2. By explicitly disentangling the static representation

from its deformation, our method preserves the high-

quality static asset during motion learning.

3. We propose to use a multi-resolution feature grid and

a total variation loss on the deformation field to effec-

tively learn motion with video diffusion guidance.

4. We demonstrate that our method offers, for the first

time, a unified approach for text-to-4D, image-to-4D

and personalized 4D generation tasks.
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2. Related Work
Dynamic neural radiance fields. Modeling dynamic

3D content with NeRFs has been extensively studied in

the novel-view synthesis literature. To extend NeRFs to

dynamic scene modeling, previous works either learn a

high-dimensional radiance field conditioned on temporal

embeddings [14, 18], or a separate deformation mapping to

model motion [23, 25]. To speed up training and inference,

plane- and voxel-based feature grids are combined with

MLPs to formulate efficient hybrid NeRF representa-

tions [6, 11, 22], which are extended to dynamic scene

modeling by learning additional planes for the temporal

dimension [5, 12]. In this work, we leverage a deformable

NeRF representation where the canonical geometry and

4D deformation field are both encoded by multi-resolution

feature grids [22]. As a result, the geometry and motion are

fully disentangled, which not only eases motion learning

but also allows easy adaptation to various applications such

as image(s)-to-4D video generation.

Diffusion models. Recently, diffusion models have rev-

olutionized the computer vision community by showing

remarkable advancements in image, video or novel view im-

age synthesis. Seminal works such as Stable Diffusion [28]

and DeepFloyd [1] take a text prompt as input and produce

high-quality images that align with the prompt. Leveraging

large-scale image datasets, these diffusion models learn

various prior knowledge ranging from object appearance to

complex scene layout. One line of subsequent works [2–4]

fine-tunes text-to-image diffusion models on video datasets,

successfully extending them to generate realistic videos

matching both the object and motion described by the input

prompt. Another line of methods [16, 17] learns 3D-aware

diffusion models with images rendered from synthetic

objects [8, 9]. By conditioning on camera parameters, these

methods produce novel view images of an object that are

consistent with each other and align with the observed view.

Text/image(s) to 3D with diffusion priors. Beyond direct

sampling from the diffusion models, several works employ

image diffusion priors as an optimization signal for 3D

generation. The pioneering work, DreamFusion [24],

optimizes a 3D model by presenting its renderings to

a text-to-image diffusion model and acquiring gradient

supervision through Score Distillation Sampling (SDS).

Subsequent works enhance the synthesis quality and speed

by incorporating the mesh representation [15, 35], advanc-

ing score distillation [36–38], exploring representations

in the latent space [20], or disentangling geometry and

texture [7]. Yet, these methods suffer from the Janus

problem due to the lack of 3D prior in the text-to-image

diffusion models. To overcome this limitation, several

works [13, 16, 17, 31] leverage 3D-aware diffusion models

as supervisions, generating 3D objects that are consistent

across multiple views. In addition to text, a few approaches

further take one or multiple images as an input and

reconstruct a 3D object matching both the prompt and

the image(s). The former [19, 26, 34] simultaneously

utilize text-to-image and novel view diffusion models [16],

while the latter [27, 31] overfit a diffusion model on a few

images depicting the same subject to achieve personalized

diffusion guidance.

Text-to-4D with diffusion priors. In this paper, we go be-

yond 2D/3D generation and aim to synthesize a 4D video

given a text prompt. This is hitherto a highly challenging

and under-explored domain. The most relevant work to ours

is MAV3D [33], which optimizes a 4D scene by leveraging

a pre-trained video diffusion model. However, due to the

entanglement of geometry and motion, as well as a lack of

a 3D-aware prior, this method suffers from the Janus prob-

lem and produces low quality texture. To resolve these lim-

itations, we leverage a carefully designed combination of

image, video and 3D-aware diffusion models and fully dis-

entangle the geometry and motion. Our method synthesizes

multi-view consistent 4D videos with realistic appearance

and motion. Furthermore, the disentanglement of canonical

and motion representations readily enables novel applica-

tions such as image-to-4D and personalized 4D generation.

