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Abstract

Multi-Instance Learning (MIL) has shown impressive
performance for histopathology whole slide image (WSI)
analysis using bags or pseudo-bags. It involves instance
sampling, feature representation, and decision-making.
However, existing MIL-based technologies at least suffer
from one or more of the following problems: 1) requir-
ing high storage and intensive pre-processing for numerous
instances (sampling); 2) potential over-fitting with limited
knowledge to predict bag labels (feature representation); 3)
pseudo-bag counts and prior biases affect model robustness
and generalizability (decision-making). Inspired by clinical
diagnostics, using the past sampling instances can facili-
tate the final WSI analysis, but it is barely explored in prior
technologies. To break free these limitations, we integrate
the dynamic instance sampling and reinforcement learning
into a unified framework to improve the instance selection
and feature aggregation, forming a novel Dynamic Policy
Instance Selection (DPIS) scheme for better and more cred-
ible decision-making. Specifically, the measurement of fea-
ture distance and reward function are employed to boost
continuous instance sampling. To alleviate the over-fitting,
we explore the latent global relations among instances for
more robust and discriminative feature representation while
establishing reward and punishment mechanisms to correct
biases in pseudo-bags using contrastive learning. These
strategies form the final Dynamic Policy-Driven Adaptive
Multi-Instance Learning (PAMIL) method for WSI tasks.
Extensive experiments reveal that our PAMIL method out-
performs the state-of-the-art by 3.8% on CAMELYON16
and 4.4% on TCGA lung cancer datasets.

1. Introduction
Histopathology slides provide detailed information on

the morphology and scale of the tumor, being the gold stan-
dard for disease diagnosis [5, 33]. However, complex bio-
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Figure 1. Different schemes for Multi-Instance Learning (MIL).
(a) Each bag is treated as a group. (b) Each bag is divided into
pseudo-bags. (c) The proposed Dynamic Policy-Driven Adap-
tive Multi-Instance Learning (PAMIL) Method.

logical structures in slides present a challenge for patholo-
gists to discern intricate variances [6,22]. Recently, with the
development of bioimaging and computation display tech-
nologies, digital whole slide images (WSIs) have emerged
as effective diagnostic aids [13,15]. In particular, a substan-
tial progress has been achieved by introducing deep learn-
ing approaches for WSI analysis [7, 9, 11, 16, 40]. How-
ever, due to irregularities of tumor tissue and gigapixel res-
olution for WSIs, the collection of high-precision is labo-
rious and time-consuming [5, 33]. Weakly supervised so-
lutions have drawn widespread attention than supervised
schemes [18, 29]. In particular, multi-instance learning
(MIL) [24] schemes emerge as the times require, providing
alternative solutions for WSI analysis. Specifically, each
WSI is described as a “bag” containing numerous instances
(or “patches”) sampled from the WSI [15]. A “bag” is la-
beled with a positive or negative tip, but its instances are
label-free. The core mission of MIL-based methods is to ag-
gregate information from all instances to provide bag-level
predictions. According to grouping the instances, these
methods can be broadly divided into two categories: bag-
level and pseudo-bags-level methods, as illustrated in Fig-
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ure 1. Bag-level-based methods pack all instances or em-
bed their features into the model to regress the final predic-
tion [6, 14, 16, 29] (Figure 1(a)). Besides the computational
and memory burden, it is non-trivial to identify the most in-
formative features from thousands of patches [26, 40]. In
particular, since the mutual relationships among instances
are barely explored, the distribution biases between minor
tumor regions and the extensive normal tissues exacerbate
the risk of model over-fitting [20, 38, 45].

By contrast, pseudo-bags-based methods leverage clus-
tering or random schemes to decompose all instances or em-
bedding features into multiple classes or groups, denoted as
pseudo-bags (or sub-bags) [40, 41, 45]. Then the bag la-
bels are assigned to the pseudo-bags as pseudo-labels, as
shown in Figure 1(b) [9,20,26,30,38]. With the guidance of
pseudo-labels, a substantial improvement has been achieved
by pseudo-bags-based methods [9, 26, 30, 40]. But notably,
the pre-processing for cluster and pseudo-label generation
is tedious. Besides that, there exist at least two other short-
comings: 1) The tumor instances may be scattered over
wide groups, especially for WSIs with small and dispersed
lesions, where the informative features are diminished. It
consequently increases the risk of false negative reactions.
2) The pseudo-bags derived from random sampling disrupt
intra-class instance homogeneity, while the pseudo-bags de-
rived from clustering may overly prioritize contextual sim-
ilarities irrelevant to the label. Both strategies heighten the
risk of misalignment between pseudo-bags features and bag
labels, arising prediction errors [30, 38].

