
CURSOR: Scalable Mixed-Order Hypergraph Matching with CUR
Decomposition

Qixuan Zheng1 Ming Zhang2* Hong Yan1

1City University of Hong Kong
2Hong Kong Applied Science and Technology Research Institute (ASTRI)
{qixuzheng2-c, mzhang367-c}@my.cityu.edu.hk, h.yan@cityu.edu.hk

Abstract

To achieve greater accuracy, hypergraph matching algo-
rithms require exponential increases in computational re-
sources. Recent kd-tree-based approximate nearest neigh-
bor (ANN) methods, despite the sparsity of their compati-
bility tensor, still require exhaustive calculations for large-
scale graph matching. This work utilizes CUR tensor de-
composition and introduces a novel cascaded second and
third-order hypergraph matching framework (CURSOR) for
efficient hypergraph matching. A CUR-based second-order
graph matching algorithm is used to provide a rough match,
and then the core of CURSOR, a fiber-CUR-based ten-
sor generation method, directly calculates entries of the
compatibility tensor by leveraging the initial second-order
match result. This significantly decreases the time complex-
ity and tensor density. A probability relaxation labeling
(PRL)-based matching algorithm, specifically suitable for
sparse tensors, is developed. Experiment results on large-
scale synthetic datasets and widely-adopted benchmark sets
demonstrate the superiority of CURSOR over existing meth-
ods. The tensor generation method in CURSOR can be inte-
grated seamlessly into existing hypergraph matching meth-
ods to improve their performance and lower their computa-
tional costs.

1. Introduction

Finding the correspondences between a pair of feature sets

by graph-matching has many applications in computer vi-

sion and pattern recognition tasks like feature tracking

[11, 23, 39], image classification [36], object detection [24],

and gene-drug association identification [5]. The second-

order graph matching (pairwise matching) problem is a

quadratic assignment problem (QAP), which is NP-hard

[18]. Efforts to find soft-constraint approximate solutions

*Corresponding author.

4
2

6 5

3
1

1
2

4
5 63

7

1
2

3Sampling ANN
1 1

2 2

3 3

4 4
…

Matching
Result

Matching

Hyperedge
Zoom in

(a) Traditional ANN-based hypergraph matching

1
2

3Sampling
Fiber &

Selection
1 1

2 2

3 3

4 4
…

Matching
Result

PRL

2
3

1
1 1

3

7
3

2
5

4
2

…

CUR-based
second-order

matching

Hyperedge
1

2
4

5
63

4
2

6 5
3

1
7

Zoom in

nodes with the highest
matching similarities

(b) The proposed CURSOR with PRL-based matching

Figure 1. The comparison between the traditional ANN-based

framework and CURSOR. Instead of calculating the whole ten-

sor block (the light orange area in (a)) and extracting the highest

compatibilities in each block (the blue cubes), CURSOR only cal-

culates a small number of block fibers (the light orange area in

(b)) and retains fewer elements in these fibers, effectively reduc-

ing computational costs for large-scale hypergraph matching. The

method chooses the fibers based on the second-order matching re-

sult. CURSOR calculates fibers in all three tensor modes, and only

one is shown in (b) for clarity.

[7, 8, 21, 32] have been limited to the representation of pair-

wise compatibilities.

Higher-order graphs, known as hypergraphs [9, 12, 19,

20, 30], integrate better geometric information and handle

transformations like scaling and rotation better. The hy-

pergraph matching problem considers the compatibility be-

tween two hypergraphs as a high-order tensor. The objec-

tive function aims to find the maximization over all permu-

tations of the features. A kd-tree-based approximate near-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

16036

est neighbor (ANN) method [9] to reduce the space and

time complexity of the hypergraph matching algorithm has

been used in many hypergraph matching algorithms (e.g.

RRWHM [20], BCAGM [30] and ADGM [19]). ANN-

based methods compute the sparse compatibility tensor by

searching for nearest neighbors between randomly sampled

hyperedges in the source graph and all the hyperedges in the

target graph. Large-scale kth-order hypergraph matching

with n2 points in the target graph has O(nk
2) time and space

complexity for the compatibilities of each source graph hy-

peredge. Achieving a higher matching accuracy requires as

many of the highest compatibilities as possible to increase

the probability of finding the ground truth paired hyper-

edges, resulting in a denser compatibility tensor.

To address the above scalability issue, this work pro-

poses a novel scalable hypergraph matching framework,

CURSOR, based on cascaded mixed-order models with

CUR decomposition. The comparison of CURSOR and tra-

ditional ANN-based methods is illustrated in Fig. 1. The

traditional ANN-based methods construct the compatibil-

ity tensor directly with the nearest neighbors between the

randomly sampled source hyperedges and all target ones.

CURSOR first computes a roughly intermediate result with

the proposed CUR-based second-order matching algorithm,

drastically reducing the memory footprint of the compat-

ibility matrices for large-scale graph matching. Subse-

quently, a small-scale target hyperedge subset, represented

as third-order fiber tensors, can be generated utilizing the

second-order results to calculate the compatibility tensor,

substantially decreasing the computation complexity. The

tensor generation method in CURSOR can integrate seam-

lessly into almost all existing state-of-the-art hypergraph

matching algorithms [9, 12, 19, 20, 30] and significantly in-

crease their matching performance at lower computational

cost.

The contributions of this work are:

• We propose a novel cascaded second and third-order

CUR-based hypergraph matching framework, CURSOR,

to deal with large-scale problems. Under the same mem-

ory limitations, CURSOR can handle a more than ten

times larger-scale hypergraph matching problem than cur-

rent state-of-the-art algorithms.

• CURSOR contains a fiber-CUR-based compatibility ten-

sor generation method using the rough matching result

from the CUR-based second-order graph matching al-

gorithm, which efficiently decreases the computational

complexity and selects the proper sparse tensor entries.