3. Method

Given a text prompt and optionally one or a few images

to specify the object’s appearance, we aim to generate a 4D

video that matches both the object and the motion described

in the prompt. To this end, we propose a two-stage training

pipeline. In the first static stage (Sec. 3.1), we synthesize a

high-quality static 3D scene using both 2D and 3D diffusion

priors. In the second dynamic stage (Sec. 3.2), we learn the

3D motion of the scene using a video diffusion model, while

keeping the static scene representation intact.

3.1. Static Stage

The goal of the static stage is to generate a high-quality

3D scene that aligns with the text prompt. To effi-

ciently learn a canonical model of a 3D scene, we opt for

the NeRF [21] representation with multi-resolution hash-

encoded features [22], which is extensively used in previ-

ous text-to-3D methods [15, 20, 24, 37, 38]. This static 3D

model is accompanied by a deformation field to represent

the dynamic motion of the 3D scene in the subsequent mo-

tion learning stage. Two elements of the static stage are cru-

cial for 3D asset quality and play an important role in facili-

tating motion learning in the subsequent dynamic stage: the

generated 3D object(s) (1) should be view-consistent (i.e.,

free of the Janus problem) and (2) should follow the spatial

composition described in the text prompt. Intuitively, the

former reduces contradictory gradients from different views

in deformation optimization while the latter eases motion
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Figure 3. Method overview. Adopting a two-stage approach, Dream-in-4D first utilizes 3D and 2D diffusion guidance to learn a static 3D

asset based on the provided text prompt (top). Then, it optimizes a deformation field using video diffusion guidance to model the motion

described in the text prompt (bottom). Featuring a motion-disentangled D-NeRF representation, our method freezes the pre-trained static

canonical asset while optimizing for the motion, achieving high quality view-consistent 4D dynamic content with realistic motion.
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Figure 4. Static stage. Without StableDiffusion guidance, the

learned static model fails to learn the correct composition. With-

out MVDream guidance, the learned assets suffer from the Janus

problem and contain multiple faces. Using guidance from both

StableDiffusion and MVDream, results in the best text prompt fi-

delity and 3D consistency.

learning by presenting a reasonable spatial layout of multi-

ple objects. For instance, the panda sitting on top of a bike

in Fig. 3 sets a good starting point for the dynamic stage to

learn the “riding” motion. To achieve these goals, we pro-

pose to utilize both 3D and generic 2D diffusion models for

the static stage. This is, in spirit, similar to prior work [26]

for image-to-3D synthesis. In the following, we introduce

the 3D and 2D diffusion guidance used for stage-one.

3D diffusion models [16, 17, 31] take camera parame-

ters with a text prompt or an image as inputs and synthesize

novel view images of the target object. Fine-tuned from

image diffusion models with rendered images of synthetic

3D data [10], 3D diffusion models provide valuable prior

knowledge of the 3D world and enforce different views of

a 3D object to be consistent. For text to 3D generation,

we adopt the MVDream [31] model to provide a 3D prior.

Specifically, we render the synthesized 3D object from four

different viewpoints (i.e., front, back, and two side views)

and obtain guidance from a pre-trained MVDream model

through the SDS loss [24]. We use a reconstruction formu-

lation of the SDS loss, similar to [31]. The 3D guidance

loss is denoted as L3D(I).
However, due to the limited scale and synthetic nature

of the 3D training datasets, static NeRF models optimized

using MVDream alone tend to have synthetic-looking tex-

ture [31], and occasionally fail to produce realistic scene

layouts (see the second row of Fig. 4 where objects in the

prompt are missing from the scene). Meanwhile, we ob-

serve that image diffusion models trained with large-scale

2D images encourage both realistic appearance and reason-

able scene layouts, but by themselves, easily suffer from the

Janus problem (see the first row of Fig. 4). Thus, we pro-

pose to combine 2D diffusion guidance with 3D guidance in

stage-one. Specifically, we use StableDiffusion-v2.1 with

the SDS objective (denoted as L2D(I)) to provide 2D guid-

ance. The overall objective for stage-one is:

L = λ2DL2D(I) + λ3DL3D(I),

where I denotes the set of rendered images from the sam-

pled camera viewpoints, and λ2D/3D are the weights for the

2D and 3D guidances (see Supplement for the loss weights).
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Hexplane static Hexplane dynamic Ours dynamic

Figure 5. Hexplane v.s. deformable NeRF. With a hexplane

representation, even though the static stage successfully learns a

high-quality 3D asset (column 1), its motion learning stage with

video diffusion guidance still leads to degradation in texture and

re-appearance of the Janus problem (column 2).