To alleviate these issues, some efforts employ attention
mechanisms to adaptively focus on the label-relation com-
ponents [9, 38, 40]. However, capturing the most informa-
tive features from thousands of instances with a simple Sig-
moid layer is a non-trivial issue. In addition, the feature
relationships among continuous sampling groups are barely
explored during the diagnostic process, and thus these meth-
ods are short of stability and robustness. This inspires us to
ask the following question: Whether more elaborate and
simplified sampling schemes and information aggregation
mechanisms can be developed to capture the most discrim-
inative features for accurate prediction?

By reviewing the procedures of existing MIL meth-
ods [6, 22, 45], WSI analysis can be roughly decomposed
into three sub-tasks: instance sampling, feature represen-
tation, and decision-making (as shown in Figure 1). Al-
though some efforts have highlighted that the current deci-
sion can benefit from past knowledge and continuous learn-
ing [4, 13, 19, 25, 36, 42], the latent priors among instance
sampling, feature representation, and decision-making are
barely exploited. More specifically, the extracted features
of current instances can encourage both sampling and fea-
ture representation of the next sampling stage to distill more
informative components oriented toward the given label.

However, introducing past information for guidance natu-
rally raises two issues: 1) How to sample the most informa-
tive instances from the rest of the sampling bag; 2) How to
aggregate historical features for robust decision-making?

To tackle the aforementioned issues, we improve the ex-
isting MIL by exploring the intrinsic relations of instance
sampling, feature representation, and decision-making, and
advise a dynamic policy-driven adaptive multi-instance
learning (PAMIL) framework for WSI classification (Fig-
ure 1(c)). To tackle the first question, unlike the continuous
random sampling [41], we introduce dynamic instance sam-
pling and the experience-based learning of reinforcement
learning (RL) and construct the dynamic policy-driven in-
stance selection (DPIS) scheme. Specifically, DPIS takes
the local neighbor relation and distance similarity between
the current instance representation and the remaining in-
stances into consideration for guiding the instance selection.
Additionally, a reward function aligned with the target and
a self-guided punishment mechanism are introduced to en-
courage the model to focus on label-related and robust in-
stances to obtain the most representative bag predictions.

Besides the sampling optimization, how to aggregate the
knowledge of continuous sampling stages to produce more
distinguishable features is crucial for generating robust and
accurate predictions. Since there exists uncertainty to drive
the representative token from input instances, we thus pro-
pose a selection fusion feature representation (SFFR) strat-
egy. Specifically, to achieve general and robust tokens, we
introduce contrastive loss among the adjacent stage pseudo-
bags to guide the generation of “positive” features (related
to the given label) in the current stage. Meanwhile, to avoid
forgetting historical information, we fully exploit the ca-
pability of the class token (CLS) in Transformer, where
the previous tokens serve as the initial representation of
the current stage to produce a more precise bag represen-
tation. Experimental results demonstrate that our proposed
PAMIL framework significantly outperforms current state-
of-the-art (SOTA) methods.

The main contributions of this paper are as follows:

• We examine the sampling, representation, and
decision-making processes in MIL tasks, and inves-
tigate their underlying connections to establish a dy-
namic policy-driven adaptive multi-instance learning
framework (PAMIL) for precise bag-label inference.

• We pioneer a dynamic policy-driven instance selection
(DPIS) method for sample selection. This is achieved
by considering the local neighbor relationship and dis-
tance similarity between the current instance represen-
tation and the remaining instances.

• We advise a selection fusion feature representation
(SFFR) method for more precise bag representation by
fully exploiting the historical information of sub-bags.
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Figure 2. The architecture of our proposed dynamic policy-driven adaptive multi-instance learning (PAMIL) framework. PAMIL consists
of a dynamic policy-driven instance selection (DPIS) scheme, a selection fusion feature representation (SFFR) module, and a Transformer
classification module (TCM). DPIS learns relationships among past, current, and remaining instances of Xi, and samples instances embed-
ded as vsti using a feature extractor (FE). Then, SFFR takes vsti and an initial token ust

i as inputs, refining ust
i by utilizing a Transformer

module (TRM) and a multi-head attention (MHA) mechanism to fuse vsti and past tokens. Meanwhile, we introduce a Siamese (SIA)
structure between ust

i and u
st−1

i to enhance the robustness of ust
i . Finally, TCM uses a class token (CLS) hcls

i to aggregate {ust
i }Tt=1 for

inferring the bag label probability Ŷi of WSI Xi, providing feedback as reward r∗i and penalty rpi to the DPIS.

