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Figure 1. We present CoralSCOP, the inaugural foundation model proposed for dense coral segmentation, utilizing our newly proposed
CoralMask dataset, which comprises 41,297 coral reef images and 330,144 coral masks. CoralSCOP demonstrates a strong generalization
ability to unseen coral reef images, automatically generating reasonable coral masks with no prompts, while clustering similar coral
reefs into the same coral mask and splitting dissimilar coral reefs into multiple coral masks. CoralSCOP could serve user-defined tuning
and sparse-to-dense conversion to obtain more fine-grained, reliable and accurate coral statistics. The mask-referring segmentation and
instruction-following segmentation enable both amateurs and coral biologists to generate coral masks.

Abstract

Underwater visual understanding has recently gained
increasing attention within the computer vision community
for studying and monitoring underwater ecosystems. Among
these, coral reefs play an important and intricate role, often
referred to as the rainforests of the sea, due to their rich bio-
diversity and crucial environmental impact. Existing coral
analysis, due to its technical complexity, requires significant
manual work from coral biologists, therefore hindering scal-
able and comprehensive studies. In this paper, we introduce
CoralSCOP, the first foundation model designed for the au-
tomatic dense segmentation of coral reefs. CoralSCOP is de-
veloped to accurately assign labels to different coral entities,
addressing the challenges in the semantic analysis of coral
imagery. Its main objective is to identify and delineate the ir-
regular boundaries between various coral individuals across

different granularities, such as coral/non-coral, growth form,
and genus. This task is challenging due to the semantic
agnostic nature or fixed limited semantic categories of previ-
ous generic segmentation methods, which fail to adequately
capture the complex characteristics of coral structures. By
introducing a novel parallel semantic branch, CoralSCOP
can produce high-quality coral masks with semantics that
enable a wide range of downstream coral reef analysis tasks.
We demonstrate that CoralSCOP exhibits a strong zero-shot
ability to segment unseen coral images. To effectively train
our foundation model, we propose CoralMask, a new dataset
with 41,297 densely labeled coral images and 330,144 coral
masks. We have conducted comprehensive and extensive
experiments to demonstrate the advantages of CoralSCOP
over existing generalist segmentation algorithms and coral
reef analytical approaches.
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1. Introduction

Coral reefs are vibrant and diverse ecosystems in shallow
(<50m depth) and sunlit areas in tropical and subtropical
seas. They are home to a vast biodiversity of marine life, in-
cluding algae, invertebrates like hard and soft corals, worms,
crustaceans, and echinoderms; and vertebrates like fish and
marine turtles. Because of their biological importance, many
measures [12, 18, 29, 33, 38] are now put under protection
against human and natural threats. Underwater monitoring
of reef structures, including changes in coral cover and com-
position, has become a routine but critical exercise to assess
the health and stability of coral reef ecosystems and func-
tions over time. To date, however, monitoring works on coral
reefs remain a very time-consuming and labor-intensive task
involving the physical collection of underwater photo images
from the reef site and analysis of the photo images obtained
(either still photos or videos). With the advancement of
computer vision technology and artificial intelligence, it is
envisioned that such routine monitoring of coral reef im-
ages could become more efficient with better precision and
accuracy in generating data statistics that provide the com-
munity for formulating adaptive coral reef protection and
conservation strategies.

Most existing coral reef analytical approaches focus on
analyzing coral reef images and videos collected in-situ dur-
ing underwater coral surveyings [15, 45, 53]. Domain ex-
pertise is required to annotate coral data, such as annotat-
ing coral growth form or genus in images and videos. To
reduce complexity, existing dominant coral reef analysis al-
gorithms are apt to involve down-sampling and adopt only
some keyframes for analysis, in which a selected number of
quadrats [53] are placed to determine the surveying areas. To
cope with manual annotation, sparse points [3, 8, 32] are ran-
domly sampled or specifically determined on images so that
coral biologists can annotate them, facilitating the computa-
tion of coral statistics such as cover percentage, composition,
and population density.

There are two main issues for these existing analytical ap-
proaches: 1) as mentioned earlier, manual annotation can be
time-consuming and labor-intensive when analyzing large-
scale data or conducting repeated surveys. It also imposes
limitations on the spatial and temporal scales for biological
surveying and is highly dependent on a group of specific
coral biologists. Scalability has become one of the most
important limiting factors that hinder more comprehensive
coral reef studies. 2) The down-sampling [32] involved in
the whole procedure (sampling quadrats areas and sampling
sparse points) will inevitably introduce bias to the estima-
tion outputs, leading to over/under estimations. Furthermore,
sparse point coral analysis cannot accurately delineate irreg-
ular boundaries of corals in the coral reefs.