• A PRL-based tensor matching algorithm is developed to

significantly accelerate convergence during the matching

process and increase the accuracy of matching.

• Experiment results show that CURSOR provides state-of-

the-art matching accuracy by effectively finding the es-

sential non-zero entries in the compatibility tensor.

2. Related Works

2.1. Hypergraph Matching

Second-order graph-matching algorithms [7, 8, 10, 21, 32]

represented the geometric consistency between a pair of

features as the edges of a graph to avoid ambiguities like

repeated patterns and textures. These algorithms pursued

an approximate solution as the problem is known to be NP-

hard. Among them, Leordeanu and Herbert [21] and Cour

et al. [8] estimated the rank-1 approximation of the com-

patibility matrix with power iteration as the flattening of the

assignment matrix. Cho et al. [7] provided a novel ran-

dom walk view for graph matching with a reweighting jump

scheme and reduced the constraints in its iterative process.

Recently, Wang et al. [32] proposed a functional representa-

tion for graph matching with the additional goal of avoiding

the compatibility matrix construction. The performance of

second-order methods was limited with the restriction to the

normal graph embedding pairwise relationships.

In the past decade, to overcome the limitation of pair-

wise similarity, various hypergraph matching algorithms

[9, 12, 19, 20] were developed based on the structural com-

patibilities between the higher-order hyperedges of two hy-

pergraphs. In order to avoid the enormous computational

cost of a full compatibility tensor, Duchenne et al. [9],

extending the SM algorithm proposed by [21] to a higher

order, constructed the sparse compatibility tensor with an

ANN-based method, which is frequently used for gener-

ating compatibility tensors in later hypergraph matching

works. Lee et al. [20] introduced the method of [7] to

reweighted walk hypergraph matching problems, enforcing

the matching constraint with a bi-stochastic normalization

scheme. Lê-Huu and Paragios [19] decomposed the prob-

lem under different constraints and handled it with an al-

ternating direction method of multipliers. Khan et al. [16]

directly applied CUR decomposition to the full compatibil-

ity matrix and tensor at the cost of a higher space complex-

ity than the ANN-based method. Although the ANN-based

method can significantly decrease the time complexity dur-

ing the matching process, it still has an enormous computa-

tional cost to calculate the compatibility tensor.

With the rise of deep learning, various learning-based

graph-matching algorithms were proposed to learn the pa-

rameters as deep feature extraction hierarchies in a data-

driven way [3, 4, 15, 26, 31, 34, 38]. Inspired by Wang et
al. [33], Liao et al. [25] proposed the first unified hyper-

graph neural network, HNN-HM. Unlike the sparse com-

patibility tensor widely used in ANN-based algorithms, the

dense deep feature matrices or tensors require more com-

putation resources. Therefore, compared with ANN-based

algorithms, the learning-based hypergraph matching algo-

rithms can only handle much smaller-scale problems under

the same memory constraint.

16037

2.2. CUR Matrix and Tensor Decomposition

CUR decomposition [27] is used to compute the low-

rank approximation of a matrix with the actual rows and

columns. Assume a matrix A ∈ R
m×n. By selecting c

columns and r rows from A as C ∈ R
m×c and R ∈ R

r×n,

the low-rank approximation of A can be formulated as

C(C†AR†)R, where † is the pseudoinverse and C†AR†

represents the matrix U. Cai et al. [2] showed that if

rank(A) < min{c, r}, U can be directly represented by the

intersection of C and R as its pseudoinverse. Xu et al. [37]

proposed CUR+ to calculate the matrix U with randomized

matrix entries instead of the whole matrix when the matrix

is not low rank. For tensor CUR decomposition, random-

ized fiber CUR decomposition can extend the CUR decom-

position to the tensor [1]. The method first samples cl fibers

on mode-l and expands the fibers as matrix Cl along mode-

l. The intersection of all samples forms tensor R and Ul is

the pseudoinverse of the mode-l expansion of R. The fiber

CUR decomposition of the tensor H can be represented as:

H ≈ R×k
l=1 (ClUl) (1)

where ×l represents tensor times matrix along the lth mode.

The performance of the CUR decomposition is highly de-

pendent on the selection of C and R (or R in high order).

Key samples can result in an approximation with high ac-

curacy. Therefore, one of the most essential tasks of CUR

decomposition is to find the required samples with less com-

putation.

3. Method
3.1. Problem Setup

We follow the problem settings in [21]. Considering a pair

of matched graphs G1 = (V1, E1) and G2 = (V2, E2), the

correspondences between G1 and G2 can be represented

as a binary assignment matrix X ∈ {0, 1}n1×n2 where

n1 = |V1| and n2 = |V2|. To solve the NP-hard graph

matching problem, we denote the elements of the assign-

ment matrix with soft constraint as Xij ∈ [0, 1], where

Xij is the probability that the ith node in V1 matches the

jth node in V2. Following [9], we suppose every node in

G1 matches exactly one node in G2, and every node in G2

matches at most one node in G1, i.e., ∀i,∑j Xij = 1 and

∀j,∑i Xij ≤ 1. In the rest of the paper, we call G1 the

source graph and G2 target graph.

The compatibility matrix of second-order graph match-

ing, H ∈ R
n1n2×n1n2 , is the unfold of the fourth-order

tensor Ĥ ∈ R
n1×n2×n1×n2 where Ĥi1,j1,i2,j2 represents

the similarity between edges (i1, i2) and (j1, j2). The soft-

constraint assignment matrix is flattened as x. The second-

order graph-matching problem can be represented as the op-

timization of the function:

max
x

xTHx

s.t.
∑
j∈indi

xj = 1, ∀i (2)

where indi = {(i − 1)n2 + 1, · · · , in2} represents the in-

dex set of the ith row of X. The compatibility matrix is

symmetric, which means the compatibility between (i1, i2)
and (j1, j2) is the same as that between (i2, i1) and (j2, j1).
Equation (2) can be cast into a classical Rayleigh quotient

problem, and x is proved to be associated with the main

eigenvector of H [9], which can be calculated with meth-

ods such as power iteration.

