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Figure 1. We proposed Design2Cloth: a high fidelity 3D generative model for garment generation from simple 2D masks, trained on a
large scale 3D cloth dataset of real-world scans. Figure illustrates interpolation between shirt (Left), trousers (Right) and shapes.

Abstract

In recent years, there has been a significant shift in the
field of digital avatar research, towards modeling, animat-
ing and reconstructing clothed human representations, as a
key step towards creating realistic avatars. However, cur-
rent 3D cloth generation methods are garment specific or
trained completely on synthetic data, hence lacking fine
details and realism. In this work, we make a step to-
wards automatic realistic garment design and propose De-
sign2Cloth, a high fidelity 3D generative model trained on
a real world dataset from more than 2000 subject scans. To
provide vital contribution to the fashion industry, we devel-
oped a user-friendly adversarial model capable of gener-
ating diverse and detailed clothes simply by drawing a 2D
cloth mask. Under a series of both qualitative and quanti-
tative experiments, we showcase that Design2Cloth outper-
forms current state-of-the-art cloth generative models by a
large margin. In addition to the generative properties of
our network, we showcase that the proposed method can
be used to achieve high quality reconstructions from single
in-the-wild images and 3D scans. Dataset, code and pre-

trained model will become publicly available. 1

1. Introduction
The advent of 3D digital human avatars has facilitated the
generation of realistic humans that continuously progress
the gaming and filming industries [29, 36, 53]. Within this
context, digitized garments emerge as a pivotal component
to enhance realism. However, the diverse and perplexing
nature of human garments makes modeling and generation
of realistic clothed humans remains non-trivial task.

While 2D cloth generation has been extensively studied
obtaining remarkable results [10, 11, 19, 21, 26, 31, 38, 47],
the need for precise virtual try-ons necessitates the adoption
of 3D cloth models that accurately simulate fabric prop-
erties, and enable more realistic digital experience. Re-
cently, several methods have attempted to extend cloth mod-
eling to 3D human avatars [14, 40, 54]. Nevertheless,
these approaches prove inadequate when it comes to ac-
curately reconstructing garments in diverse, real-world set-
tings. The primary cause lies in the lack of large 3D gar-
ment datasets, compared to the abundance of 2D garment
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datasets. In particular, real-word cloth scans [25, 30, 50]
are composed of only a few number of subjects under pre-
defined poses wearing a limited number of garment types.
To address the lack of clothed human data, several studies
employed artists and simulation engines to curate synthetic
data [3, 12, 18, 33, 44, 55, 57] that cover a wider range of
garment styles. However, synthetic cloth data have two no-
table inherited limitations. Firstly, simulation engines fail
to accurately replicate the deformations and the wrinkles
of real-world garments that leads to clothes that are char-
acterized by an excessive degree of smoothness. Secondly,
garment styles are usually generated by deforming a limited
number of predefined garment categories, which constrains
the model’s generalization to real-world garments.

To overcome the limitations of generative garment mod-
els, we have collected a large-scale dataset with high reso-
lution scans from 2010 individuals, spanning a wide range
of genders, ages, heights, and weights, wearing more than
2000 unique garments. Leveraging this dataset, we trained a
3D garment generative network, that enables modeling and
generation of diverse and highly detailed clothes that follow
the real-world distribution. Additionally, to ease the gen-
eration process and enable a straightforward utilization of
our method for individuals with no prior knowledge in the
field, we introduce an inclusion mask representation to de-
scribe each garment. Compared to prior works that required
UV maps [9, 44] or point clouds [13, 24] to condition the
garment generation, the proposed method allows users to
effortlessly draw a garment mask to control the generation
process. Finally, given that the proposed model is fully dif-
ferentiable, it can be used as a plug-and-play solution for in-
verse problems, including 3D garment reconstruction from
in-the-wild images and scans.
To summarize, the main contributions of our work are:

• The first large-scale cloth dataset of real-world scans, that
contains more than 2k cloths from 2k subjects with vari-
ous styles and body shapes.

• A 3D cloth generative model, that is able to generate di-
verse garments with different types, styles and shapes.
Design2Cloth is founded on a user-friendly mask encoder
that facilitates cloth design from 2D visibility masks. To
the best of our knowledge, this is the first cloth generative
model trained with over 2000 real-world cloths.

• Being fully differentiable, Design2Cloth can advance the
challenging task of 3D garment reconstruction, producing
highly detailed 3D clothes. Our cloth reconstruction are
far more realistic compared to previous state-of-the-art
reconstruction methods, that fail to capture natural cloth
creases and produce overly smooth results.

• Leveraging the proposed cloth mask representation, we
provide a simple but effective approach for 3D cloth re-
construction from scans. We experimentally show that the
proposed method can retrieve high quality 3D garments

from incomplete and corrupted inputs.