As shown in Fig. 4, by combining both the 2D and 3D

diffusion models for guidance, our static stage generates

3D-consistent object(s) with realistic texture and plausible

scene layouts.

3.2. Dynamic Stage

In the dynamic stage, our goal is to learn a deformation

field that animates the 3D scene generated in the static

stage using guidance from a video diffusion model. As

aforementioned, our key observation is that although video

diffusion models provide a valuable motion prior, they

are not 3D-aware and tend to produce unappealing visual

results (see Fig. 5, column 2). Therefore, we propose

to fully disentangle the static model and the motion by

freezing the NeRF network learned in the static stage

and only learn the deformation field to match the motion

described in the text prompt in the dynamic stage. Such

a design brings two advantages: (1) it preserves the

view consistency and high-quality texture learned in the

static stage and (2) it readily enables applications such as

image-to-4D and personalized 4D generation (see Sec. 3.3).

Motion-disentangled 4D representation. Our dynamic

4D representation consists of a canonical 3D radiance field

(as described in Sec. 3.1) and a deformation field. The

deformation field is a 4D to 3D time-dependent mapping

D(xd, t) → xc, where xd is a 3D point’s location in

deformed space at time t, and xc is its corresponding

canonical location. Our insight is that the deformable field

should be smooth both spatially and temporally due to the

limited elasticity and velocity of the object. As a result,

the deformation field does not require as high-resolution a

feature grid as its static canonical 3D counterpart. There-

fore, we utilize a 4D multi-resolution hash-encoded feature

grid with a maximum resolution of 232 for the deformation

field, in contrast to the maximum resolution of 4096 for

the canonical static NeRF representation. Additionally, we

found the usage of multi-resolution features to be crucial

for learning correct local motion (see Fig. 6).

Motion optimization with video diffusion models.

The deformation field is optimized via score distillation

sampling using a video diffusion model. Specifically, we

sample a static camera parameter, and render a 24-frame

video V from our 4D representation. The time stamps are

sampled evenly and the length of the video is randomly

chosen between 0.8 and 1 (assuming that the full length

is 1). We leverage a variant of the SDS loss [38] for

video diffusion guidance, where we predict the original

video with 1-step denoising, and use a combination of

a latent feature loss and a decoded RGB space loss.

The video diffusion guidance loss can be expressed

as Lvideo(V) = Llatent(V) + λdecLdec(V), where

λdec = 0.1. We choose to use the Zeroscope [3] video

diffusion model as our motion prior, but our method is

robust to other models such as Modelscope [2] (see our

project webpage for results). We found that matching

the resolution of the learned videos to that of the video

diffusion models to be important for successfully distilling

motion priors. For Zeroscope, we render videos at a

resolution of 144 × 72 and upsample them to 576 × 320
when training with video diffusion guidance.

Total variation motion regularization. To reduce tempo-

ral and spatial jitter in motion, we propose to use a novel

total variation loss for the learned deformation (see Fig. 6).

Specifically, in addition to the RGB video V, we also ren-

der a video of 3D displacements D. The total variation loss

on the rendered displacement video D can be expressed as:

LTV (D) =
∑

x,y,t

(||Dx−1,y,t −Dx,y,t||
2

2

+||Dx,y−1,t −Dx,y,t||
2

2
+||Dx,y,t−1 −Dx,y,t||

2

2
).

The overall objective function for the second stage is then:

L = Lvideo(V) + λTV LTV (D),

where λTV = 1000.

3.3. 4D Generation Given One or Multiple Images

While text-to-4D generation is useful for many scenarios,

there is a common desire to create content that features a

specific object. However, language alone may be insuffi-

cient to describe the unique appearance of a given object.