The kth-order hypergraph-matching problem can be ex-

tended to:

max
x

H⊗1 x⊗2 · · · ⊗k x

s.t.
∑
j∈indi

xj = 1, ∀i (3)

where the kth-order supersymmetric tensor H represents the

compatibility between the hyperedges in the two graphs [9].

⊗l is the mode-l product of the tensor and vector, which is

calculated as:

(H⊗l x)i1,··· ,il−1,il+1,··· ,ik =
∑
il

Hi1,··· ,il,··· ,ikxil (4)

3.2. CUR-based Second-Order Graph Matching

Dealing with large-scale graph matching problems, with

thousands of paired nodes, is not feasible due to the ter-

abytes of computer memory required for the compatibility

matrix H. CURSOR estimates the low-rank approxima-

tion of the compatibility matrix with CUR decomposition.

Instead of directly generating the whole matrix with huge

memory usage, it calculates a small number of rows and

columns. Because of the symmetric property of the com-

patibility matrix, the column sampling is sufficient to de-

crease the computational complexity. By randomly select-

ing c columns from H as C, the second-order compatibility

matrix can be decomposed into two smaller-sized matrices

C ∈ R
n1n2×c and U∗ ∈ R

c×c. Following CUR+ [37], U∗
is calculated as:

U∗ = argmin
U

‖RΩ(H)−RΩ(CUCT)‖F (5)

where RΩ(·) is the symbol used in the original work of

CUR+ [37] to represent the matrix entries, including the

randomly selected entries and all the intersection elements

of C and CT . ‖ · ‖F represents the Frobenius norm of the

matrix. The multiplication of Hx to update x in every iter-

ation can be simplified as:

Hx ≈ CU∗(CTx) (6)

16038

which reduces the time and space complexity in every it-

eration from O(n2
1n

2
2) to O(cn1n2). For large-scale graph

matching problems, c � n1n2.

The assignment matrix, X, is calculated with the CUR

decomposition of H by applying a soft-constraint second-

order graph-matching algorithm, like SM [21] or RRWM

[7]. For i ∈ {1, · · · , n1}, the k entries with highest prob-

abilities in Xi,: are found as the best k match set Pk
i =

{sij}kj=1, where sij represents the index of the jth high-

est probability in Xi,:. The detailed algorithm is shown in

Algorithm 1. The CUR-based method may lead to lower

matching accuracy with fewer sampled rows and columns

if only second-order matching is applied. However, it can

provide a rough result to follow with higher-order graph

matching, thereby avoiding the infeasible large-scale com-

putations.

Algorithm 1 CUR-based second-order graph matching

Input Point sets P1, P2 with size n1, n2, column indices

I , entry indices J ⊇ I , k
Output Best k match set Pk = set(Pk

1 , · · · ,Pk
n1
).

C ← H(:, I) {calculate columns with P1, P2}
U∗ ← CUR(C,H(J, J)){Based on Eq. (5).}
x ← Matching(CU∗CT)
X ← reshape(x)
for i = 1, · · · , n1 do
{Find k entries with highest probabilities for X(i, :)}
Pk
i ← {sij}kj=1

end for

3.3. Fiber-CUR-based Tensor Generation

The ANN-based method searches for the highest compat-

ibilities in all target hyperedges, which is time and space-

consuming for large-scale hypergraph matching. Based

on randomized fiber CUR decomposition, the third-order

compatibility tensor can be generated with the pairwise

graph-matching result to reduce the computational cost.

The second-order matching result from Algorithm 1 is Pk,

where k � n2. The method does not need to compare

the hyperedge (i1, i2, i3) ∈ E1 with all the hyperedges in

the target hypergraph, but with the hyperedge set {(j1, j2, :
), (j1, :, j3), (:, j2, j3)} ∈ E2 where j1 ∈ Pk

i1
, j2 ∈ Pk

i2
,

and j3 ∈ Pk
i3

. The r highest entries from each hyperedge’s

calculated compatibilities in the source graph are sellected.

Since each hyperedge is compared with fewer target hyper-

edges, r is much smaller than the number of selected com-

patibilities r1 in [9].

The light blue areas in Fig. 1 illustrate the compari-

son between the prior ANN-based tensor generation meth-

ods and the proposed fiber-CUR-based method in terms

of the tensor structure. The compatibility between hyper-

edge (i1, i2, i3) in the source graph and all the hyperedges

in the target graph can be represented as the tensor block

H̃i1,i2,i3 = Hindi1 ,indi2 ,indi3
(orange cubes in Fig. 1). Tra-

ditional ANN-based methods first randomly select t tensor

blocks, then calculate each tensor block with n3
2 time and

space complexity and reserve the r1 highest entries in each

block. In CURSOR, with the second-order graph match-

ing result Pk, only the corresponding fibers of each ten-

sor block, C are estimated, and the r highest entries are se-

lected. Consequently, the algorithm’s complexity reduces

from O(tn3
2 + tr1) to O(tk2n2 + tr) where r � r1. As

only the highest compatibilities matter, there is no need to

calculate the redundant U and R in Eq. (1). Compared with

the original randomized fiber CUR decomposition, the com-

patibility tensor requires less computation. The fibers in C
are selected based on Pk rather than by random sampling

and are closer to the key samples. Therefore, the ground

truth matching compatibility can be located with a higher

probability, resulting in higher matching accuracy. The to-

tal algorithm is given as Algorithm 2.