2. Related Work

2.1. Multi-Instance Learning in WSI Classification

MIL aims to determine bag labels from sampled instance
representations. As shown in Figure 1, there are two pri-
mary MIL categories based on instance grouping: bag-level
and pseudo-bags-level methods. The former applies diverse
selection strategies, ranging from the conventional Max-
Pooling, MeanPooling, and Top-K [6, 15, 22] to popular at-
tention and Transformer [14, 16, 29, 34], to integrate most
salient features for prediction. However, directly predict-
ing the label from thousands of instances derived from gi-
gapixel resolution WSIs often struggles to produce robust
and satisfactory results. The latter tends to exploit corre-
lations within instances or embedding features, employing
clustering or random grouping to form pseudo-bags or la-
bels to improve inference [26, 38, 40, 41, 45]. Nevertheless,
grouping based on subtle correlations may disrupt intra-
group feature consistency, leading to unstable predictions,
especially for class-imbalanced datasets. To address this
issue, some works use a teacher-student model to focus
on hard instances [32] or refine pseudo-bags features from
classifier predictions [9,17,37]. Besides, depending on pre-
cise regression results, these methods still fall short in fun-
damentally ensuring that the sampled and aggregated repre-
sentations accurately and consistently align with bag labels.

2.2. Reinforcement Learning in Medical Imaging

Reinforcement learning (RL) [31] has drawn increasing
attention in computer vision tasks for handling long se-
quential data via dynamic interactions [2, 39]. In particular,
self-driven learning based on past experiences to correct bi-
ases for more accurate predictions is in line with clinical
diagnosis [15]. Some interesting practices have been ap-

plied in medical image landmark detection [3, 4], segmen-
tation [19, 36], and classification [13, 25, 44]. To optimize
the WSI tumor detection, little attention has been paid to
explore historical information in MIL methods [25, 43, 44].
Due to the absence of instance labels, the main challenge
is to define rewards strategy. Moreover, subtle variations
in designing state and action spaces can drastically affect
model performance, with some not converging [13]. To
tackle these challenges, we introduce a model-independent
reward mechanism. In particular, an effective action-to-
state mapping is achieved by employing the spatial corre-
lations and feature similarity relations among instances.

3. Proposed Method
3.1. Review for MIL Formulation

For a binary classification task, given the dataset X =
{(X1, Y1), (X2, Y2), . . . , (XN , YN )}, it comprises N WSIs
Xi and the corresponding labels Yi ∈ {0, 1}. Taking Xi as
an example, it is treated as the ith “bag” involving Bi in-
stances xi,b ∈ RW×H×3 sampled from it, where H and W
denote the height and width and b ∈ [1, Bi]. All instances
xi,b are label-free, but part of the “bag” label of Yi ∈ {0, 1}.

Yi =

{
0, if

∑Bi

b=1 yi,b = 0, yi,b ∈ {0, 1},
1, otherwise.

(1)

It can be interpreted as only if the labels of all instances are
0 (negative), the final prediction is 0 (negative). Otherwise,
it would be labeled as 1 (positive).

A common MIL framework consists of two trainable
modules: feature extractor (FE) Gf and classifier Gc. In
this work, we use the pre-trained Gf (detailed in Sec-
tion 4.2) to embed xi,b into a D-dimensional feature vector
vi,b ∈ R1×D. The Gc is used to predict the class probability
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Ŷi of WSI Xi, defined as P (Ŷi) = Gc({vi,b}Bi

b=1). Due to
the variability of Bi, various issues arise in MIL approaches
that use the same program for all instances {xi,b}Bi

b=1.

3.2. Overview for PAMIL

Figure 2 outlines the framework of the proposed PAMIL.
Our primary goal is to construct adaptive and reliable in-
stance sampling and fusion schemes for WSI analysis by
leveraging intrinsic relationships between past and current
knowledge.

Drawing inspiration from [42], we introduce a Markov
Decision Process (MDP) [13] for PAMIL and enhance it
using the RL algorithm. Key components of the MDP com-
prise: {State, Action, Reward}. In this study, we define
{vi,b}Bi

b=1 as state space IBt
i and select randomly vsti =

{vsti,j}Mj=1 as the initial state at t = 1, t ∈ T , where M de-
notes the size of vsti . The T = Bi

M is sampling step. To
efficiently link MDP with the instance sampling, feature
representation, and decision-making of MIL, unlike cur-
rent methods [43] to directly aggregate information from
thousands of instances, we devise a dynamic policy-driven
instance selection (DPIS) scheme to explore the intrinsic
relation among the current instances, previous knowledge
and remaining state space IBt+1

i . It encourages the net-
work to select the most informative instances to facilitate
the decision-making, detailed in Section 3.3. Besides the
instance sampling, we introduce a selection fusion feature
representation (SFFR) module to aggregate information of
the current features vsti and past tokens {usk

i }t−1
k=1 for a sta-

ble and specific token ust
i representation. ust

i is passed to
the DPIS and decision module for optimal sampling and
robust prediction. Meanwhile, to enable DPIS to sam-
ple label-relevant and robust instances, instead of rewards
from sparse WSI label support or teacher models [43, 44],
we introduce a self-guided feedback mechanism from the
Transformer classification module (TCM), detailed in Sec-
tion 3.5.