2. Related Work
Generative Garment Model for 3D clothes have emerged
in recent years due to their impact in fashion design and
virtual try-on applications. Early methods approached cloth
modeling using Principal Component Analysis (PCA) on
fixed topology garments [4, 12, 16, 25, 33, 46]. Neverthe-
less, such approaches are garment-specific i.e. they can not
generalize to clothes with different templates and require
training different models for each garment category. To
tackle this, Ma et al. [30] proposed to model garments as a
set of displacements on top of SMPL [29] body topology.
Following that, several methods have extended [30], to
enrich clothes diversity and train more expressive models
[3, 44]. A major limitation, under this setting, is that only a
limited number of cloths, that strictly follow the the contour
of the body, can be represented as body displacements.
Recently, several methods have been proposed to utilize
implicit functions to train garment agnostic generative mod-
els [9, 13, 27], leveraging the property of neural implicit
functions to represent topology-agnostic 3D surfaces. SM-
PLicit [9] pioneered 3D garment generative model using
unsigned distance functions (UDF) to represent clothes.
Most relevant to our method, DrapeNet [13] has proposed
to utilize MeshUDF [17] to achieve better reconstruction
results. However, the aforementioned methods rely on low
frequency decoders that can only generate overly smooth
synthetic data that lack high frequency details, such as
wrinkles and creases. In addition, they can only project
clothes to the latent space of the model using point clouds
and UV maps, which undoubtedly limits their applicability
in real-world scenarios. Different from previous methods,
we propose a high-fidelity user-friendly generative model,
trained on a large scale real-word dataset, that is able to
model diverse clothes with high frequency details.

3D Garment Datasets have emerged as crucial resources
for modeling and animating clothed human avatars. As
summarized in Tab. 1, existing garment datasets can be clas-
sified as either real-world or synthetic. The BUFF dataset
[50] was among the first high-quality scanned datasets
introduced, albeit characterized by a limited number of
subjects and garments. Subsequently, several real-world
datasets have emerged, with MGN [4], DeepFashion3D
[56], and THUman2.0 [49] standing out as they are all com-
posed from over 100 distinct subjects and garments. Due
to the challenges associated with capturing large-scale 3D
datasets of clothed humans, research efforts have been fo-
cused on the creation of synthetic cloth datasets. Leverag-
ing physics-based simulations [3, 33] and artist-curated pat-
terns [44, 57], synthetic datasets have successfully produced
extensive collections of garments featuring diverse shapes,
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poses, and styles. However, they suffer from a domain gap,
exhibiting overly-smoothed surfaces and non-realistic wrin-
kles. In this work, we take a significant step towards re-
alistic cloth modeling by curating a large-scale real-world
dataset, named DigitalMe, comprising 2010 individual sub-
jects wearing more than 2k garments from 31 categories.

Neural Invertible Skinning. Various approaches have
been employed to tackle problems in modeling the deforma-
tion of non-rigid and articulated 3D objects such as clothed
bodies. In [5, 41, 45, 48], the Linear Blend Skinning (LBS)
weights are learned separately in deformed and canonical
spaces in order to utilize cycle-consistency losses for estab-
lishing correspondence. SNARF [7] proposed to establish
the correspondences using an iterative method to invert the
LBS equation. Recently, Kant et al. [22] proposed a pose-
conditioned invertible model, to learn a non-linear blend
skinning function that preserves the correspondences with
the input mesh. However, all of the aforementioned works
rely on overfitting on a sequence of scans and fail to animate
independent single scans. Unlike these methods, we show
that using the powerful Design2Cloth encoder, we can accu-
rately reconstruct and animate garments from single in-the-
wild scans while preserving the intrinsic correspondences.

3. Method
3.1. Large Scale Cloth Dataset

To train a high resolution 3D cloth generative model, we
collected a large dataset, namely DigitalMe, comprising of
high resolution 3D clothed human scans. The scans were
captured using a 3dMD multi-camera structured light stereo
system, with 14 cameras and 12 uniform lighting LED pan-
els. We captured a total of 2010 distinct subjects spanning
different ages, body types and ethnicities. Participants wore
a variety of garments and were scanned in numerous poses,
starting from the canonical pose. The raw scans have a res-
olution of approximately 150,000 vertices.

Using an automated pipeline we fitted parametric SMPL
[29] model and extracted the 3D clothes from the raw hu-
man scans. Specifically, we rendered each scan from 40
different views that span 360o degrees around the subject.
For each view, we utilized MediaPipe algorithm [2] to ex-
tract 2D joint locations and subsequently lift them to 3D
using linear triangulation. To fit SMPL parametric body
model [29] to the 3D joint location, we optimized pose θ
and shape parameters β of SMPL, by minimizing the joint
error LJ and the Chamfer Distance (CD) Lcd between the
body template and the scan. Additionally, to enforce the
SMPL body fittings to lie under the raw scan surface, an ad-
ditional loss function was employed to penalize the SMPL
vertices located outside of the scan. To extract the 3D cloth
meshes from the scans we initially segmented each render-

Table 1. Comparison of existing 3D garment methods. Methods
that utilize real-world data are highlighted in grey, while the rest
are based on synthetic data. #Garment: denotes the number of
different individual garments, #Subjects: the number of individual
identities, #Categories: the number of distinct cloth types, Gen-
eration: the generative ability of the network, Garment-Agnostic:
whether the network can represent different cloth categories.