Dense segmentation [7, 10, 11, 56] provides a reasonable
and satisfactory solution for coral image analysis, identify-
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Figure 2. CoralSCOP could effectively address over-segmentation
and generate more accurate coral masks than SAM and Semantic-
SAM. Best viewed in color.

ing and delineating the complex boundaries of coral colonies.
It supports identifying individual coral species, thus quan-
tifying coral reef population density/composition, and pro-
moting 3D coral reconstruction. In computer vision, great
progress has been achieved in dense segmentation of general
in-air objects, led by powerful deep neural networks [13, 20]
and large-scale datasets [17, 39]. Recently, the segment-
anything model [31] (SAM) pre-trained on 11 million im-
ages with 1 billion masks has demonstrated a very strong
generalization ability to a wide range of objects and down-
stream tasks [25, 26, 42, 43, 52]. It is therefore of great
interest to explore how well SAM can segment corals within
the coral images.

Unlike segmenting general in-air objects, however, pre-
cise and robust coral segmentation [1, 2, 47, 59, 64] is still
a challenging problem due to irregular coral boundaries, a
wide range of coral appearances and forms, degraded visual
quality of underwater images, complicated background with
dynamic occlusions, and viewpoint changes as demonstrated
in Figure 1. Several important aspects for coral segmenta-
tion are lacking in SAM. First, SAM is a semantic-agnostic
model, which cannot yield semantic labels for coral reef data
and leads to over-segmentation as shown in Figure 2. Second,
due to the fine-grained anatomical structures, uncertain and
complicated boundaries, as well as the wide range of scales
found in coral reefs, SAM tends to produce incomplete and
inaccurate coral masks. The further Semantic-SAM [34]
could generate masks from 6 implicit semantic granulari-
ties through a many-to-many matching design. However,
Semantic-SAM cannot address the over-segmentation effec-
tively either (viewed in Figure 2). To resolve these issues, a
trivial approach is to directly fine-tune SAM on additional
coral data. This improves the mask generation quality, but
does not effectively address the over-segmentation problem
since SAM is pre-trained on masks without semantics. The
finetuned SAM, however, still yields numerous false posi-
tives due to the extreme ratio between pre-training data and
fine-tuning data, assuming that the number of coral masks is
a few thousand times fewer than billions of object masks.

In this paper, we present the first coral segmentation foun-
dation model, Coral SCOP, trained on a significant scale of
coral reef images and adaptable to a wide range of down-
stream coral analysis tasks. CoralSCOP could produce high-
quality coral mask generation and underwater visual percep-
tion [22]. Our model is illustrated in Figure 1, demonstrating
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a strong zero-shot generalization ability to segment unseen
coral reef images and automatically generate reasonable
coral masks with no prompts.

The key technical contribution of CoralSCOP is an
improved network architecture over SAM by a novel
parallel semantic branch at the decoder, which effectively
addresses the semantic-agnostic issue as well as enables new
training strategies for further enhanced results, e.g., train
with negatives. CoralSCOP can also receive various kinds
of prompts (e.g., points, boxes and texts) to guide the gen-
eration of semantic coral masks based on user intents. All
these make CoralSCOP a foundation model with valuable
adaptability for various downstream user-defined tasks: 1)
user-defined tuning to support coral reef understanding
from different granularities (e.g., coral/non-coral, growth
form and genus); 2) sparse-to-dense conversion by con-
verting the already available sparse point annotations [32]
to dense coral masks for more accurate coral statistics; 3)
mask-referring segmentation and 4) instruction-following
segmentation enable both the amateurs and coral biologists
to generate coral masks, unleashing the power of textual
descriptions and reusing existing coral masks.

Our CoralSCOP is trained by CoralMask, a new dataset
with 41,297 coral reef images and 330,144 coral masks. Ex-
isting datasets in underwater and marine research [15, 21,
22,24, 35, 37, 65] such as Mosaics UCSD [15] (4,193 im-
ages), WaterMask [37] (4,628 images), MAS3k [35] (3,103
images), LaRS [65] (4,006 images) and USOD10K [22]
(10,255 images) have small data size with low image diver-
sity [15] (e.g., data captured at the same site) while being
too generic (e.g., data with a wide range of underwater ob-
jects [22, 35, 37]), which cannot directly be utilized for coral
analysis. Our CoralMask dataset is specifically designed for
coral analysis at a larger scale, which is about 10x larger
than Mosaics UCSD [15] and 4x as USOD10K [22] in data
size. Our results show strong capabilities in segmenting
in-distribution and out-of-distribution coral images, either
qualitatively or quantitatively.