Algorithm 2 Fiber-CUR-based tensor generation

Input Point sets P1, P2 with size n1, n2, best k initial

guess set Pk = set(Pk
1 , · · · ,Pk

n1
)

Output Sparse tensor H
H ← empty tensor

I ← hyperedges randomly sampled from P1

for i = (i1, i2, i3) ∈ I do
e ← computeHyperedgeFeature(i, P1)
F ← empty feature set

{Calculate corresponding fibers in all directions.}
J1 ← {(1 : n2, j2, j3)}, j2 ∈ Pk

i2
, j3 ∈ Pk

i3

J2 ← {(j1, 1 : n2, j3)}, j1 ∈ Pk
i1
, j3 ∈ Pk

i3

J3 ← {(j1, j2, 1 : n2))}, j1 ∈ Pk
i1
, j2 ∈ Pk

i2J = set(J1,J2,J3)
for j ∈ J do
f ← computeHyperedgeFeature(j, P2)
F ← F ⋃

f
end for
S ← search for r highest similarities(F , e)
for s ∈ S do

ind(i, js) ← index of H(i, index(s))
H(ind(i, js)) ← compatibility(e, s)

end for
end for

3.4. PRL-based Matching Algorithm

To accelerate the convergence of the matching process, a

fast hypergraph matching algorithm was developed based

on probabilistic relaxation labeling (PRL) that takes advan-

tage of the high sparsity of the compatibility tensor. The

original PRL algorithm [13] updates the probability that a

label is assigned to an object with a set of specified com-

16039

patibilities, and has been applied in several graph matching

problems [6, 28, 35]. For each i ∈ G1 and j ∈ G2, pi(j)
represents the probability that i is associated with j, which

can be updated according to the following equation:

p
(k+1)
i (j) =

p
(k)
i (j)[1 + q

(k)
i (j)]∑

m p
(k)
i (m)[1 + q

(k)
i (m)]

(7)

with

q
(k)
i (j) =

n1∑
l=1

dil[

n2∑
m=1

ril(j,m)p
(k)
l (m)] (8)

where dil is a weight factor representing the influence of l
on i and

∑
l dil = 1. The factor ril(j,m) ∈ [−1, 1] de-

notes the relationship between the pairwise feature of edge

(i, l) ∈ E1 and (j,m) ∈ E2.

In our work, define Ril(j,m) = 0.5(ril(j,m) + 1) ∈
[0, 1] and set dil = n−1

1 . By replacing the weighting factor

p
(k)
i (j) in Eq. (7) with updated probabilities, it gives

p
(k+1)
i (j) =

[
∑

l

∑
m Ril(j,m)p

(k)
l (m)]2∑

i[
∑

l

∑
m Ril(j,m)p

(k)
l (m)]2

(9)

which contributes to a more consistent result and faster con-

vergence. Define

Ri1i2(j1, j2) =

{
Mi1,j1 i1 = i2 and j1 = j2

Ĥi1,j1,i2,j2 otherwise
(10)

where Ĥi1,j1,i2,j2 is the corresponding value in the com-

patibility matrix H and Mi1,j1 is related to the first-order

compatibility between node i1 ∈ G1 and j1 ∈ G2. Since

Ĥi,j,i,j = 0 for all i, j, the numerator of Eq. (9) can be

updated as:

p̂
(k+1)
i (j) = (Mi,jp

(k)
i (j) +

∑
l

∑
m

Ĥi,j,l,mp
(k)
l (m))2

(11)

Denote δ as
∑

l

∑
m Ĥi,j,l,mp

(k)
l (m). To increase the cor-

responding true matching p
(k)
i0

(j0) consistently during every

iteration, p̂
(k+1)
i0

(j0) must satisfy (Mi0,j0p
(k)
i0

(j0) + δ)2 ≥
p
(k)
i0

(j0), which leads to

δ ≥ 0.25M−1
i0,j0

(12)

If Eq. (12) is guaranteed, the probabilities can converge fast.

The detailed derivation of the PRL-based method can be

found in the supplement.

To extend the algorithm to third-order hypergraph

matching, replace the probability set p = {pi(j)} with the

vector x, the column-wise flattening of soft-constraint as-

signment matrix X. After normalization, rewrite Eq. (11)

as

x̂(k+1) = (αm̂�x(k)+(1−α)H⊗1 x
(k)⊗2 x

(k))2 (13)

where � is the element-wise multiplication and α ∈ [0, 1] is

a balance weight between the first and third-order compati-

bilities. The square calculation in Eq. (13) is also element-

wise. The first-order compatibility vector m̂ is obtained by

column-wise flattening M̂. The steps are shown in Algo-

rithm 3. For a tensor with high sparsity, the non-zero entries

of H ⊗1 x(k) ⊗2 x(k))2 are concentrated. Therefore x(k)

has a fast convergence speed if the ground truth compati-

bility entries are selected in the sparse tensor. According

to Eq. (12), a lower α can be set for the tensor with high

sparsity to achieve faster convergence.

Algorithm 3 PRL-based hypergraph matching

Input Sparse compatibility tensor H, initial assignment

matrix X, first-order compatibility vector m̂, α
Output Soft-constraint assignment matrix X
repeat
x ← flatten(X)
δ ← H⊗1 x⊗2 x
x ← αm̂� x+ (1− α)δ
x ← x� x
X ← reshape(x)
X ← norm(X) {Normalize across columns}

until X converges

4. Experiments

CURSOR was compared with four learning-free third-

order ANN-based hypergraph matching algorithms: Tensor

Matching (TM) [9], Hypergraph Matching via Reweighted

Random Walks (RRWHM) [20], BCAGM in third-order

(BCAGM3) [30], and Alternating Direction Graph Match-

ing (ADGM)[19]. The experiments were conducted

on the original implementations provided by their au-

thors. The proposed tensor generation method was inte-

grated into each of these algorithms, represented as CUR-

SOR+TM/RRWHM/BCAGM3/ADGM in the experiments.