Method #Garment #Subjects #Categories Generation Garment-Agnostic
DRAPE [16] 420 - 5 ✓ ×
DeepGarment [12] 2 - 2 ✓ ×
Wang et al. [46] 8k - 3 ✓ ×
Santesteban et al. [43] 17 - 1 ✓ ×
GarNet [18] 1.5k - 3 ✓ ×
TailorNet [33] 207 - 4 ✓ ×
Cloth3D [3] 11.3k - 7 ✓ ✓
Shen et al. [44] 104 - 5 ✓ ✓
SMPLicit [9] 2M - 11 ✓ ✓
DIG [27] 200 - 2 ✓ ✓
DrapeNet [13] 900 - 5 ✓ ✓
HOOD [15] 15 - 7 × ✓
Zhao et al. [52] 2 - 2 × ×
CLOTH4D [57] 1k - 6 × -
ClothesNet [55] 4.4k - 11 × -
BUFF [50] 24 6 4 × ✓
ClothCap [34] - - - × ×
DeepWrinkles [25] 4 2 2 ✓ ×
MGN [4] 712 356 5 ✓ ×
CAPE [30] 8 11 5 ✓ ✓
DeepFashion3D [56] 563 - 10 × ✓
THUman2.0 [49] - 200 - × ✓
LGN [1] 140 140 5 × ✓
GarmCap [28] 4 - 3 × ×
Design2Cloth 2k 2k 31 ✓ ✓

ing using SAM [23] and then projected the 3D mesh to each
one of the renderings. Using a majority vote, between all 40
views, we identify the vertices that correspond to cloth re-
gions. The cloth vertices were then cropped from the raw
scan and canonicalized using inverse linear blend skinning
function (LBS−1). Note that the canonicalization is per-
formed only in the pose space to retain shape identity of
the subject. After preprocessing, 2010 unique cloth meshes
were generated from the scans. For additional details about
the optimization pipeline we refer the reader to the supple-
mentary material.

To build a user-friendly generative model, we represent
each cloth using a 2D visibility mask. To enhance the ex-
pressivity of the model and include more cloth details, such
as V-neck patterns, we constrain the visibility masks to the
frontal part of the cloth by rasterizing only the vertices po-
sitioned in front of the Z-axis plane.

3.2. Design2Cloth: An Implicit Garment GAN

The architecture of the proposed model is composed of
three main components: the Cloth and Shape Encoders that
take as input a binary visibility mask and a target shape
code, respectively, and embed them into a latent represen-
tation (Sec. 3.2.1), the Implicit Cloth Generator Gt that de-
codes the latent code to a UDF (Sec. 3.2.2) and the dual-
resolution Discriminator D that enforces the generator to
produce highly detailed garments (Sec. 3.2.3). Fig. 2 de-
picts an overview of the proposed method.
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Figure 2. Overview of the proposed Design2Cloth: A binary mask M along with a shape vector β are fed to the encoder modules, Em,Eβ

to produce a latent vector z that is used to drive the triplane generator Gt. The decoder network takes as input the triplane features of the
projected points and regresses their corresponding unsigned distance function that is then meshed using the differentiable MeshUDF [17].
To enforce the generation of highly detailed clothes we utilize a dual resolution discriminator network D, that take as input two sparse
point clouds sampled from the surface of the generated cloth. The low frequency branch Dl takes as input a uniformly sampled point cloud
whereas the high frequency branch Dh takes as input a point cloud sampled from coarse areas of the garment surface.

3.2.1 Cloth Encoder

Cloth encoder can be considered as the core component of
the proposed method as it learns a compact and smooth
latent space which can be then used to condition the gen-
eration process and enable interpolation between different
clothes. In contrast to previous methods that require com-
plex inputs to project a cloth in the latent space, we propose
visibility masks M as a natural representation of different
garments. More specifically, both SMPLicit [9], that uses
an occupancy UV image, and DrapeNet [13], that requires a
3D cloth surface to project a cloth in the latent space, apart
from being impractical, fail to provide a user-friendly ex-
perience. In contrast, visibility masks are an intuitive ap-
proach that does not require any expertise knowledge and
can turn the proposed method into a scalable tool for user-
friendly garment design.