Our contributions are summarized as follows:

* We present CoralSCOP, the first coral segmentation foun-
dation model, which can effectively segment coral images
automatically (no prompts) or semi-automatically by input
prompts from the user;

* We present improved network architecture and training
strategies for CoralSCOP to achieve strong zero-shot gen-
eralization ability;

* We propose CoralMask, the largest coral reef dataset to
date with densely labeled coral masks to foster the devel-
opment of the coral segmentation foundation model;

* We provide extensive experiments that demonstrate the
SOTA results of our model. We also demonstrate the
robustness of our foundation model in different application
scenarios with SOTA results.

2. Related Work

Underwater Visual Analysis [21, 36, 40, 58, 63] pro-
vides an effective way to monitor and protect the under-
water and marine ecosystem. To promote underwater vi-
sual recognition, various datasets and benchmarks (e.g.,
MAS3K [35], WildFish [61], WildFish++ [62], FishNet [30],
MarineDet [19], SUIM [23], etc) have been proposed for
different purposes: fish classification [61, 62], fish count-
ing [28, 51], marine animal segmentation [35], marine object
detection [19, 21, 40, 44], salient object detection and seg-
mentation [22, 24], semantic segmentation [ 15, 23, 37, 64]
and name a few [36, 65]. Among these, dense segmenta-
tion [15, 64], with pixel-level analysis, can provide valuable
insights into the population and biodiversity of coral reefs,
and inform the development of effective management strate-
gies to protect coral reefs.

Coral Analysis. With coral reefs facing increasing
threats [45], accurately analyzing and monitoring the fragile
coral reef ecosystems [2, 16, 33, 49] is more important than
ever. Coral Point Count with Excel Extensions (CPCe) [32]
provided the benthic coral analysis based on sparse point
analysis, where sparse points are randomly sampled or deter-
mined and then annotated by coral biologists to compute the
coral statistics. To reduce the human labor, the patch-based
CNNs [20, 50] are integrated into CoralNet [3, 8] to automat-
ically determine the sparse point annotation. Based on sparse
point annotations, CoralSeg [1] and PLAS [47] proposed to
perform sparse-to-dense conversion based on Superpixels [5]
to obtain dense coral masks as pseudo ground truth for opti-
mizing dense segmentation algorithms. Besides the sparse-
to-dense conversion, some coral reef datasets [4, 15, 64] with
dense coral masks have also been proposed. However, these
datasets with dense masks are limited in data scale with fixed
few semantic categories and image diversity which limits
their generalization ability. Our CoralMask is the largest
coral reef dataset with dense coral masks to date. There are
also two fundamental differences between CoralSCOP and
existing CPCe [32] and CoralNet [3, 8]: 1) CoralSCOP has
a strong zero-shot generalization ability to unseen coral reef
images without new training samples and 2) CoralSCOP
supports dense segmentation, which could generate more
accurate coral statistics.

Foundation Models (such as CLIP [46], ALIGN [27] and
SAM [31]) have been widely favored by the whole CV com-
munity. SAM [31] optimized by vast and diverse training
data, has demonstrated a strong ability to segment meaning-
ful objects with precise object masks. SAM has been widely
used for medical image segmentation [42, 43, 48, 54], cam-
ouflaged object segmentation [25, 52], challenging scenar-
i0s [9] and other applications [26, 60]. MSA [54] designed
an adapter design for transferring SAM to a counterpart in
segmenting medical images and SAM-adapter [9] proposed
to perform camouflaged object segmentation and shadow
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detection. Under both settings, domain-specific data are re-
quired for fine-tuning SAM to domain experts. However,
underwater coral reef images illustrate more complicated
and diversified characteristics than medical images or in-air
images. Directly utilizing SAM or fine-tuning SAM for coral
reef analysis cannot achieve satisfactory performance due to
the over-segmentation and lack of semantics. The limited
coverage of coral images in training data of SAM also results
in inaccurate or incomplete coral mask generation.

3. Approach
3.1. CoralMask Dataset

We have curated a dataset of 41,297 coral reef images from
different data distributions, encompassing a wide range of
global coral reef sites. This collection features images
sourced from the Internet, public datasets, open-source con-
tributions, and underwater surveying images contributed by
coral biologists. Most of the coral reef images are of high
resolution, and we downsampled them to a resolution where
the shortest side is 1,024 pixels while maintaining the aspect
ratio of each image. The coral reefs have complex geome-
tries and irregular shapes. Meanwhile, they also illustrate a
wide range of textures and appearances, with different col-
ors, patterns, and growing forms. It can be very difficult to
accurately identify and segment the boundaries of individual
corals from the coral colonies. To promote the adaptability
of CoralSCOP to downstream tasks, we have established a
series of grouping rules specifically designed to accurately
separate individual corals, ensuring corals with different
characteristics into separated masks. We have developed an
interactive labeling tool based on SAM to promote labeling
efficiency. All the coral reef images were manually labeled
by coral biologists, resulting in 330,144 masks in total.