3.3. Dynamic Policy Instance Selection Scheme

DPIS aims to select the informative samples from the
remaining instances with the guidance of previous knowl-
edge. Therefore, we first introduce an experience-based
learning of proximal policy module (PPM) Gp. As shown in
Figure 3, ust

i is input into a recurrent neural network (RNN)
GRNN

p [28] with captured temporal dependencies, followed
by a multi-layer perceptron (MLP) GMLP

p to guide the next
sampling. This process is expressed as

P t
i (a

st
i |ust

i ) = GMLP
p (GRNN

p (ust
i )), (2)

Where asti is next sampling instances indexes. The primary
goal is to improve the sampling process. By considering the
connectivity and proximity between the current and the re-
maining instances, three different schemes are introduced to
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Figure 3. Illustration of the proposed selection fusion feature
representation (SFFR) module, proximal policy module (PPM)
and Transformer classification module (TCM) in PAMIL.

optimize instance selection, including greedy policy-based
max similarity scheme (GMSS), greedy policy-based hy-
brid similarity scheme (GHSS), and policy-optimized lin-
ear interpolation instances scheme (LIIS). More details for
sampling strategies are included in the Supplementary.

3.4. Selection Fusion Feature Representation

To aggregate robust and decision-friendly representa-
tions, we design the SFFR Gs module to comprehensively
explore relationships across current and historical informa-
tion. As shown in Figure 3, we first initialize a vector vpt

i

to learn spatial information in vsti . The Transformer module
(TRM) GTRM

s with an initial token ust
i is used to extract both

local and global representations from vsti . To alleviate the
catastrophic forgetting of historical information while thor-
oughly exploring the global texture, SFFR is equipped with
a multi-head attention (MHA) mechanism GMHA

s . Unlike
randomly initializing vectors as tokens, MHA utilizes ust

i

as a token to combine past tokens {usk
i }t−1

k=1 for enriched
current representation. In addition, to promote the gener-
alization of ust

i , SFFR employs a more stable and efficient
Siamese (SIA) structure [8] among u

st−1

i and ust
i . The pro-

cedures in SFFR are expressed as

ust
i = GMHA

s ([GTRM
s ([ust

i ; (vpt

i + vsti )]); {usk
i }t−1

k=1]), (3)

Li
SIA =

1

T

T∑
t=1

[
1

2
D(psti , u

st−1

i ) +
1

2
D(p

st−1

i , ust
i )

]
, (4)

where psti and p
st−1

i are the MLP output and D refers to the
negative cosine similarity [8].

3.5. Decision-Making and Feedback

Decision-Making. Considering the tumor features may be
diluted in long sequences, potentially leading to false nega-
tives, we use a MLP GMLP

s to infer the category {ŷi,t}Tt=1
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of {ust
i }Tt=1. In addition, to enhance prediction perfor-

mance, we construct the Transformer classification module
(TCM) GTCM

c , as shown in Figure 3. The TCM further fuses
{ust

i }Tt=1 via an initialized class token hcls
i for robust high-

level global representation and employs a MLP Gc
MLP to

predict the label Ŷi. For the WSI task, the class token hcls
i

prediction is used to minimize false positives due to noise.
The final decision-making Ŷ ′

i for Xi is depicted as

Ŷ ′
i =

{
ŷi,max+avg(ŷi,1:3)+avg(ŷi,1:5)+Ŷi

4 , if Yi = 1,

Ŷi, if Yi = 0.
(5)

where ŷi,max, avg(ŷi,1:3) and avg(ŷi,1:5) denote the top-1
max, and averages of the top 3 and 5 in {ŷi,t}Tt=1, respec-
tively.
Reward and Punishment. Although utilizing Ŷi and
{ŷi,t}Tt=1 with label Yi consistency as rewards is straight-
forward, limited WSI-label Yi provides sparse guidance and
approximate label prediction of ŷi,t introduces bias. More-
over, while the most label-related instances are useful for
decision-making in the inference stage, they are not con-
ducive to training a well-generalized model.

Based on this analysis, we first introduce hcls
i as tar-

get and {ust
i }Tt=1 as negative samples. The cosine simi-

larity between hcls
i and {ust

i }Tt=1 acts as the penalty term
rpi = {rpi,t}Tt=1. Meanwhile, we integrate prediction-
labeling consistency to design the reward r∗i . These strate-
gies guide the DPIS to select instances for prediction accu-
racy and stability. The feedback Ri is described by

Ri =

{
r∗i − rpi , if Ŷi = Yi,

0− rpi , otherwise.
(6)

3.6. Optimization Method

Instance Sampling Scheme Optimization. It is known
that the proximal policy optimization (PPO) [27] algorithm
is efficient in high-dimensional spaces and widely used in
RL tasks [13, 45]. We employ PPO to optimize sampling
strategies combined with Eq. 6, focusing on relevant in-
stances and ensuring robust bag representations.
Feature Representation and Decision-Making Opti-
mization. To ensure the co-evolution of feature represen-
tation and decision-making, we design three losses to opti-
mize both the SFFR and TCM (SFTC): the WSI probability
Ŷi cross-entropy loss (WSL) Li