The proposed cloth encoder is divided in two modules
the mask encoder Em and the shape encoder Eβ . The mask
encoder Em is based on a lightweight image feature extrac-
tor [42] which takes as input a binary mask indicating the
cloth style and outputs a compact latent representation of
the cloth zmask. In addition to the clothing style, we use
a shape encoder Eβ to condition the garment generation on
SMPL shape parameters β. The resulting latent vector z
is given from the concatenation of the two modalities, style
and shape, as :

z = [Em(M)||Eβ(β)] (1)

where || denotes the concatenation operator. Using a shape
conditioned encoder, our framework learn both style and
shape variations of the cloths, in contrast to previous meth-
ods that can only generate clothes of the mean shape.

3.2.2 Implicit Cloth Generator

The main objective of the generator G is to learn a mapping
function G(z) → C ∈ RN×3 from shape and style latent
codes z to a detailed 3D cloth C. Given that cloth registra-
tion to a common template is a particularly expensive and
challenging task [4], we model clothes as implicit fields.

Inspired from [6], we built a generative model Gt upon
the computationally efficient and expressive hybrid tri-
plane representation. The backbone of the tri-plane genera-
tor is a 2D convolutional neural network that outputs three
plane feature images H×W ×32. Using this powerful rep-
resentation that explicitly learns the features of the grid we
can generate detailed clothes without any additional com-
putational requirements. Specifically, using a single multi-
layer perceptron (MLP) decoder we can sufficiently predict
the unsigned distance d(p) of a point p to the surface of the
garment. Finally, to decode the generated UDF to a discrete
mesh garment, we utilized MeshUDF [17] since it is fully
differentiable and enables the gradient flow in our genera-
tor network. During inference, any other decoding method
could be used to obtain smoother results [8, 51].

3.2.3 Dual-Resolution Discriminator

To build a high fidelity cloth generative model that is able to
reconstruct and generate highly detailed clothes we devise
a novel branched discriminator D. Following [33] that in-
troduced the concept of low and high level cloth generation,
we propose an elevated alternative that enforces the gener-
ation of wrinkles and high frequency details through adver-
sarial learning. More specifically, instead of using a sin-
gle branch discriminator to distinguish the generated from
the real samples, we divide the workload into two distinct
branches that allows the separation of high and low level
cloth details. The low-level branch Dl takes as input a uni-
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formly sampled garment and learns structural features of
the overall shape. On the contrary, to enforce the genera-
tor to preserve the wrinkles of the input, we feed the high-
frequency branch Dh with a point cloud sampled from the
surface areas with the maximum Gaussian mean curvature
[35]. Both high and low level branches were implemented
using PointNet++ [37] encoder that takes as input the sam-
pled point cloud and aggregates their hierarchical features
into a compact latent space. The concatenation of the two
latent codes are then fed to a trunk network which regresses
a real-fake score. Our dual frequency discrimination not
only encourages the generated garment to match the distri-
bution of real ones, but also enforces the generation of high
frequency details that previous methods failed to model.

Training Objective: To train our method we use a com-
bination of loss functions that enforce the generator G to ac-
curately predict the UDF d(·) of randomly sampled points
in the grid (LUDF) and generate highly detailed clothes
(Ladv

G ). Additionally, using the adversarial loss, we train
the discriminator network D to distinguish real from gener-
ated clothes (Ladv

D ). Finally, to regularize the MeshUDF tri-
angulation, we penalize the gradients of the predicted UDF
to match the ground-truth gradients at each sampled point
(Lgrad). Formally:

LUDF =
∑
p

||G(z;p)− d(p)||2

Ladv
G = Ez[log(D(G(z))]

Ladv
D = Ex[logD(x)] + Ez[log(1−D(G(z))]

Lgrad =
∑
p

||ĝp − gp||2

(2)

where z denotes a latent code produced from the encoder,
d(p) is the ground truth unsigned distance and gp, ĝp the
ground truth and the predicted gradients of the UDF at a
point p. For notation purposes we omit the sampling func-
tion used in the discriminator network.

4. Experiments
In this section, we conduct a comprehensive evaluation of
the capabilities of the proposed Design2Cloth network to
generate, interpolate, and fit ‘in-the-wild’ clothes.

4.1. Cloth Generation

To compare the performance of the proposed method on
cloth generation, we trained Design2Cloth and DrapeNet
[13] models on DigitalMe dataset with 100 additional
clothes from Cloth3D [3] ClothesNet [55], using a common
80%-20% train-test split. In Tab. 2, we report the recon-
struction quality of each method trained only on Cloth3D
and DigitalMe datasets measured in terms of Chamfer Dis-
tance (CD) and Normal Consistency (NC) metrics. As ex-
pected, the performance of both models drop on DigitalMe

Table 2. Quantitative comparison of the reconstruction perfor-
mance of the Proposed and the DrapeNet [13] on the Cloth3D [3]
and DigitalMe datasets.