3.2. Preliminaries

Our method is built upon SAM [31], the foundation model
for generic segmentation without semantic labels. SAM
consists of three components, a prompt encoder Prop(-),
a heavy image encoder Enc(-), and a lightweight mask de-
coder Dec(+). As a promotable model, SAM could be fed
with an image I and a set of prompts P, including point,
box, or coarse mask prompts. SAM utilizes Enc(-) to obtain
image embedding, and adopts Prop(-) to encode prompts
P of alength k into prompt tokens as:

F; =Enc(I), Tp=rProp(P), (1)

where F; € RP*®*¢ and Tp € R*¥*€, with h, w denoting
the resolution of the image embedding and ¢ = 256 denoting
the feature dimension. F; and T'p are then fed into mask
decoder Dec(+) for mask generation. SAM constructs the
input tokens of Dec(-) by concatenating the learnable mask
tokens T, generated by Dec(+) and the prompt tokens Tp
for generating the mask output, formulated as:

M = Dec(Fr,Concat (T, Tp)), (2)

where M denotes segmentation masks yielded by SAM.

SAM performs the semantic-agnostic mask generation
in an automatic or interactive way through different kinds
of prompts, which empower SAM with a strong generaliza-
tion ability to generate precise masks for objects. However,
SAM is primarily optimized by in-air images, making it
less effective in segmenting underwater images, especially
coral reef images. The complicated backgrounds, irregular
boundaries, crowded instances, and significant diversity of
corals lead to the fact that SAM still suffers from incomplete
and inaccurate coral mask generation. Furthermore, SAM
lacks semantics, resulting in over-segmentation and numer-
ous false positives. Simply fine-tuned with coral masks does
not address the over-segmentation problem and changes the
semantic agnostic nature.

3.3. CoralSCOP
3.3.1 Coral Foundation Model Pre-training

We adopt SAM as our backbone and utilize it as a pow-
erful and stable network initialization. The whole model
is continuously pre-trained with our CoralMask dataset to
better extract efficient underwater feature representations.
CoralSCOP performs semantic segmentation and learns the
implicit semantics from the grouping rules by the coral bi-
ologists (e.g., grouping the corals with the same appear-
ance to one coral mask while splitting dissimilar corals from
crowded coral colonies). The overview of our CoralSCOP is
demonstrated in Figure 3.

To address semantic-agnostic and over-segmentation
problems, we have designed a parallel semantic branch in
Dec(+). We formulate a lightweight MLP layer to project the
shared feature embeddings by the mask generation branch
and the semantic branch. The attention-based feature interac-
tion is conducted between mask generation and semantic dis-
crimination. As demonstrated in Figure 3 (we omit the IoU
branch for better illustration), we couple the image embed-
ding with prompt information to generate 4096-dimensional
vectors F, € R4096XF describing the yielded coral masks.
F, could also be utilized for computing the similarity be-
tween generated coral masks, empowering CoralSCOP with
the ability to perform mask-referring segmentation. We
finally project F, into the semantic coral space (e.g., a bi-
nary semantic space discriminating the corals and non-corals
in the pre-training stage or user-defined semantic space in
the tuning procedure). Our design serves three purposes:
training with negatives, user-defined tuning and instruction-
following tuning.

Training with Negatives. We observed that solely relying
on pre-training on domain-specific coral reef data with super-
vision from the coral biologists does not adequately address
the over-segmentation issue. Besides, additional continuous
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Figure 3. The proposed CoralSCOP framework. We design a parallel semantic branch inside the mask decoder, enabling the coral mask
generation with semantics. The whole model is trainable in the pre-training procedure and Enc(+) is frozen in the tuning procedure.

pre-training could lead to knowledge forgetting, therefore de-
grading the generalization ability of CoralSCOP. To address
these two issues simultaneously, we propose training-with-
negatives. We generate redundant semantic-agnostic masks
based on SAM with Vit-H backbone. Then we regard those
generated masks that do not overlap with our labeled coral
masks as masks with “non-coral” labels. The binary classifi-
cation loss is computed by

Las = —(ylog(p) + (1 —y)log(1 - p)), p = MLP(F,).
3
Our parallel semantic branch is optimized by both manu-
ally labeled coral masks and masks assigned with the “non-
coral” label, performing binary discrimination during the
pre-training procedure. By incorporating these advance-
ments, we can preserve the strong generalization ability of
CoralSCOP and alleviate the over-segmentation problem.

3.3.2 Model Tuning

After pre-training, CoralSCOP could effectively discrimi-
nate corals from the background and produce high-quality
binary coral masks. In order to make it a segmentation foun-
dation model, together with the parallel semantics branch,
we designed user-defined tuning and instruction-following
tuning for performing a more fine-grained coral analysis
while keeping Enc(-) frozen.