WSL, the sub-bag token prob-
ability ŷi,t cross-entropy loss (STL) Li

STL, and the u
st−1

i to
ust
i SIA contrastive loss [8] Li

SIA (Eq. 4). The losses are
expressed as

Li
WSL = −[Yi log Ŷi + (1− Yi) log(1− Ŷi)], (7)

Li
STL = − 1

T

T∑
t=1

[Yi log ŷi,t + (1− Yi) log(1− ŷi,t)]. (8)

The total loss function is given by

LSFTC =
1

N

N∑
i=1

[Li
WSL + λSTL · Li

STL + λSIA · Li
SIA], (9)

where λSTL and λSIA are adjusted from initial to final value
via integrating epoch and cosine curve [21]. For more de-
tails on the optimization methods, please refer to the Sup-
plementary.

4. Experiments
To validate our PAMIL, we conduct extensive experi-

ments on the CAMELYON16 [5] and TCGA Lung Can-
cer [33] datasets with mainstream MIL methods, involving
bag-level methods (MeanPooling [15], MaxPooling [15],
ABMIL [14], RNNMIL [6], DSMIL [16], CLAM [22],
TransMIL [29], IAT [35], and MHIM [32]) and pseudo-
bags or pseudo-labels methods (DTFD [40] and DG-
MIL [26]). Subsequently, we evaluate common grouping
methods within our SFFR and TCM. Meanwhile, ablation
studies are conducted to verify individual effects of basic
components on the final performance.

4.1. Datasets and Metrics

CAMELYON16 Dataset [5]. The dataset consists of
270 training WSIs (159 normal, 111 tumor) and 129 test-
ing WSIs for breast cancer lymph nodes. Following Trans-
MIL [29], we apply CLAM [22] to identify tissues on WSIs
and obtain non-overlapping 256 × 256 instances at 20×
magnification.
TCGA Lung Cancer Dataset [33]. This database con-
tains two cancer sub-categories: Lung Adenocarcinoma
(LUAD) and Lung Squamous Cell Carcinoma (LUSC). It
provides 541 LUAD slides from 478 cases and 512 LUSC
slides from 478 distinct cases. We adopt the same pre-
processing as DSMIL [16] for 1046 WSIs. Each WSI is
then segmented into non-overlapping patches of 224× 224
at 20× magnification.
Evaluation Metrics. The commonly used metrics, like
Area Under Curve (AUC), accuracy, and F1 score (F1) are
introduced for evaluation. Precision and recall are also con-
sidered, with a threshold of 0.5. We adopt the same settings
as [29,32,40,41] for a fair comparison due to discrepancies
in dataset splits. The CAMELYON16 official training set is
further randomly divided into training and validation sets at
9 : 1. The TCGA Lung is randomly split into training, vali-
dation, and testing sets with ratios of 65 : 10 : 25. Detailed
data processing is in the Supplementary.

4.2. Implementation Details

For the CAMELYON16 dataset, following [22, 29, 32,
40], we extract 1024-dimensional feature vectors from
each instance via a pre-trained ResNet50 [12] with Ima-
geNet [10]. For the TCGA Lung dataset, we employ the
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Table 1. Quantitative comparison of our results and pseudo-bags-level methods on CAMELYON16 and TCGA Lung datasets.
Results from [6, 14–16, 22, 29] are derived from DTFD [40], with others [26, 32, 35, 40] from their published papers. The numbers in red,
blue and underline indicate the best, second best, and previous best performance, respectively.

Methods CAMELYON16 TCGA Lung
Accuracy F1 AUC Accuracy F1 AUC

MeanPooling [15] 0.626±0.008 0.355±0.007 0.528±0.008 0.833±0.011 0.809±0.012 0.901±0.012
MaxPooling [15] 0.826±0.023 0.754±0.048 0.854±0.030 0.846±0.029 0.833±0.027 0.901±0.033

ABMIL [14] 0.845±0.005 0.780±0.009 0.854±0.005 0.869±0.032 0.866±0.021 0.941±0.028
RNNMIL [6] 0.844±0.021 0.798±0.006 0.875±0.002 0.845±0.024 0.831±0.023 0.894±0.025
DSMIL [16] 0.856±0.010 0.815±0.014 0.899±0.007 0.888±0.013 0.876±0.011 0.939±0.019

CLAM-MB [22] 0.823±0.022 0.774±0.017 0.878±0.013 0.878±0.043 0.874±0.028 0.949±0.019
CLAM-SB [22] 0.837±0.023 0.775±0.016 0.871±0.012 0.875±0.041 0.864±0.043 0.944±0.023
TransMIL [29] 0.858±0.008 0.797±0.017 0.906±0.025 0.883±0.022 0.876±0.021 0.949±0.013