Cloth3D DigitalMe
Method CD (×10−4) ↓ NC ↑ CD (×10−2)↓ NC ↑
DrapeNet 0.36 0.97 0.56 0.96
Proposed 0.18 0.99 0.12 0.98

dataset which contains more challenging clothes, with high
frequency wrinkles and details. Despite the challenges, the
proposed method not only outperforms DrapeNet under all
metrics and datasets, but also manages to achieve 0.98 NC
performance on DigitalMe dataset, which validates the abil-
ity of our generator to model wrinkles and creases. The
superiority of the proposed method can also be qualita-
tively verified in Fig. 3, where the proposed method can
accurately generate highly detailed clothes compared to the
smooth garments produced from DrapeNet. Furthermore,
the proposed method inherits many of the desirable genera-
tive network properties such as a well-behaved latent space
with smooth interpolation between diverse clothes. Specif-
ically, as depicted in Fig. 4, Design2Cloth can not only
smoothly interpolate between diverse garments, i.e. from
an open jacket to a dress, but also transition from top to bot-
tom clothes. Additionally, given that the proposed method
is also conditioned on the cloth shape parameter, one can
also interpolate between different shapes while retaining the
style fixed.

Finally, to evaluate the realism of the generated gar-
ments, we designed an online user study where 50 partic-
ipants, including 20 people working in the fashion industry,
were asked to assess the quality of the generations. Each
participant was asked to score, on a scale from 1 (poor) to 10
(very realistic), the quality of the generated garments from
the proposed and DrapeNet methods, along with the ground
truth meshes from DigitalMe and Cloth3D datasets. As
shown in Fig. 5 (Left), DigitalMe clothes proved to be the
most realistic, achieving an average score of 8.7. Interest-
ingly, the highly detailed clothes generated by the proposed
method manages to produce more realistic clothes com-
pared to the ground truth Cloth3D dataset and DrapeNet
generations, achieving an average score of 7.2 compared to
7 and 4.6 respectively, which validates the generative power
of our model.

4.2. 3D Garment Reconstruction In-The-Wild

Given that the proposed model is fully differentiable it can
be used to fit 3D clothes from in-the-wild images. The first
step in recovering cloth from an in-the-wild image is to es-
timate SMPL pose θ and shape β parameters using an off-
the-shelf pose estimation method [39]. Using the detected
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Ground Truth DrapeNet Proposed

Figure 3. Qualitative comparison between the proposed and DrapeNet methods of reconstruction performance on DigitalMe (Top), Cloth3D
[3] and ClothesNet [55] (Bottom) datasets.
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Figure 4. Interpolation between source and target styles (Top) and
shapes (Bottom). The proposed method can interpolate between
shapes and styles, generating realistic intermediate clothes.

SMPL parameters, we posed the generated cloth and pro-
jected it to the image space to obtain a posed mask. We
optimized the latent code z by minimizing the Intersection
over Union (IoU) between image cloth segmentation S ex-
tracted using SAM[23] and the projected posed mask.

To facilitate smoother convergence of the model we cal-
culate the latent code statistics of the training set and we
initialize z with the mean value of the dataset. Mathemati-

Figure 5. Human evaluation results. Left: Average realism scores
of the generated and the ground truth data. Right: Perceptual Eval-
uation of 3D reconstructions from in-the-wild images between the
proposed and the baseline methods.

cally, the optimization scheme can be formulated as:

min
z

LIoU (ΠM (LBS(G(z;β),θ)) ,S) + Lprior(z) (3)

where ΠM is the 2D occupancy mask rasterized from a dif-
ferentiable renderer, S the extracted cloth mask, G(z;β)
our cloth generator that maps a latent code z with shape
β to a 3D cloth C ∈ RN×3, LBS(·,θ) a skinning func-
tion that poses a mesh to the target pose θ and Lprior(z) an
L2 regularization that constrains z to feasible values. To
compare the reconstruction performance of the proposed
method, we utilized three state-of-the-art 3D cloth recon-
struction models, namely SMPLicit [9], ClothWild [32] and
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Image                     SMPLicit              ClothWild              DrapeNet              Proposed

Figure 6. Garment reconstruction from in-the-wild images. Quali-
tative comparison between the proposed and the baseline method.
The proposed method can generate highly detailed clothes com-
pared to the smooth reconstructions of the baseline methods. Fig-
ure better viewed with zoom. The last two rows of the figure cor-
respond to renderings from CustomHumans [20] dataset.

DrapeNet [13]. In Fig. 6 we qualitatively compare the pro-
posed and the baseline method in 3D garment reconstruc-

Table 3. Cloth Reconstruction Error from single image on Cus-
tomHumans Dataset [20].