The all-ones vector was set as the starting point, and the

Hungarian algorithm [17] turned the output into a proper

matching. CURSOR was also compared with the state-

of-the-art deep-learning-based algorithm HNN-HM [25] on

the House and Hotel dataset, which is relatively small-scale.

Since HNN-HM failed for datasets with n1 > 40 under the

same memory constraint, it was not compared with CUR-

SOR on other datasets. The hyperparameter α in Algo-

rithm 3 was set to 0.2 during the experiments. The exper-

iments were run on a computer with an Intel Core i7-9700

CPU @ 3.00 GHz and 16 GB of memory. All quantitative

results were obtained by 50 trials. Due to space limitations,

the ablation studies and parameter sensitivity analysis are

given in the supplement.

The compatibility features for each order and the param-

16040

ADGM CURSOR

n1 n2 σ t r1 Memory (H) Accuracy c k r Memory (H+H) Accuracy
30 30 0.02 900 900 89.35MB 1 15 5 5 0.62MB 1

30 50 0.02 1500 2500 413.88MB 1 15 5 5 0.82MB 1

50 50 0.02 2500 2500 701.80MB 1 20 7 7 2.37MB 1

50 100 0.02 5000 10000 5.45GB 0.974 100 10 10 9.62MB 0.982

100 100 0.02 10000 10000 11.28GB 1 100 15 20 30.65MB 1

300 300 0.01 30000 -∗ - - 200 20 20 215.92MB 1

500 500 0.01 50000 - - - 300 25 30 783.85MB 0.969

800 800 0.005 80000 - - - 400 30 50 2.02GB 0.973

1000 1000 0.005 100000 - - - 500 50 80 5.03GB 0.992

Table 1. Results on the synthetic dataset with ADGM and CURSOR.

∗System runs out of memory.

eters for the experiments were set as:

First-order compatibility. The first-order compatibility

matrix M in Eq. (13) for all experiments was calculated as:

Mi,j = exp(−γ0‖fi − fj‖2) (14)

where fi and fj are the normalized coordinates of ith point

in P1 and jth point in P2, respectively. The coordinates are

normalized by subtracting the mean value of the coordinates

in each set. γ0 is the inverse of the mean value of all the

distances from points in P1 to the ones in P2. M is then

flattened column-wise as the first-order compatibility vector

m̂.

Second-order compatibility matrix. The pairwise com-

patibility feature calculation of CURSOR followed [16],

which found a balance between rotation and scale invari-

ance. c columns, as C, and another 3c2 entries of H were

randomly selected with a uniform distribution for the CUR

decomposition. The soft-constraint assignment matrix was

computed with the second-order PRL-based algorithm pre-

sented in Eq. (11).

Third-order compatibility tensor. Following [9], the

same third-order compatibility feature calculation for the

ANN-based and CURSOR methods was applied. The same

t randomly selected hyperedges in the source graph were

used for all the methods. The ANN-based and CURSOR

methods generated the tensor with r1 and r highest compat-

ibilities from the target graph, respectively.

4.1. Large-Scale Random Synthetic Dataset

One thousand two-dimensional points, P , were sampled

from a Gaussian distribution N (0, 1). Then, Gaussian de-

formation noise N (0, σ2) was added to P as point set Q.

During the experiments, n1 points from P were selected as

source graph G1, and n2 points containing the correspond-

ing matching of G1 and outliers from Q were chosen as tar-

get graph G2.

CURSOR was evaluated on synthetic datasets with in-

creasing problem scales. Results of the ADGM algorithm

based on ANN, whose accuracy was the highest among all

the prior state-of-the-art hypergraph matching algorithms,

were given. The parameter settings of ADGM, including t
and r1, strictly followed the original work [19]. CURSOR

can deal with large-scale scenarios and achieve privilege-

matching accuracy with much less memory usage (Table 1).

CURSOR was capable of solving 1000-vs-1000 matching

problems with high accuracy, while ADGM failed to gen-

erate the tensor when n1 > 100 under the same memory

constraint. A more detailed memory footprint analysis and

the potential bottleneck of CURSOR will be provided in the

supplement.

4.2. Templates with Specific Shapes

To analyze the robustness of CURSOR to different shape

deformations, middle-scale templates with specific shapes,

which have been commonly used in previous works [14, 16,

29, 32] were evaluated. Four 2D templates were chosen:

whale with 150 points, Chinese character with 105 points,

UCF fish with 98 points, and tropical fish with 91 points.

The target points were generated by rotation, scaling, with

noise and outliers added. For CURSOR, c = 100, k = 5,

r = 25 and for ANN-based methods, r1 = 300. For both

types of methods t = 0.3n1n2.

Different deformations were added on all the target

points. For the rotation case, the source points were rotated

with angle θ ∈ [−30◦, 30◦], then noise with σ = 0.02σ0,

where σ0 is the standard deviation of all the source point

coordinates, was added. For the scaling case, only the x-

coordinate of the 2D point was scaled with the scaling factor

s = 1.1β , where β ∈ [−5, 5], then noise with σ = 0.02σ0

was added. To evaluate variant noise level, we vary noise

with σ ranging from 0 to 0.1σ0 with step 0.01σ0. To add

outliers, assume the mean value of the source points is μ0

and randomly add nl outliers from a Gaussian distribution

16041

-30 -20 -10 0 10 20 30
Rotation (in degree)

0.5

0.6

0.7

0.8

0.9

1
Ac

cu
ra

cy

RRWHM
ADGM
BCAGM3
CURSOR+RRWHM
CURSOR+ADGM
CURSOR+BCAGM3
CURSOR (Ours)

(a) Rotation

-5 0 5
0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

RRWHM
ADGM
BCAGM3
CURSOR+RRWHM
CURSOR+ADGM
CURSOR+BCAGM3
CURSOR (Ours)

(b) Scaling

0 0.02 0.04 0.06 0.08 0.1

Noise Level (in
0
)

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

RRWHM
ADGM
BCAGM3
CURSOR+RRWHM
CURSOR+ADGM
CURSOR+BCAGM3
CURSOR (Ours)

(c) Adding Noise

0 0.2 0.4 0.6 0.8 1

Outlier Ratio

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

RRWHM
ADGM
BCAGM3
CURSOR+RRWHM
CURSOR+ADGM
CURSOR+BCAGM3
CURSOR (Ours)

(d) Adding Outliers

Figure 2. Matching result with deformation (a) rotation with angle [−30◦, 30◦], (b) scale on x-coordinate with scale factor 1.1β where

β ∈ [−5, 5], (c) adding noise with σ/σ0 = [0, 0.1], and (d) adding nl outliers where the outlier ratio= nl/n1.