DTFD (AFS) [40] 0.908±0.013 0.882±0.017 0.946±0.004 0.891±0.033 0.883±0.025 0.951±0.022
DTFD (MaxMinS) [40] 0.899±0.010 0.865±0.014 0.941±0.003 0.894±0.033 0.891±0.027 0.961±0.021

DGMIL [26] 0.802± — — 0.837± — 0.920± — — 0.970± —
IAT [35] 0.899±0.001 0.874±0.009 0.946±0.006 0.921±0.008 0.849±0.015 0.849±0.016

MHIM (TransMIL) [32] 0.920±0.008 0.901±0.010 0.965±0.004 0.900±0.025 0.897±0.026 0.949±0.021
MHIM (DSMIL) [32] 0.925±0.003 0.908±0.007 0.965±0.006 0.898±0.033 0.897±0.029 0.955±0.017

DPIS-GMSS 0.963±0.033 0.948±0.048 0.971±0.044 0.953±0.002 0.949±0.003 0.988±0.003
DPIS-GHSS 0.942±0.012 0.922±0.017 0.970±0.017 0.962±0.003 0.958±0.004 0.990±0.003
DPIS-LIIS 0.961±0.006 0.947±0.009 0.977±0.026 0.965±0.007 0.961±0.008 0.994±0.002

Table 2. Quantitative comparison of our results and pseudo-bags schemes on CAMELYON16 and TCGA Lung datasets. § indicates
512 instances per group, selected either randomly or by positional sorting. ♯ denotes k-Means or random grouping of each bag into 10
groups. The results come from the class token hcls

i prediction.

Methods CAMELYON16 TCGA Lung
Accuracy Precision Recall F1 AUC Accuracy Precision Recall F1 AUC

Position Sorting § 512 0.861 0.878 0.735 0.800 0.942 0.947 0.934 0.950 0.942 0.991
Random Sampling § 512 0.861 0.878 0.735 0.800 0.897 0.947 0.920 0.966 0.943 0.990
K-Means Grouping ♯ 10 0.899 0.950 0.776 0.854 0.940 0.947 0.927 0.958 0.942 0.990
Random Grouping ♯ 10 0.920 0.924 0.861 0.891 0.926 0.951 0.914 0.983 0.947 0.989

DPIS-GMSS 0.915 0.975 0.800 0.876 0.905 0.954 0.921 0.983 0.951 0.987
DPIS-GHSS 0.923 0.933 0.857 0.894 0.944 0.958 0.950 0.958 0.954 0.989
DPIS-LIIS 0.954 0.978 0.898 0.936 0.944 0.954 0.965 0.933 0.949 0.992

SimCLR [23] with a ResNet18 [12] encoder, to obtain 512-
dimension feature vectors from each patch. AdaMax op-
timizer [1] with a weight decay of 1e − 5 and the initial
learning rate of 1e−4 are used. With the above settings, we
train our PAMIL with 300 epochs with batch size 1 on one
NVIDIA 2080Ti GPU.

4.3. Comparison with State-of-the-Art

Quantitative results are presented in Table 1. As ex-
pected, our method achieves the best scores across all met-
rics and datasets, surpassing the SOTA MHIM [32] by 3.8%
in terms of accuracy on the CAMELYON16 dataset and
over IAT [35] by 4.4% with accuracy on the TCGA lung
over. It is noted that the competitors obtain impressive per-
formance on the TCGA lung dataset with high consistency,
as the TCGA lung dataset consists of more than 80% tu-
mor areas [29]. Since positive WSIs on the CAMELYON16
dataset occupy only small portions of tumor [16, 29], it
is observed that the bag-level methods struggle to capture
positive features to drive a credible decision [6, 14, 15, 22].

Exploring the global response with attention-based and
Transformer-based methods [16, 29, 35] achieve better per-
formance by producing discriminant representations across
numerous samples. However, it is still behind the pseudo-
bags [40]. In particular, MHIM [32] improves bag gener-
alization features by masking key instances with well accu-
racy, yet it falls 3.8% behind our method. The main reason
is that these methods barely explore the intrinsic relations
between the historical knowledge and current instances dur-
ing sampling and feature representation. It greatly facili-
tates robust and generalized performance. In addition, DG-
MIL [26] employs K-Means grouping introducing a prior
bias, resulting in poor performance. These results further
demonstrate the effectiveness of our policy-driven instance
selection and fusion feature representation schemes.