Method SMPLicit ClothWild DrapeNet Proposed
CD (×10−2) ↓ 0.40 0.62 1.14 0.12

tion from in-the-wild images. Importantly, in contrast to the
baseline methods, the proposed method requires optimiza-
tion of a single network for both top and bottom garments,
which significantly reduces the memory and computational
requirements. As can be observed, Design2Cloth can recon-
struct detailed garments, with intricate creases and pucker-
ing of fabric compared to the smooth reconstructions of the
baselines. To quantitatively validate the perceptual recon-
struction performance of the proposed method, we have in-
cluded a second section in the human evaluation study de-
scribed in Sec. 4.1. This time the participants were given
the input image along with the reconstructions from the pro-
posed and the baseline methods, and were asked to choose
the one that has the most similarities with the input image.
To avoid biases in the evaluation process, users were also
given a ‘None’ option. As can be seen in Fig. 5, more than
70% of the participants selected the proposed method as the
one achieving the most accurate and realistic reconstruc-
tions, compared to less than 15% that selected ClothWild
method.
To further quantitatively evaluate the cloth reconstruction
performance of the proposed method, we utilized Cus-
tomHumans dataset [20] that contains high resolution 3D
scans of dressed humans in various poses along with their
corresponding SMPL fittings. Specifically, we rendered the
posed scans in arbitrary views and measured the CD be-
tween the ground truth and the reconstructed garments us-
ing the optimization pipeline described above. For a fair
comparison, we use the ground truth SMPL parameters. As
shown in Tab. 3, the proposed method outperforms the base-
line methods in CD reconstruction error by a large margin,
which can be also validated from the last two rows of Fig. 6.

4.3. Reconstruction and Animation of Raw Scans

In addition to its user-friendly nature, the proposed mask
cloth representation facilitates the reconstruction of cor-
rupted cloth data. As an application case we examined the
case of reconstructing and animating raw scans with par-
tial observations. In particular, using a simple LBS we
canonicalized posed scans from the CustomHumans dataset
[20] and rendered them to obtain their corresponding 2D
visibility masks. The visibility masks are then mapped
to the real garment distribution using the Mask Encoder
Em. It is noteworthy that, even though both the masks and
the canonicalized garments may contain holes and irreg-
ular topologies, the cloth reconstructions generated using
Design2Cloth are devoid of such artifacts. Finally, the re-
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Scan Canonical Reconstruction Animation

Figure 7. Garment reconstruction from 3D scans. We propose a pipeline to extract clothes from a posed scan, reconstruct them using
Design2Cloth and animate them. Using Mask Encoder as a cloth prior we are able to reconstruct corrupted garments with holes and
irregular structure.

Scan

Fit SMPL

Canonicalize

Canonical Pose

Render
Segment Anything

Cloth Segmentations

Mask

Shape β

Design2Cloth

Cloth Mask Reconstruction

Figure 8. The proposed pipeline used to reconstruct clothes from
corrupted 3D scans.

constructed meshes can then be animated using any off-the-
shelf draping method [13, 15]. The overall 3D scan recon-
struction and animation pipeline is depicted in Fig. 8. Fig. 7
illustrates the garment reconstructions and animations on
CustomHumans (top two rows) and DigitalMe (bottom two
rows) datasets. The proposed method remains unaffected by
the artifacts created during the inverse blend skinning and
can accurately reconstruct the 3D garments from the cor-
rupted canonical scans. Under this setting, Design2Cloth
can be used to restore and rectify garments from corrupted
and occluded clothed human scans.

5. Conclusion

In this study we introduce Design2Cloth, a high fidelity
3D garment generative model that significantly develops
current state-of-the-art generative models. Trained on
a collected large scale real-world dataset, composed of
more than 2,000 garments from 2,010 distinct identities,
the proposed method is able to produce highly diverse
and realistic garments. Significantly, in contrast to pre-
vious methods, Design2Cloth provides a user-friendly
technique for garment design from simple 2D masks.
In addition, the proposed pipeline is fully differentiable,
providing a plug-and-play solution to several inverse
problems, including cloth reconstruction from single
images and scans. We believe that Design2Cloth can not
only aid garment learning using synthetic clothes sam-
pled from latent space, but also abet the realm of 3D design.

Acknowledgements. S. Zafeiriou was supported by EP-
SRC Project DEFORM (EP/S010203/1) and GNOMON
(EP/X011364). R.A. Potamias was supported by EPSRC
Project GNOMON (EP/X011364).

1755



References
[1] Alakh Aggarwal, Jikai Wang, Steven Hogue, Saifeng Ni,

Madhukar Budagavi, and Xiaohu Guo. Layered-garment net:
Generating multiple implicit garment layers from a single
image. In Proceedings of the Asian Conference on Computer
Vision (ACCV), pages 3000–3017, 2022.

[2] Valentin Bazarevsky, Ivan Grishchenko, Karthik Raveen-
dran, Tyler Zhu, Fan Zhang, and Matthias Grundmann.
Blazepose: On-device real-time body pose tracking, 2020.

[3] Hugo Bertiche, Meysam Madadi, and Sergio Escalera.
Cloth3d: clothed 3d humans. In European Conference on
Computer Vision, pages 344–359. Springer, 2020.

[4] Bharat Lal Bhatnagar, Garvita Tiwari, Christian Theobalt,
and Gerard Pons-Moll. Multi-garment net: Learning to dress
3d people from images. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 5420–
5430, 2019.