20 40 60 80 100

Baseline

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

RRWHM
ADGM
BCAGM3
HNN-HM
CURSOR+RRWHM
CURSOR+ADGM
CURSOR+BCAGM3
CURSOR (Ours)

(a) House: 20 pts vs 30 pts

20 40 60 80 100

Baseline

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

RRWHM
ADGM
BCAGM3
HNN-HM
CURSOR+RRWHM
CURSOR+ADGM
CURSOR+BCAGM3
CURSOR (Ours)

(b) House: 30 pts vs 30 pts

20 40 60 80

Baseline

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

RRWHM
ADGM
BCAGM3
HNN-HM
CURSOR+RRWHM
CURSOR+ADGM
CURSOR+BCAGM3
CURSOR (Ours)

(c) Hotel: 20 pts vs 30 pts

20 40 60 80

Baseline

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

RRWHM
ADGM
BCAGM3
HNN-HM
CURSOR+RRWHM
CURSOR+ADGM
CURSOR+BCAGM3
CURSOR (Ours)

(d) Hotel: 30 pts vs 30 pts

Figure 3. Comparison results on the House and Hotel dataset with various matching algorithms. The dashed curves represent the matching

results on the compatibility tensors using ANN. The solid curves with the same color denote the matching accuracy on tensors generated

by CURSOR with the same hypergraph matching algorithms.

N (μ0, σ
2
0), where the outlier ratio nl/n1 ∈ [0, 1].

Due to the rotational invariance of hyperedge features,

almost all the algorithms show an average accuracy of

nearly 1 under a variant of rotation deformation whether

ANN or CURSOR (Fig. 2). The curves of other three cases

demonstrate that the matching algorithms with CURSOR

outperform ANN. For example, with scaling, the hyper-

edge features were substantially damaged because the scal-

ing process only scaled the x-coordinate of the target points.

As the scale factor increased, the matching results of the

ANN-based algorithms significantly decreased. In contrast,

CURSOR generated compatibility tensors with higher ro-

bustness. The performance of the ANN matching algo-

rithms was significantly improved and became competent

after integrating the CURSOR tensor generation method.

RRWHM performed much worse than other algorithms in

all the cases but with the assistance of the compatibility ten-

sor generated by CURSOR, its results became stable and

showed comparable results to the other algorithms.

4.3. CMU House and Hotel Dataset

Previous works used the CMU House and Hotel datasets to

evaluate the matching algorithms [9, 19, 20, 25, 30]. These

datasets have 30 manually labeled feature points on a ro-

tating 3D house or hotel model tracked over 111 and 101-

frame image sequences, respectively. The experiment set-

tings of [19] were followed by matching all possible pairs

with baseline (the separation between frames) varying from

10 to 100 in intervals of 10 for the House dataset and from

10 to 90 for the Hotel dataset. n1 points were randomly

selected in the first image to match all the points in the sec-

ond for both datasets, where n1 equaled 20 and 30 as two

separate experiments. t = n1n2 tuples were selected from

the first image. For ANN-based methods, r1 = 200 nearest

neighbors were chosen for each hyperedge. For CURSOR,

r was set to 25 and c = 300. For the learning-based HNN-

HM, the training process of [25] on the House dataset was

followed and the model was validated on both datasets.

The sequence-matching results are given in Fig. 3. All

the learning-free-based matching algorithms combined with

CURSOR surpassed the original ANN-based ones except

for the BCAGM3 algorithm. The BCAGM3 algorithm with

CURSOR frequently made descent errors during the ex-

periment as its matching accuracy heavily decreased when

the compatibility tensor was too sparse. CURSOR ob-

tained comparable matching accuracy to the state-of-the-art

learning-free algorithms when the outlier number was ten

and achieved the best matching accuracy under the 30-vs-

30 case on the House dataset. For the Hotel dataset, CUR-

SOR achieved a much higher matching accuracy than ANN,

but was less accurate than HNN-HM on 20-vs-30 problems

as HNN-HM was specifically trained on the House Dataset.

16042

0 5 10 15 20 25 30

Number of Outliers

0

2

4

6

8

10

N
um

be
r

of
 N

on
-Z

er
os

 (
N

N
Z

)

106

ANN-based (Cars)
CURSOR (Cars)
ANN-based (Motorbikes)
CURSOR (Motorbikes)

(a) NNZ of Tensor

0 5 10 15 20 25 30
Number of Outliers

0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

(b) Motorbikes Dataset

0 5 10 15 20 25 30
Number of Outliers

0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

TM
RRWHM
ADGM
BCAGM3
CURSOR+TM
CURSOR+RRWHM
CURSOR+ADGM
CURSOR+BCAGM3
CURSOR (Ours)

(c) Cars Dataset

Figure 4. The Cars and Motorbikes datasets with CURSOR and state-of-the-art hypergraph matching algorithms. (a) The number of non-

zero compatibilities with ANN-based methods and CURSOR. The matching accuracy on the (b) Motorbikes and (c) Cars datasets.