User-defined Tuning. The users could self-design their
own coral semantics (e.g., growth form, genus, or species)
and tune pre-trained CoralSCOP to downstream variants.
This user-defined tuning is achieved by only modulating
the parameters of the parallel semantic branch based on
few-shot samples (coral masks with user-defined semantic

annotations). £%%™ for tuning is computed as:

N
L == " ye, 10g(pe,,):  Pe, =MLP(F,) (4)
cm=1
where ¢,,, is the semantic annotation of M while NV is the
number of total categories defined by users. By only tun-
ing the parameters of the MLP layer, we could transfer

CoralSCOP to various variants aligned with the different
user intents.

Instruction-following Tuning. CoralSCOP enables
instruction-following segmentation. Given a textual prompt
(e.g., segmenting “a red branching coral”), describing corals
presented in I, CoralSCOP could generate a corresponding
coral mask that satisfies the user requirement. We borrow the
frozen language encoder of CLIP [46] and generate the tex-
tual embedding ¢t € R758. We utilize the bounding box of the
whole image: BBOXmage as prompt to generate Tp € Rkxe,
where k = 1. A linear layer f(-) is designed to project ¢ to
t = f(t), with the same size as Tp. ¢ is finally added to
Tp element-wise:

M = Dec(Fy,Concat(Tar, Tp|BBOXimage + f(t))),

&)
where M is a single mask in this case. Tp|BBOXimage in-
dicates that we utilize the width and height of the whole
image as the box prompt. The parallel semantic branch is
also utilized for discriminating whether the generated coral
mask matches the given textual description. CoralSCOP will
set the generated mask to “background” when the given text
prompt does not match the synthesized mask. We construct
both positive and negative pairs to optimize our CoralSCOP
to promote its ability to generate required coral masks and
alleviate the hallucination.

4. Experiments
4.1. Implementation Details

Pre-training. During the pre-training procedure, 1.3 million
masks (including 330,144 coral masks labeled by coral biol-
ogists and 978,968 non-coral masks generated by SAM) are
utilized for training our CoralSCOP. We have optimized our
CoraSCOP for 5 epochs on 6 Tesla A100 GPUs and batch
size per GPU is set to 1. We optimize the parameters of the
whole model during the pre-training to promote Enc(+) to
extract underwater visual features. The composite prompts
of point prompts (1, 2, 3 or 4 random points inside the coral
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Table 1. The coral mask generation quality of various algorithms
under different settings.

Method ‘ Back. ‘ IoUT Accuracy T MAE |
DeeplabV3 [7] R101-D8  59.39 71.76 0.1634
CGNet [55] FCN-4xB8  59.63 79.84 0.1197
GCNet [6] R101-D8  61.75 78.35 0.1206
BiSeNetV2 [57] | FCN-FP16 60.90 78.11 0.1129
MaskFormer [10] | R101-D32  67.21 79.46 0.0868
Mask2Former [11] | R101-D32  69.17 77.63 0.0842
SegFormer [56] Mit-B5 71.51 84.29 0.0776
SAMP [31] Vit-H 31.16 38.05 0.5057
SAM® [31] Vit-H 44.67 52.86 0.3798
SAM® [31] Vit-H 72.80 73.92 0.1173
CoralSCOPY Vit-B 59.02 79.88 0.1243
CoralSCOP* Vit-B 62.90 86.67 0.1217
CoralSCOP* Vit-B 74.00 83.73 0.0804
CoralSCOPY Vit-L 65.87 78.45 0.1204
CoralSCOP* Vit-L 68.23 78.34 0.0976
CoralSCOP* Vit-L 79.13 81.11 0.0764

mask) and bounding box prompts are utilized for training.
The final loss function is the sum of the classification loss
L5, Dice loss, Focal loss (20%) and IoU loss. Tuning Pro-
cedure. For the user-defined tuning, the coral masks with
corresponding user-defined semantic annotations are fed into
CoralSCOP and we only optimize the MLP layer in Dec(-).
For instruction-following tuning, we have formulated 46,610
instruction-following pairs. All the coral reef images (4,661
in total) are crawled from “Corals of the World” [14]. We
optimize the whole mask decoder under this setting.