[5] Andrei Burov, Matthias Nießner, and Justus Thies. Dynamic
surface function networks for clothed human bodies. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10754–10764, 2021.

[6] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,
Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J
Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient
geometry-aware 3d generative adversarial networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16123–16133, 2022.

[7] Xu Chen, Yufeng Zheng, Michael J Black, Otmar Hilliges,
and Andreas Geiger. Snarf: Differentiable forward skinning
for animating non-rigid neural implicit shapes. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 11594–11604, 2021.

[8] Zhiqin Chen, Andrea Tagliasacchi, Thomas Funkhouser, and
Hao Zhang. Neural dual contouring. ACM Transactions on
Graphics (TOG), 41(4):1–13, 2022.

[9] Enric Corona, Albert Pumarola, Guillem Alenya, Ger-
ard Pons-Moll, and Francesc Moreno-Noguer. Smplicit:
Topology-aware generative model for clothed people. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 11875–11885, 2021.

[10] Aiyu Cui, Daniel McKee, and Svetlana Lazebnik. Dress-
ing in order: Recurrent person image generation for pose
transfer, virtual try-on and outfit editing. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 14638–14647, 2021.

[11] Yi Rui Cui, Qi Liu, Cheng Ying Gao, and Zhongbo Su. Fash-
iongan: display your fashion design using conditional gener-
ative adversarial nets. In Computer Graphics Forum, pages
109–119. Wiley Online Library, 2018.
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[14] Valentin Gabeur, Jean-Sébastien Franco, Xavier Martin,
Cordelia Schmid, and Gregory Rogez. Moulding humans:
Non-parametric 3d human shape estimation from single im-
ages. In Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 2232–2241, 2019.

[15] Artur Grigorev, Michael J. Black, and Otmar Hilliges. Hood:
Hierarchical graphs for generalized modelling of clothing
dynamics. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
16965–16974, 2023.

[16] Peng Guan, Loretta Reiss, David A Hirshberg, Alexander
Weiss, and Michael J Black. Drape: Dressing any person.
ACM Transactions on Graphics (ToG), 31(4):1–10, 2012.

[17] Benoit Guillard, Federico Stella, and Pascal Fua. Meshudf:
Fast and differentiable meshing of unsigned distance field
networks. In European Conference on Computer Vision,
pages 576–592. Springer, 2022.

[18] Erhan Gundogdu, Victor Constantin, Amrollah Seifoddini,
Minh Dang, Mathieu Salzmann, and Pascal Fua. Garnet: A
two-stream network for fast and accurate 3d cloth draping.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2019.

[19] Xintong Han, Zuxuan Wu, Zhe Wu, Ruichi Yu, and Larry S
Davis. Viton: An image-based virtual try-on network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7543–7552, 2018.

[20] Hsuan-I Ho, Lixin Xue, Jie Song, and Otmar Hilliges. Learn-
ing locally editable virtual humans. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21024–21035, 2023.

[21] Shion Honda. Viton-gan: Virtual try-on image gen-
erator trained with adversarial loss. arXiv preprint
arXiv:1911.07926, 2019.

[22] Yash Kant, Aliaksandr Siarohin, Riza Alp Guler, Menglei
Chai, Jian Ren, Sergey Tulyakov, and Igor Gilitschenski. In-
vertible neural skinning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8715–8725, 2023.

[23] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and
Ross Girshick. Segment anything. arXiv:2304.02643, 2023.

[24] Maria Korosteleva and Sung-Hee Lee. Neuraltailor: Recon-
structing sewing pattern structures from 3d point clouds of
garments. ACM Transactions on Graphics (TOG), 41(4):1–
16, 2022.

[25] Zorah Lahner, Daniel Cremers, and Tony Tung. Deepwrin-
kles: Accurate and realistic clothing modeling. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 2018.

[26] Hanbit Lee, Jinseok Seol, and Sang-goo Lee. Style2vec:
Representation learning for fashion items from style sets.
arXiv preprint arXiv:1708.04014, 2017.

[27] Ren Li, Benoit Guillard, Edoardo Remelli, and Pascal Fua.
Dig: Draping implicit garment over the human body. In

1756



Proceedings of the Asian Conference on Computer Vision
(ACCV), pages 2780–2795, 2022.

[28] Siyou Lin, Boyao Zhou, Zerong Zheng, Hongwen Zhang,
and Yebin Liu. Leveraging intrinsic properties for non-rigid
garment alignment. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
14485–14496, 2023.

[29] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-
ard Pons-Moll, and Michael J. Black. SMPL: A skinned
multi-person linear model. ACM Trans. Graphics (Proc.
SIGGRAPH Asia), 34(6):248:1–248:16, 2015.

