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Figure 1. High-fidelity and real-time novel view synthesis (NVS). Our proposed method synthesizes 2K-resolution novel views of
unseen human performers in real-time without any fine-tuning or optimization. The performance outperforms the state-of-the-art feed-
forward NVS methods ENeRF [19], FloRen [47] and 3D-GS [12], which are representative approaches in implicit neural human rendering,
image-based human rendering and per-subject optimization, respectively. We only mark the running efficiency for feed-forward methods.

Abstract
We present a new approach, termed GPS-Gaussian, for

synthesizing novel views of a character in a real-time man-
ner. The proposed method enables 2K-resolution render-
ing under a sparse-view camera setting. Unlike the origi-
nal Gaussian Splatting or neural implicit rendering meth-
ods that necessitate per-subject optimizations, we introduce
Gaussian parameter maps defined on the source views and
regress directly Gaussian Splatting properties for instant
novel view synthesis without any fine-tuning or optimiza-
tion. To this end, we train our Gaussian parameter regres-
sion module on a large amount of human scan data, jointly
with a depth estimation module to lift 2D parameter maps
to 3D space. The proposed framework is fully differentiable
and experiments on several datasets demonstrate that our

† Work done during an internship at Tsinghua University.
∗ Corresponding author.

method outperforms state-of-the-art methods while achiev-
ing an exceeding rendering speed. The code is available at
https://github.com/aipixel/GPS-Gaussian.

1. Introduction

Novel view synthesis (NVS) is a critical task that aims to
produce photo-realistic images at novel viewpoints from
source images captured by multi-view camera systems. Hu-
man NVS, as its subfield, could contribute to 3D/4D im-
mersive scene capture of sports broadcasting, stage per-
formance and holographic communication, which demands
real-time efficiency and 3D consistent appearances. Pre-
vious attempts [5, 36] synthesize novel views through a
weighted blending mechanism [61], but they typically rely
on dense input views or precise proxy geometry. Under
sparse-view camera settings, it remains a formidable chal-
lenge to render high-fidelity images for NVS.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Recently, implicit representations [40, 45, 56], espe-
cially Neural Radiance Fields (NeRF) [32], have demon-
strated remarkable success in numerous NVS tasks. NeRF
utilizes MLPs to represent the radiance field of the scene
which jointly predicts the density and color of each sam-
pling point. To render a specific pixel, the differentiable
volume rendering technique is then implemented by aggre-
gating a series of queried points along the ray direction.
The following efforts [40, 49] in human free-view rendering
immensely ease the burden of viewpoint quantities while
maintaining high qualities. Despite the progress of accel-
erating techniques [6, 33], NVS methods with implicit rep-
resentations are time-consuming in general for their dense
points querying in scene space.

On the other hand, explicit representations [34, 39], par-
ticularly point clouds [15, 16, 62, 77], have drawn long-
lasting attention due to their high-speed, and even real-
time, rendering performance. Once integrated with neu-
ral networks, point-based graphics [1, 42] realize a promis-
ing explicit representation with comparable realism and ex-
tremely superior efficiency in human NVS task [1, 42],
compared with NeRF. More recently, 3D Gaussian Splat-
ting (3D-GS) [12] introduces a new representation that the
point clouds are formulated as 3D Gaussians with a series
of learnable properties including 3D position, color, opacity
and anisotropic covariance. By applying α-blending [13],
3D-GS provides not only a more reasonable and accurate
mechanism for back-propagating the gradients but also a
real-time rendering efficiency for complex scenes. Despite
realizing a real-time inference, Gaussian Splatting relies on
a per-subject [12] or per-frame [26] parameter optimization
for several minutes. It is therefore impractical in interactive
scenarios as it necessitates the re-optimization of Gaussian
parameters once the scene or character changes.

In this paper, we delve into a generalizable 3D Gaus-
sian Splatting method that directly regresses Gaussian pa-
rameters in a feed-forward manner instead of per-subject
optimization. Inspired by the success of learning-based hu-
man reconstruction, PIFu-like methods [45, 46], we aim
to learn the regression of human Gaussian representations
from massive 3D human scans with diverse human topolo-
gies, clothing styles and pose-dependent deformations. De-
ploying these learned human priors, our method enables in-
stantaneous human appearance rendering using a generaliz-
able Gaussian representation.