4.4. Comparison with Pseudo-Bags Schemes

Quantitative Comparison. To investigate the effects of
sampling strategies, Table 2 tabulates the quantitative com-
parisons against different pseudo-bags schemes, includ-
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Figure 4. Visual comparisons with pseudo-bags-level methods on CAMELYON16 dataset. The blue outline indicates the tumor region.
Attention score bar (0-1): indicates model focus on tumor instances, higher values show more attention, not positive probability.

ing the commonly used position sorting, random sampling
and group, as well as our proposed greedy policy-based
max similarity scheme (GMSS), greedy policy-based hy-
brid similarity scheme (GHSS) and policy-optimized lin-
ear interpolation instances scheme (LIIS). Notably, most of
the strategies demonstrate impressive performance on the
TCGA lung dataset. Our method still performs favorably on
the challenging CAMELYON16 dataset. Specifically, our
LIIS scheme improves accuracy by 9.3% and 3.4% against
random sampling and random grouping, respectively. Al-
though position sorting and K-Means schemes consider the
spatial and feature relationships, they struggle to exploit
contextual prior, leading to undesired accuracy, respectively
lower than LIIS and GHSS by 9.3%, 5.5%, 6.2%, and 2.4%.
We speculate that these visible improvements in scores ben-
efit from the elaborate sampling schemes, which encour-
age the network to aggregate the knowledge from histori-
cal instance representation according to the similarity. It is
crucial to guide the instance sampling and robust decision-
making.
Qualitative Comparison and Interpretability. Figure 4
visualizes the attention scores from the last attention layer
in TCM, demonstrating that our scheme can encourage the
model to focus on tumor regions. It is barely explored in
pseudo-bags methods. Furthermore, when grouping based
on prior context and position, biases in the data lead the
model to focus on instances that are not label-related. This
evidence not only supports previous analyses but also sug-
gests that our scheme facilitates more accurate learning of
bag representations that are closely associated with labels.

4.5. Adaptability for MIL Method

Due to the considerable versatility and scalability of
our proposed DPIS and SFFR (unified into the DPSF
module), we equip four representative MIL frameworks
with the DPSF module and evaluate them on the CAME-
LYON16 dataset. The quantitative results, tabulated in
Table 3, demonstrate significant improvements over ex-
isting results. These findings validate the flexibility of
DPIS and confirm that SFFR is proficient in generating
discriminative representations to boost prediction. Intu-

Table 3. Quantitative results of DPIS and SFFR (DPSF)
scheme for four MIL methods on CAMELYON16 dataset. The
bold indicates an improvement over previous results. The results
are based on the class token hcls

i prediction.

Methods Accuracy F1 AUC
MaxPooling [15] 0.826 0.754 0.854

DPSF-MaxPooling 0.930 (+10.4%) 0.901(+14.7%) 0.938(+8.4%)
MeanPooling [15] 0.626 0.355 0.528

DPSF-MeanPooling 0.876(+25.0%) 0.830(+47.5%) 0.916(+38.0%)
DSMIL [16] 0.856 0.815 0.899

DPSF-DSMIL 0.907(+5.1%) 0.882(+6.7%) 0.935(+4.6%)
TransMIL [29] 0.858 0.797 0.906

DPSF-TransMIL 0.884 (+2.6%) 0.845 (+4.8%) 0.926 (+2.0 %)

(a) Input Tumor (b) DPIS-LIIS (Ours)

(c) K-Means Grouping (d) Random Grouping

128 256 512 1024 2048

105 15 105 15

Figure 5. Visual effects of pseudo-bag sizes and grouping
schemes on CAMELYON16 dataset.

(c) MHA Fusion Past Information (Ours)(b) Without Fusing Past Information(a) Non-Tumor in 
Tumor  WSI

Figure 6. Visual effects of selection fusion feature representa-
tion on CAMELYON16 dataset. (a) Red contours indicate non-
tumor cells in the tumor WSI. (b) and (c) Black boxes indicate the
attention of different fusion mechanisms to non-tumor instances.

itively, DPSF-MaxPooling selects the most salient tokens
from {ust

i }Tt=1 for prediction and obtains optimal results
compared to DPSF-DSMIL and DPSF-TransMIL. We at-
tribute this to SFFR providing the token with highly label-
consistent features. DPSF-MeanPooling shows a 38% im-
provement in AUC over standard MeanPooling. However,
due to the uncertain representation from input instances,
DPSF-MeanPooling generates bag representations by aver-
aging {ust

i }Tt=1 inferior attention fusion.
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Table 4. Ablation study on the CAMELYON16 dataset. The
baseline uses randomly selected 512 instances to form a pseudo-
bag for training SFFR and TCM under the loss defined in Eq 7.

(a) Effects of pseudo-bag size and grouping scheme. “Mix” and
“Max” indicate pseudo-bag counts from the smallest and largest
WSIs. M denotes the instance count sampled by DPIS at time t,
while “KM” and “RG” represent K-Means or random grouping of
each bag into 5, 10, or 15 groups. We set M = 512 in our DPIS.