[30] Qianli Ma, Jinlong Yang, Anurag Ranjan, Sergi Pujades,
Gerard Pons-Moll, Siyu Tang, and Michael J. Black. Learn-
ing to dress 3d people in generative clothing. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2020.

[31] Yifang Men, Yiming Mao, Yuning Jiang, Wei-Ying Ma, and
Zhouhui Lian. Controllable person image synthesis with
attribute-decomposed gan. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 5084–5093, 2020.

[32] Gyeongsik Moon, Hyeongjin Nam, Takaaki Shiratori, and
Kyoung Mu Lee. 3d clothed human reconstruction in the
wild. In European Conference on Computer Vision (ECCV),
2022.

[33] Chaitanya Patel, Zhouyingcheng Liao, and Gerard Pons-
Moll. Tailornet: Predicting clothing in 3d as a function of
human pose, shape and garment style. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2020.

[34] Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J
Black. Clothcap: Seamless 4d clothing capture and retar-
geting. ACM Transactions on Graphics (ToG), 36(4):1–15,
2017.

[35] Rolandos Alexandros Potamias, Giorgos Bouritsas, and Ste-
fanos Zafeiriou. Revisiting point cloud simplification: A
learnable feature preserving approach. In European Confer-
ence on Computer Vision, pages 586–603. Springer, 2022.

[36] Rolandos Alexandros Potamias, Stylianos Ploumpis,
Stylianos Moschoglou, Vasileios Triantafyllou, and Stefanos
Zafeiriou. Handy: Towards a high fidelity 3d hand shape
and appearance model. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4670–4680, 2023.

[37] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017.

[38] Amir Hossein Raffiee and Michael Sollami. Garmentgan:
Photo-realistic adversarial fashion transfer. In 2020 25th
International Conference on Pattern Recognition (ICPR),
pages 3923–3930. IEEE, 2021.

[39] Yu Rong, Takaaki Shiratori, and Hanbyul Joo. Frankmocap:
A monocular 3d whole-body pose estimation system via re-
gression and integration. In IEEE International Conference
on Computer Vision Workshops, 2021.

[40] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned

implicit function for high-resolution clothed human digitiza-
tion. In Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 2304–2314, 2019.

[41] Shunsuke Saito, Jinlong Yang, Qianli Ma, and Michael J
Black. Scanimate: Weakly supervised learning of skinned
clothed avatar networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2886–2897, 2021.

[42] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018.

[43] Igor Santesteban, Miguel A Otaduy, and Dan Casas.
Learning-based animation of clothing for virtual try-on. In
Computer Graphics Forum, pages 355–366. Wiley Online
Library, 2019.

[44] Yu Shen, Junbang Liang, and Ming C Lin. Gan-based gar-
ment generation using sewing pattern images. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XVIII 16, pages
225–247. Springer, 2020.

[45] Shaofei Wang, Marko Mihajlovic, Qianli Ma, Andreas
Geiger, and Siyu Tang. Metaavatar: Learning animatable
clothed human models from few depth images. Advances
in Neural Information Processing Systems, 34:2810–2822,
2021.

[46] Tuanfeng Y Wang, Duygu Ceylan, Jovan Popovic, and
Niloy J Mitra. Learning a shared shape space for multimodal
garment design. arXiv preprint arXiv:1806.11335, 2018.

[47] Qiang Wu, Baixue Zhu, Binbin Yong, Yongqiang Wei, Xue-
tao Jiang, Rui Zhou, and Qingguo Zhou. Clothgan: genera-
tion of fashionable dunhuang clothes using generative adver-
sarial networks. Connection Science, 33(2):341–358, 2021.

[48] Gengshan Yang, Minh Vo, Natalia Neverova, Deva Ra-
manan, Andrea Vedaldi, and Hanbyul Joo. Banmo: Building
animatable 3d neural models from many casual videos. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2863–2873, 2022.

[49] Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Qiong-
hai Dai, and Yebin Liu. Function4d: Real-time human vol-
umetric capture from very sparse consumer rgbd sensors.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5746–5756,
2021.

[50] Chao Zhang, Sergi Pujades, Michael J. Black, and Gerard
Pons-Moll. Detailed, accurate, human shape estimation from
clothed 3d scan sequences. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017.

[51] Congyi Zhang, Guying Lin, Lei Yang, Xin Li, Taku Komura,
Scott Schaefer, John Keyser, and Wenping Wang. Surface
extraction from neural unsigned distance fields. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 0000–0000, 2023.

[52] Fang Zhao, Zekun Li, Shaoli Huang, Junwu Weng, Tianfei
Zhou, Guo-Sen Xie, Jue Wang, and Ying Shan. Learning
anchor transformations for 3d garment animation. In Pro-

1757



ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 491–500, 2023.

[53] Jiali Zheng, Youngkyoon Jang, Athanasios Papaioan-
nou, Christos Kampouris, Rolandos Alexandros Potamias,
Foivos Paraperas Papantoniou, Efstathios Galanakis, Aleš
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