Thanks to the full disentanglement of its static and dynamic

parts, our method can be easily extended to image-guided

4D generation, without modifying the motion learning

stage. In the following, we show that this can be done by

simply replacing the diffusion models used in the static

stage of our method.

Image-to-4D generation. Given a single image, we

reconstruct the corresponding 3D asset by replacing

MVDream with an image-conditioned 3D diffusion model.

Specifically, we use zero123-xl [16] as our 3D diffusion

model and DeepfloydIF [1] as our 2D diffusion model.

Additionally, we supervise the reference view with the
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Figure 6. Deformation learning. The deformation MLP equipped

with positional encoding instead of multi-resolution feature grids

cannot capture local motions (mouth and fin in row 1). Without the

proposed total variation loss on the displacement, the learned de-

formation contains substantial noise (row 2). Our approach, with

both, results in the best quality (row 3).

given image and its estimated foreground mask, similarly

to [16, 26]. Fig. 8 shows examples of synthesized 4D

videos from a single-view image.

Personalized 4D generation. Given a few casually cap-

tured images of an object, Dreambooth [29] finetunes image

diffusion models to generate personalized images of this

object given a text prompt. By replacing our generic im-

age diffusion model with a finetuned, personalized version,

we can create personalized 3D assets given a text prompt

and a few casual images. Specifically, we use personalized

StableDiffusion together with MVDream for this task. We

show synthesized 4D videos in Fig. 9.

4. Results

4.1. Text­to­4D Generation

In Fig. 7, we show qualitative results of our method on text-

to-4D generation. Video results are displayed on the project

webpage for better assessment of the motion.

User study. We carry out a user preference study to evalu-

ate sample quality along the dimensions of (1) alignment to

the input text prompt, (2) motion quality, and (3) 3D con-

sistency and visual quality. For each vote, we present the

participant with results from our method as well as from the

baseline(s), and ask the participant to pick the best method

given one of the three evaluation metrics described above.

Comparison with MAV3D. Since there is no publicly

available implementation of MAV3D [33], we compare our

method against the 28 visual results displayed on their web-

site. Through a user study with 13 users (results are shown

Metric visual & 3D text alignment motion

Ours 82.4% 65.4% 61.8%

Table 1. Comparison with MAV3D. The numbers indicate the

percentage of users who prefer our results over MAV3D’s.

in Tab 1), our method outperforms MAV3D in all metrics.

Additionally, we compare with several ablative baselines

following a similar user study protocal with 18 users. We

detail the ablation study in the following paragraphs.

Metric w/o 2D guidance Ours

text alignment 11.67% 88.33%

(a) Text alignment ablation. Without 2D diffusion guidance, the learned

3D asset might fail to generate all the required components of a scene or

fail to produce a plausible layout (see Fig. 4).

Metric w/o Multi-res Grid w/o TV loss Ours

motion quality 42.22% 2.78% 55.00%

(b) Motion quality ablation. Without the multi-resolution feature grid,

detailed local motion cannot be learned. Without the proposed TV loss,

the generated motion contains substantial noise (see Fig. 6).

Metric w/o 3D guidance Hexplane Ours

visual&3D 6.12% 0.00% 93.88%

(c) Visual quality and 3D consistency abation. Without 3D diffusion

guidance in the first stage, the learned 3D assets suffer from the Janus

problem (see Fig. 4). With a hexplane 4D representation, the learned high-

quality 3D asset cannot be preserved in the dynamic stage, leading to lower

visual quality and re-appearance of the Janus problem (see Fig. 5).

Table 2. Comparison with ablative baselines.

3D and 2D diffusion guidance in the static stage. Our

method combines 3D and 2D diffusion guidance to learn

the static model. Fig. 4 shows qualitative comparisons,

ablating the guidance used in the static stage. Without

2D diffusion guidance, the method often fails to produce

the correct layout of the scene, and sometimes produces

synthetic-looking texture. This is also reflected by the

user study in Tab. 2a. Without 3D diffusion guidance, the

learned assets suffer from severe Janus problems and do

not have plausible shapes (see row 1 of Fig. 4 and ‘w/o

3D guidance’ in Tab. 2c). By combining both 3D and 2D

guidance, our method reconstructs 3D-consistent static

scenes with plausible compositions and realistic textures.