4.2. Coral Mask Generation

We first evaluate the generated coral mask quality. We ran-
domly sampled 941 coral reef images (non-overlapped with
the training data) with significant diversity and the pro-
fessional coral biologist annotators generated the ground
truth coral masks. The models are required to segment the
corals from the background. We have included the existing
SOTA semantic segmentation algorithms DeepLabV3 [7],
CGNet [55], GCNet[6], BiSeNetV2 [57], MaskFormer [10],
SegFormer [56] and Mask2Former [ 1 1] for comparison. All
the algorithms have been re-trained and optimized on our
CoralMask dataset following the provided default setting for
a fair comparison. The SAM is also utilized for inference
only. We evaluate SAM and CoralSCOP under three ex-
perimental settings: “Automatic”” (no prompt is given); “1
point prompt®” (one random point inside each coral mask is
given as point prompt) and “I point prompt and BBOX ;5 *”
(one random point inside the coral mask and BBOX of the
coral mask are provided together as prompts). For the latter
two settings, we repeat the mean value of 3 times of runs.
We computed IoU, pixel accuracy, and the mean ab-
solute error (MAE) between generated coral masks and
ground truth masks labeled by coral biologists in Table 1.
DeepLabV3 [7], CGNet [55] and GCNet [6] models only
demonstrate limited generalization ability to the unseen coral

SegFormer SAM CoralSCOP GT

Figure 4. The coral segmentation comparisons between various
algorithms. Both SAM and CoralSCOP could separate dissimilar
corals into different coral masks while others faile
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Figure 5. The automatic coral segmentation of CoralSCOP on coral
reef images from different sites.

images and they failed to generate accurate coral masks. We
attribute this failure to the irregular boundary and significant
diversity of coral reefs. SegFormer [56], MaskFormer [10]
and Mask2Former [1 1] illustrate a stronger ability to gener-
ate accurate coral masks. However, all these dense segmen-
tation specialist models cannot separate corals with different
appearances, growth form, genus or species representations
into separated coral masks as demonstrated in Figure 4, since
they are only optimized to segment corals from the back-
ground. The generated coral masks cannot be further re-
defined by the coral biologists aligned with user intents and
the whole model is required to be re-optimized to satisfy the
user requirement.

In contrast, both SAM and CoralSCOP could generate
coral masks in a fine-grained manner. Figure 4 demonstrates
the limitations of SAM for coral reef data. SAM suffers
from the over-segmentation problem and also fails to de-
tect some coral individuals. As demonstrated, CoralSCOP
could effectively address the over-segmentation problem.
CoralSCOP could achieve competitive coral mask genera-
tion performance even under the “automatic” setting. When
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Table 2. The mloU scores are computed under different settings.
The numbers in blue represent the performance gains achieved by
CoralSCOP.

Table 3. The average prediction error ({) under “sparse” (CPCe)
setting and “dense” setting after sparse-to-dense conversion by
PLAS, SAM and CoralSCOP. The ground truth coral composition

Methods | Semantics |  10-shot | 20-shot | 40shot |  Full for each growth form and non-coral composition are also provided.
SegFormer [56] Growth 32.54 36.79 38.39 59.22 Method Sel.ling Non-coral | Massive | Laminar | Branching | Faliaceous | Encrusting | Columnar
CoralSCOP Form | 52.16 (+19.62) | 56.75 (+19.96) | 57.27 (+15:8) | 67.82 (+1055) (Points) | (6143 | 225D | 13.06) | (1499) | @614 | 02783) | (©.2616)
. CPCe [32] 10.01 8.903 4.544 0.678 0.223 0.480 0.162
SegFormer [56] | o 18.24 20.04 2252 28.34 PLAST] | o 9.886 | 8490 | 4485 | 0675 0.153 0.397 0.134
CoralSCOP 23.82 (+5.58) 26.26 (+6.22) 28.89 (+6.37) 35.53 (+7.19) SAM [31] 16.12 10.69 5.846 0.309 0.164 0.248 0.135
CoralSCOP 10.56 6.371 3.677 0.287 0.034 0.211 0.198
. . . CPCe [32] 7.437 6.218 3.021 0.536 0.039 0.308 0.129
given 1 random point prompt, CoralSCOP achieves compara- PLAS[47] | 0 | 6391 | 573 | 2952 | 0421 | 0050 | 033 | 0141
. .. SAM [31] 10.71 6.943 3.871 0.230 0.249 0.256 0.055
ble performance with Mask2Former. The additional BBOX CoralSCOP 5334 | 3791 | 1555 | 0119 | 0049 0225 | 0145
3 3 : CPCe [32] 4.488 3.569 2.300 0.382 0.086 0.217 0.041
prompt further addresses the ambiguity and results in the PASIT | o | | s | ren | o | ooss | o | een
1 SAM [31] - 6.988 5.194 3.047 0.158 0.112 0.545 0.113
beSt Segmentatlon performance' CoralSCOP 2.832 2.657 1.396 0.042 0.022 0.154 0.221
Spatial coral reef analysis. We provide coral segmenta- CPCe [32] 3052 | 2648 | 1345 | 0175 0.020 0.159 0.034
it X i A R PLAS47) | o 2300 1921 | 1253 0.115 0.024 0.145 0.026
tion results of reef images from 16 sites in Figure 5. The SAM [31] 743 | 5804 | 3378 | 0335 | o188 | 1259 | 009%
CoralSCOP 2.014 1.727 1.174 0.056 0.010 0.145 0.070

images have a large range of color variation, textures, visi-
bility, perspective and biological diversity. CoralSCOP ef-
fectively recognizes the coral reef images from various sites
and demonstrates a strong zero-shot generalization ability.