(a) 30 pts vs 40 pts (10 outliers) (b) ADGM 3/30 (c) CURSOR+ADGM 25/30 (d) CURSOR (Ours) 30/30

(e) 52 pts vs 67 pts (15 outliers) (f) BCAGM3 36/52 (g) CURSOR+BCAGM3 50/52 (h) CURSOR (Ours) 52/52

Figure 5. Car and Motorbike matching examples. Top row Car dataset, bottom row Motorbike dataset. Each example shows the matched

results with the highest accuracy among trials. The green and red lines denote matches and mismatches, respectively.

It is noteworthy that CURSOR solved the matching prob-

lem with a unified model while HNN-HM must first train

separating models in different datasets to achieve a better

matching result. More detailed analysis will be provided in

the supplement to show the effectiveness of CURSOR.

4.4. Car and Motorbike Dataset

The Car and Motorbikes dataset [22] consists of 30 real-

life car image pairs and 20 motorbike image pairs, and was

used in previous works to evaluate matching algorithms

[19, 20, 30]. In this experiment, all inlier points in both

images were kept and labeled outlier points were randomly

chosen in the second image, with the number varying from

0 to 30 in step of 5. Every image pair in both datasets was

matched. t = n1n2 hyperedges were selected in the first

image. For ANN-based methods, r1 was set as 0.3n1n2.

CURSOR selected r = 50 highest compatibilities in each

tensor block. During experiments k = 10 and c = 300 .

Figure 4a reported the average number of non-zero el-

ements in the compatibility tensors generated by the two

types of methods. The average accuracy with the ANN-

based methods and CURSOR was shown in Fig. 4b and

Fig. 4c. All algorithms integrated with CURSOR consis-

tently improved their matching performance with a com-

patibility tensor more than ten times sparser than the ANN-

based methods. In most cases, the default PRL-based

matching algorithm achieved higher accuracy. Figure 5

shows matching examples. Combined with CURSOR,

other hypergraph matching algorithms showcased fewer

mismatches. CURSOR, with the PRL-based algorithm, ob-

tained the highest matching accuracy.

5. Conclusion
We propose CURSOR, a cascaded mixed-order hypergraph

matching framework based on CUR decomposition for scal-

able graph matching. The framework contains a CUR-

based second-order graph matching algorithm and a fiber-

CUR-based tensor generation method, which significantly

decreases the computational cost, and can be seamlessly in-

tegrated into existing state-of-the-art hypergraph matching

algorithms to enhance their performance. A PRL-based hy-

pergraph matching algorithm for sparse compatibility ten-

sors is developed to accelerate the convergence. Experiment

results demonstrated that CURSOR contributes to a higher

matching accuracy with a sparser tensor, which has more

potential utility in the big-data era. In future work, we plan

to develop a more principled adaptive scheme to optimize

the parameters of CURSOR so that it can perform better

with fewer computations on larger-scale tasks.

Acknowledgment
This work is supported by the Hong Kong Innovation and
Technology Commission (InnoHK Project CIMDA), the
Hong Kong Research Grants Council (Project 11204821),
and City University of Hong Kong (Project 9610034).

16043

References
[1] HanQin Cai, Keaton Hamm, Longxiu Huang, and Deanna

Needell. Mode-wise tensor decompositions: Multi-

dimensional generalizations of cur decompositions. The
Journal of Machine Learning Research, 22(1):8321–8356,

2021. 3

[2] HanQin Cai, Keaton Hamm, Longxiu Huang, and Deanna

Needell. Robust cur decomposition: Theory and imaging ap-

plications. SIAM Journal on Imaging Sciences, 14(4):1472–

1503, 2021. 3

[3] Youcheng Cai, Lin Li, Dong Wang, Xinjie Li, and Xiaoping

Liu. Htmatch: An efficient hybrid transformer based graph

neural network for local feature matching. Signal Process-
ing, 204:108859, 2023. 2

[4] Hongkai Chen, Zixin Luo, Jiahui Zhang, Lei Zhou, Xuyang

Bai, Zeyu Hu, Chiew-Lan Tai, and Long Quan. Learning

to match features with seeded graph matching network. In

Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 6301–6310, 2021. 2

[5] Jiazhou Chen, Hong Peng, Guoqiang Han, Hongmin Cai,

and Jiulun Cai. Hogmmnc: a higher order graph matching

with multiple network constraints model for gene–drug reg-

ulatory modules identification. Bioinformatics, 35(4):602–

610, 2019. 1

[6] Long Chen, Zhongying Zhao, and Hong Yan. A probabilis-

tic relaxation labeling (prl) based method for c. elegans cell

tracking in microscopic image sequences. IEEE Journal of
Selected Topics in Signal Processing, 10(1):185–192, 2015.

5

[7] Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. Reweighted

random walks for graph matching. In Computer Vision–
ECCV 2010: 11th European Conference on Computer Vi-
sion, Heraklion, Crete, Greece, September 5-11, 2010, Pro-
ceedings, Part V 11, pages 492–505. Springer, 2010. 1, 2,

4

[8] Timothee Cour, Praveen Srinivasan, and Jianbo Shi. Bal-

anced graph matching. Advances in neural information pro-
cessing systems, 19, 2006. 1, 2

[9] Olivier Duchenne, Francis Bach, In-So Kweon, and Jean

Ponce. A tensor-based algorithm for high-order graph

matching. IEEE transactions on pattern analysis and ma-
chine intelligence, 33(12):2383–2395, 2011. 1, 2, 3, 4, 5, 6,

7, 11, 13

[10] François-Xavier Dupé, Rohit Yadav, Guillaume Auzias, and

Sylvain Takerkart. Kernelized multi-graph matching. In

Asian Conference on Machine Learning, pages 311–326.

PMLR, 2023. 2

[11] Jiawei He, Zehao Huang, Naiyan Wang, and Zhaoxiang

Zhang. Learnable graph matching: Incorporating graph

partitioning with deep feature learning for multiple object

tracking. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5299–5309,

2021. 1

[12] Jian Hou, Huaqiang Yuan, and Marcello Pelillo. Game-

theoretic hypergraph matching with density enhancement.