Methods Accuracy Precision Recall F1 Mix Max

M

128 0.923 0.954 0.837 0.891 11 437
256 0.923 0.976 0.816 0.889 6 219
512 0.954 0.978 0.898 0.936 3 110
1024 0.930 0.935 0.878 0.905 2 55
2048 0.907 0.894 0.857 0.875 1 28

KM

5 0.907 0.974 0.776 0.864 5 5
10 0.899 0.950 0.776 0.854 10 10
15 0.915 0.913 0.857 0.884 15 15

RG

5 0.884 0.925 0.755 0.831 5 5
10 0.920 0.924 0.861 0.891 10 10
15 0.907 0.894 0.857 0.875 15 15

Baseline 0.861 0.878 0.735 0.800 3 110

(b) Effects of selection fusion feature representation.
Attention MHA Accuracy Precision Recall F1

✗ ✗ 0.938 0.956 0.878 0.915
✓ ✗ 0.946 0.977 0.878 0.925
✗ ✓ 0.954 0.978 0.898 0.936

(c) Effects of optimizing strategy.
LWSL LSIA LSTL Accuracy Precision Recall F1

✓ ✗ ✗ 0.915 0.896 0.878 0.887
✓ ✓ ✗ 0.930 0.935 0.878 0.905
✓ ✗ ✓ 0.915 0.913 0.857 0.884
✓ ✓ ✓ 0.954 0.978 0.898 0.936

(d) Effects of reward and punishment.
Model rpi r∗i Accuracy Precision Recall F1
w/o Ri ✗ ✗ 0.930 0.917 0.898 0.907
w r∗i ✗ ✓ 0.915 0.932 0.837 0.882
w rpi ✓ ✗ 0.938 0.956 0.878 0.915
w Ri ✓ ✓ 0.954 0.978 0.898 0.936

4.6. Ablation Study

To validate the PAMIL and analyze the contributions
of individual components, comprehensive studies are con-
ducted using the LIIS scheme, specifically sampling and re-
sults from the CAMELYON16 dataset and hcls

i prediction.
Effects of Pseudo-bag Size and Grouping Scheme. Fig-
ure 5 and Table 4(a) display visual and numerical compar-
isons that reveal a small pseudo-bag lacks the detail needed
for accurate tumor-normal feature discrimination, resulting
in higher false-negative rates. However, a large pseudo-
bag may obscure sparse tumor instance correlations, lead-
ing to more false positives. Comparatively, fixed grouping
schemes exhibit lower accuracy and less attention to tumor
instances than our DPIS strategy. This affirms the shortcom-
ings of MIL methods stated in Section 1 and emphasizes the
need for dynamic instance sampling in WSI analysis.
Effects of Selection Fusion Feature Representation. To
demonstrate that incorporating features between past and
current sampling instances facilitates robust and specific

representation, we constructed three fusion experiments for
GMHA

s in the SFFR. The visual and quantitative results are
shown in Figure 6 and Table 4(b), showing that incorporat-
ing historical tokens enhances model focus on label-related
features. The MHA outperforms softmax attention, fur-
ther demonstrating that a fully fused feature representation
yields a more precise bag representation.
Effects of Optimizing Strategy. Table 4(c) demon-
strates that our sampling strategy improves accuracy by
5.4% (LWSL) compared to the baseline, using the same loss
Eq 7. This indicates the advantage of distance-related sam-
pling for better bag representation. Additionally, the con-
trast loss in adjacent pseudo-bags further enhances features,
resulting in improved inference accuracy. However, it is im-
portant to note that highly sensitive pseudo-labels can intro-
duce biases. To address this, a hybrid loss function produces
optimal results by enhancing the differentiation between tu-
mor and normal features in imbalanced WSI datasets.
Effects of Reward and Punishment. The reward and
punishment mechanisms are crucial in the DPIS scheme.
Integrating penalty and reward terms, as shown in Ta-
ble 4(d), significantly enhances model accuracy by promot-
ing attention to robust and common features. Instead of us-
ing r∗i , penalizing based on the similarity values hcls

i and
ust
i can effectively reduce the false-positive by correcting

biases in pseudo-bags and diversifying bag representation.
More in-depth analyses are included in the Supplementary.

5. Conclusion
In this study, we propose a new paradigm, termed

the dynamic policy-driven adaptive multi-instance learning
framework (PAMIL) for WSI. The main focus is on inves-
tigating the interactions between instance sampling, feature
representation, and decision-making. To enhance the accu-
racy of inference, we utilize past predictions and sampled
instances to guide the selection of optimal features in the
next step. To achieve this, we introduce a DPIS scheme
that effectively incorporates current and previous rich infor-
mation, along with reward-penalty mechanisms to optimize
sampling. Additionally, the SFFR method is employed to
filter pseudo-bags and improve bag representation for more
robust predictions. Extensive experiments have been con-
ducted, demonstrating the impressive performance of our
proposed PAMIL and validating the effectiveness of explor-
ing interrelationships. However, it is worth noting that the
complex structural information of WSI is not fully exploited
by the distance guide strategies. A potential improvement
would involve refining the representation of the state token,
which could be beneficial for sampling.
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