4.3. Semantic Coral Analysis

We then validate CoralSCOP on a wider range of biologi-
cally meaningful tasks through user-defined tuning. We offer
flexible user-defined tuning experiments essential in coral
reef research, including growth form and genus recogni-
tion. Growth form (500 coral images with 6 growth form
annotations: 400 for training and 100 for testing) indicates
the physical morphology and structure exhibited by coral
reefs. We have explored the effectiveness of the few-shot
tuning (e.g. 10, 20, and 40 training images). We randomly
pick up few-shot samples from the whole training samples
and we repeat experiments 3 times to report mean values.
For comparison, SegFormer is conducted under the same
experimental settings. The mloU scores are computed in
Table 2. CoralSCOP achieved more reliable growth form
segmentation than SegFormer with nearly 20 mIoU score
improvement. With the pre-trained foundation model that
can effectively recognize corals, we can easily extend the
foundation model to recognize the coral growth form based
on few-shot samples. Similarly, we perform genus-level
coral understanding (400 coral images with 14 coral gen-
era: 300 for training and 100 for testing), which requires
more fine-grained distinctions and recognizing subtle mor-
phological differences among closely related genera (e.g.,
Platygyra and Coelastrea). It is thus more challenging for the
model to perform accurate genus-level coral segmentation.
Our CoralSCOP could still achieve observable performance
gains over SegFormer. It is worth noting that all the images
involved in growth form and genus segmentation are with
the benthic view and labeled by coral biologists.

Sparse-to-Dense. CoralSCOP supports sparse-to-dense
conversion for more accurate coral statistics. The ex-
isting coral reef analytical approach CPCe is comput-
ing coral statistics only based on labeled sparse points:

# of points for each growth form s
- of toal sparse points CoralSCOP could utilize the al-
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Figure 6. The coral segmentation results of instruction-following
(left side) and mask-referring (right side) coral segmentation.

ready available sparse point annotations as prompts to gener-
ate dense semantic coral masks, where the semantics are
from the point annotations. SAM [31] and PLAS [47]
are chosen for comparison and 100 benthic images with
6 growth form annotations are used for testing. In Ta-
ble 3, we report the average prediction error between
ground truth coral composition and coral statistics computed
by different algorithms after sparse-to-dense conversion:
area of coral m?rslfasgfeo;rzzch growth form The prediction error of CPCe
is also reported. Please note all algorithms adopt the same
sparse point annotations and are repeated 3 times to obtain
the mean values. We conduct experiments using different
numbers of sparse points: 10, 20, 50 and 100. In most cases,
CoralSCOP achieves the lowest prediction error, demonstrat-
ing the best sparse-to-dense conversion performance. SAM
even achieved worse results than CPCe, indicating the gener-
ated coral masks by SAM are wrong and then lead to higher
prediction errors.

Mask-referring segmentation. CoralSCOP supports mask-
referring coral segmentation: a reference coral mask (either
from an input image or another reference image) is provided,
and CoralSCOP will yield matched coral masks based on all
the automatically generated coral masks. We adopt Cosine
similarity to compute feature distance between masks. The
masks with similarity over a tunable user-defined thresh-
old (e.g., 0.8 in our experiments) are regarded as matched
masks demonstrated in the left side of Figure 6. Instruction-
following segmentation results of CoralSCOP are illustrated
in right side of Figure 6. We utilize SAM+GroundingDINO
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Table 4. The coral mask generation quality of various algorithms
under comprehensive settings.

Table 5. The underwater salient object segmentation results on the
USODI10K dataset [22].

Automatic? 1 point* 1 point + BBOX mask®

Method ‘ Back. ‘

IoU? MAE/| | IoUt MAE] | IoU? MAE |

SAM [31] 2361 03895 | 4576 0.3122 | 63.03 0.1799
SAM? 2368 02551 | 32.12 04148 | 65.21 0.1676
SAM-Adapter [9] | Vit-B | 8.821 03033 | 3247 03794 | 62.78 0.1891
CoralSCOP~ 2406 02915 | 33.52 03816 | 65.61 0.1666
CoralSCOP 2645 02847 | 37.96 03219 | 66.78 0.1562
SAM [31] 29.83 04623 | 41.36 0.4578 | 57.40 0.2947
SAM? 3746 02614 | 4472 0.3264 | 68.00 0.1470
SAM-Adapter [9] | Vit-L | 3438 03399 | 43.83 03290 | 67.34 0.1525
CoralSCOP~ 38.15 02601 | 44.87 03275 | 67.84 0.1475
CoralSCOP 4646 0.1814 | 4565 0.2991 | 68.66 0.1408

for comparison. The textual descriptions are fed into Ground-
ingDINO [41] to generate the bounding box prompt (with
the confidence score) for SAM and then SAM generates
the corresponding masks. GroundingDINO+SAM cannot
generate satisfactory coral masks.