Pattern Recognition, 133:109035, 2023. 1, 2

[13] Robert A Hummel and Steven W Zucker. On the foundations

of relaxation labeling processes. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, (3):267–287, 1983.

4, 11

[14] Bing Jian and Baba C Vemuri. Robust point set registra-

tion using gaussian mixture models. IEEE transactions on
pattern analysis and machine intelligence, 33(8):1633–1645,

2010. 6

[15] Zheheng Jiang, Hossein Rahmani, Plamen Angelov, Sue

Black, and Bryan M Williams. Graph-context attention net-

works for size-varied deep graph matching. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 2343–2352, 2022. 2

[16] Sheheryar Khan, Mehmood Nawaz, Xu Guoxia, and Hong

Yan. Image correspondence with cur decomposition-based

graph completion and matching. IEEE Transactions on Cir-
cuits and Systems for Video Technology, 30(9):3054–3067,

2019. 2, 6

[17] Harold W Kuhn. The hungarian method for the assignment

problem. Naval research logistics quarterly, 2(1-2):83–97,

1955. 5

[18] Eugene L Lawler. The quadratic assignment problem. Man-
agement science, 9(4):586–599, 1963. 1

[19] D Khuê Lê-Huu and Nikos Paragios. Alternating direction

graph matching. In 2017 IEEE conference on computer
vision and pattern recognition (CVPR), pages 4914–4922.

IEEE, 2017. 1, 2, 5, 6, 7, 8, 13

[20] Jungmin Lee, Minsu Cho, and Kyoung Mu Lee. Hyper-graph

matching via reweighted random walks. In CVPR 2011,

pages 1633–1640. IEEE, 2011. 1, 2, 5, 7, 8, 13

[21] Marius Leordeanu and Martial Hebert. A spectral technique

for correspondence problems using pairwise constraints. In

Tenth IEEE International Conference on Computer Vision
(ICCV’05) Volume 1, pages 1482–1489. IEEE, 2005. 1, 2,

3, 4, 11

[22] Marius Leordeanu, Rahul Sukthankar, and Martial Hebert.

Unsupervised learning for graph matching. International
journal of computer vision, 96:28–45, 2012. 8

[23] Guchong Li, Gang Li, and You He. Distributed multiple re-

solvable group targets tracking based on hypergraph match-

ing. IEEE Sensors Journal, 2023. 1

[24] Wuyang Li, Xinyu Liu, and Yixuan Yuan. Sigma: Semantic-

complete graph matching for domain adaptive object detec-

tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 5291–5300,

2022. 1

[25] Xiaowei Liao, Yong Xu, and Haibin Ling. Hypergraph neu-

ral networks for hypergraph matching. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 1266–1275, 2021. 2, 5, 7

[26] Chuanju Liu, Dongmei Niu, Xinghai Yang, and Xiuyang

Zhao. Graph matching based on feature and spatial location

information. The Visual Computer, 39(2):711–722, 2023. 2

[27] Michael W Mahoney and Petros Drineas. Cur matrix de-

compositions for improved data analysis. Proceedings of the
National Academy of Sciences, 106(3):697–702, 2009. 3

16044

[28] Biao Min, Ray CC Cheung, and Hong Yan. A flexible and

customizable architecture for the relaxation labeling algo-

rithm. IEEE Transactions on Circuits and Systems II: Ex-
press Briefs, 60(2):106–110, 2013. 5

[29] Andriy Myronenko and Xubo Song. Point set registration:

Coherent point drift. IEEE transactions on pattern analysis
and machine intelligence, 32(12):2262–2275, 2010. 6

[30] Quynh Nguyen, Antoine Gautier, and Matthias Hein. A

flexible tensor block coordinate ascent scheme for hyper-

graph matching. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5270–

5278, 2015. 1, 2, 5, 7, 8

[31] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,

and Andrew Rabinovich. Superglue: Learning feature

matching with graph neural networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 4938–4947, 2020. 2

[32] Fu-Dong Wang, Nan Xue, Yipeng Zhang, Gui-Song Xia,

and Marcello Pelillo. A functional representation for graph

matching. IEEE transactions on pattern analysis and ma-
chine intelligence, 42(11):2737–2754, 2019. 1, 2, 6

[33] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning

combinatorial embedding networks for deep graph matching.

In Proceedings of the IEEE/CVF international conference on
computer vision, pages 3056–3065, 2019. 2

[34] Tao Wang, He Liu, Yidong Li, Yi Jin, Xiaohui Hou, and

Haibin Ling. Learning combinatorial solver for graph match-

ing. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 7568–7577,

2020. 2

[35] Meng-Yun Wu, Dao-Qing Dai, and Hong Yan. Prl-dock:

Protein-ligand docking based on hydrogen bond matching

and probabilistic relaxation labeling. Proteins: Structure,
Function, and Bioinformatics, 80(9):2137–2153, 2012. 5

[36] Yanan Wu, He Liu, Songhe Feng, Yi Jin, Gengyu Lyu,

and Zizhang Wu. Gm-mlic: graph matching based multi-

label image classification. arXiv preprint arXiv:2104.14762,

2021. 1

[37] Miao Xu, Rong Jin, and Zhi-Hua Zhou. Cur algorithm for

partially observed matrices. In International Conference on
Machine Learning, pages 1412–1421. PMLR, 2015. 3

[38] Andrei Zanfir and Cristian Sminchisescu. Deep learning of

graph matching. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2684–2693,

2018. 2

[39] Zongwei Zhou, Junliang Xing, Mengdan Zhang, and Weim-

ing Hu. Online multi-target tracking with tensor-based high-

order graph matching. In 2018 24th International Con-
ference on Pattern Recognition (ICPR), pages 1809–1814.

IEEE, 2018. 1

16045