Deformation field and motion regularization. To learn

better motion, we propose to use a multi-resolution hash-

encoded 4D feature grid for the deformation MLP. We

ablate this choice against a baseline MLP with positional

encoding [21]. In Fig. 6, our method learns more local

motion around the mouth and fin areas of the clown fish.

We also ablate the total variation (TV) loss on the dis-

7305



A monkey is eating a candy bar A man is drinking beer

A baby is eating ice cream A fox is playing a video game

A cat is singing A goat is drinking beer

Emoji of a baby panda reading a book A superhero dog wearing a red cape is flying through the sky

Figure 7. Text-to-4D generation. We show qualitative results of text-to-4D generation, demonstrating high visual quality, multi-view

consistency, plausible composition and realistic motion. Video results are available in the Supplement.
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Figure 8. Image-to-4D generation. Given an input image, our

method reconstructs and animates 3D assets. Prompts used for

motion are ‘A clown fish swimming’, ‘A cartoon dragon running’,

‘A flamingo scratching its neck’, and ‘A cat walking on grass’.

Video results can be found in our Supplement.

placement map and show that the learned motion presents

substantial noise when not using the TV loss (Fig. 6).

These observations about the learned motion quality are

also reflected by the user study in Tab. 2b.

D-NeRF v.s. hexplane representation We also ablate our

deformable NeRF representation against the hexplane 4D

representation [5] used previously in [33]. Due to the en-

tanglement of geometry and motion in hexplanes, it is not

trivial to keep the static geometry parts frozen during the

motion learning stage, which leads to lower visual qual-

ity and reappearance of the Janus problem (See Fig. 5 and

Tab. 2c, ‘Hexplane’ versus Ours). In comparison, our dy-

namic representation fully disentangles the canonical model

and the deformation field, successfully preserving the static

model while learning its motion.

4.2. Controllable 4D Generation

We show qualitative results of text-to-4D generation where

the object appearance is defined by one or multiple user-

defined images. In Fig. 8, given a single image, our method

can preserve the identity and appearance details of the input

image and successfully learn the animation specified in the

text prompt. It is preferred by users over MAV3D 98.3%

of the time for its image texture preservation and 100.0%

of the time for its alignment to the text. In Fig. 9, we show

personalized 4D generation. Given a few casually captured

images of a subject, our method can generate 4D content

of the subject under various motion conditions, e.g., eating

food or ice cream. More qualitative results can be found on

our project page.

Figure 9. Personalized 4D. Our method can generate dynamic 3D

scenes of a subject given a text prompt and 4-6 causally captured

images of the subject. Videos are available in our Supplement.

Figure 10. Failure case. Despite combining 3D and 2D diffusion

guidance, our method fails to reconstruct ‘A robot is playing the

violin’. The static stage fails to learn a view-consistent violin, and

the robot’s hand position is incorrect. In the second stage, our

method cannot correct such errors or learn plausible arm motion.

5. Discussion

Conclusion We propose Dream-in-4D, a unified ap-

proach to 4D scene synthesis from a text prompt and

optionally one or more input images. By leveraging

3D and 2D diffusion priors, our method first learns a

high-quality static asset, offering a good starting point for

deformation optimization. Then, our motion-disentangled

4D representation allows us to learn motion with video

diffusion guidance while maintaining the quality of the

static asset. We introduce multi-resolution feature grids

and a TV loss for the deformation field, resulting in more

realistic motion. Dream-in-4D achieves better visual

quality, 3D consistency, motion and spatial layout on

the text-to-4D task compared to the baselines, while also

enabling image-to-4D and personalized 4D generation.

Limitation The combination of 3D and 2D diffusion priors

sometimes fails to learn correct static 3D representations

for some difficult prompts (e.g., a robot playing a violin

in Fig. 10). In the dynamic stage, our method cannot

recover from the wrong static representation and fails to

learn correct motion given the wrong position of the hands.

We believe this problem could potentially be solved with

further advances in 3D and 2D diffusion models.
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