4.4. Further Analysis

Ablation studies. We compare CoralSCOP (two variants:
with negatives as CoralSCOP and without negatives as
CoralSCOP™) and SAM variants: SAM (inference only),
SAM! (fine-tuned on CoralMask) and SAM-adapter [9] (fine-
tuned on CoralMask with adapter design [9] while keeping
Enc(-) frozen). The training prompt contains I random
point inside the labeled coral mask and BBOX,,x. Due
to the constraint of computational resources, all the algo-
rithms have been optimized for one epoch on our CoralMask
dataset to guarantee a fair comparison. We compute results
under three settings in Table 4. We could conclude such
findings: 1) directly fine-tuning SAM on CoralMask mask
could promote the ability of SAM to segment coral masks
and a stronger backbone could achieve larger performance
gain; 2) when optimized by prompt with 1 random point
and BBOX .5k, the ability of mask decoder to generate pre-
cise coral masks based on only 1 point prompt has been
weakened while it could more precise coral mask generation
with additional BBOX .5k prompt; 3) fine-tuning Enc(-) to-
gether could result in better automatic coral segmentation
performance; 4) with only coral masks for fine-tuning cannot
address the over-segmentation well by comparing SAM?* and
CoralSCOP: SAM* are with lower IoU score while much
higher MAE under almost every setting, indicating many
false positives; 5) the negative masks could promote IoU
score and reduce false positives (lower MAE) under the au-
tomatic setting by comparing CoralSCOP and CoralSCOP~.
Promoting underwater visual analysis. We then demon-
strate the heavy image encoder of CoralSCOP is more
effective than the counterpart of SAM on underwater vi-
sual analysis (e.g., underwater salient object segmentation
on USODIOK dataset [22]). Enc(-) of both SAM and
CoralSCOP are frozen and we only optimize the mask de-
coder. The BBOXpge is used as the prompt for generating
the salient object prediction. We follow [22] and com-

Method ‘ Back. ‘ Sm T EMer maxF 1 MAE |
SAM [31] Vit-B 0.8695 0.9199 0.8445 0.0387
CoralSCOP 0.8739 (+0.0044)  0.9250 (+0.0051)  0.8512 (+0.0067)  0.0353 (-0.0044)
SAM [31] Vit-L 0.8843 0.9279 0.8658 0.0336
CoralSCOP 0.8884 (+0.0041)  0.9338 (+0.0059)  0.8707 (+0.0049)  0.0316 (-0.0037)

pute results in Table 5. We observe the frozen Enc(-) of
CoralSCOP could result in better performance than that of
SAM, indicating better underwater feature extraction ability.

4.5. Discussions

Our development of CoralMask dataset contributes toward
standardizing and aggregating expertly curated labeled mask
annotations, defining how to split the individual coral from a
mix of coral colonies. CoralSCOP can continue to grow from
sparse-to-dense conversion and incorporate more labeled
data from the coral community, accelerating the processing
of visual data critical for developing conservation strategies
to achieve a healthy and sustainable global coral reef.

Compared with the hitherto commonly used CPCe to gen-
erate coral cover or other coral parameters, our CoralSCOP
can generate statistics with greater accuracy (less error)
within a much shorter time (around 348 seconds for sim-
ilar work, e.g., 100 images in CPCe that take hours). Our
CoralSCOP should therefore find extensive application (e.g.,
coral bleaching and biodiversity statistics) in coral moni-
toring works around the world. The generated coral masks
can be used for promoting 3D coral scene understanding
(e.g., rugosity computation), removing noisy backgrounds
to better model the geometry information of coral colonies.
This should lead to, for example, better differentiation of
coral vs non-coral objects from coral images, which is very
important in assessing coral cover in any new sites under
assessment for its conservation value.

5. Conclusion

CoralSCOP represents a significant step forward in the field
of underwater coral reef analysis, as the first segmentation
foundation model in marine research. It could support scal-
able and efficient dense coral segmentation, providing wide
users with a seamless and efficient tool for analyzing coral
reef images/videos. We hope that our attempts can provide
the community with some insights into the future develop-
ment of introducing the large foundation model in domain-
specific research. We will make CoralMask and CoralSCOP
publicly available, which hopefully benefit researchers and
coral biologists in their own research.
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