Specifically, we introduce 2D Gaussian parameter (po-
sition, color, scaling, rotation, opacity) maps which are de-
fined on source view image planes, instead of unstructured
point clouds. These Gaussian parameter maps allow us to
represent a character with pixel-wise parameters, i.e. each
foreground pixel corresponding to a specific Gaussian point.
Additionally, it enables the application of efficient 2D con-
volution networks rather than expensive 3D operators. To

lift 2D parameter maps to 3D Gaussian points, depth maps
are estimated for both source views via binocular stereo [21]
as a learnable unprojection operation. Such unprojected
Gaussian points from both source views constitute the rep-
resentation of character and novel view images can be ren-
dered with splatting technique [12].

However, the existing cascaded cost volume meth-
ods [19, 51] struggle to tackle the aforementioned depth
estimation issue due to the severe self-occlusions in hu-
man characters. Therefore, we propose to learn an itera-
tive stereo-matching [21] based depth estimation along with
our Gaussian parameter regression, and jointly train the two
modules on large-scale data. Optimal depth estimation con-
tributes to enhanced precision in determining the 3D Gaus-
sian position, while concurrently minimizing rendering loss
of Gaussian module rectifies the potential artifacts arising
from the depth estimation. Such a joint training strategy
benefits each component and improves the overall stability
of the training process.

In practice, we are able to synthesize 2K-resolution
novel views exceeding 25 FPS on a single modern graphics
card. Leveraging the rapid rendering capabilities and broad
generalizability inherent in our proposed method, an unseen
character can be instantly rendered without necessitating
any fine-tuning or optimization, as illustrated in Fig. 1. In
summary, our contributions can be summarized as follows:
• We introduce a generalizable 3D Gaussian Splatting

methodology that employs pixel-wise Gaussian parame-
ter maps defined on 2D source image planes to formulate
3D Gaussians in a feed-forward manner.

• We propose a fully differentiable framework composed
of an iterative depth estimation module and a Gaussian
parameter regression module. The intermediate predicted
depth map bridges the two components and allows them
to benefit from joint training.

• We develop a real-time NVS system that achieves 2K-
resolution rendering by directly regressing Gaussian pa-
rameter maps.

2. Related Work
Neural Implicit Human Representation. Neural im-
plicit function has recently aroused a surge of interest to rep-
resent complicated scenes, in form of occupancy fields [9,
29, 45, 46], neural radiance fields [7, 32, 40, 60, 72] and
neural signed distance functions [38, 49, 56, 58, 76]. Im-
plicit representation shows the advantage in memory effi-
ciency and topological flexibility for human reconstruction
task [9, 63, 74], especially in a pixel-aligned feature query
manner [45, 46]. However, each queried point is processed
through the full network, which dramatically increases
computational complexity. More recently, numerous meth-
ods have extended Neural Radiance Fields (NeRF) [32] to
static human modeling [4, 48] and dynamic human mod-
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eling from sparse multi-view cameras [40, 49, 72] or a
monocular camera [7, 11, 60]. However, these methods
typically require a per-subject optimization process and it
is non-trivial to generalize these methods to unseen sub-
jects. Previous attempts, e.g., PixelNeRF [68], IBRNet [57],
MVSNeRF [3] and ENeRF [19] resort to image-based fea-
tures as potent prior cues for feed-forward scene modeling.
The large variation in pose and clothing makes generaliz-
able NeRF for human rendering a more challenging task,
thus recent work simplifies the problem by leveraging hu-
man priors. For example, NHP [14], GM-NeRF [4] and
TransHuman [37] employ parametric human body model
(SMPL [24]), KeypointNeRF [31] uses 3D skeleton key-
points to encode spatial information. These additional pro-
cesses increase computational cost and an inaccurate prior
estimation would mislead the final result. On the other
hand, despite the great progress in accelerating the scene-
specific NeRF [6, 17, 33, 67], efficient generalizable NeRF
for interactive scenarios remains to be further elucidated.

Deep Image-based Rendering. Image-based rendering,
or IBR in short, synthesizes novel views from a set of multi-
view images with a weighted blending mechanism, which is
typically computed from a geometry proxy. [43, 44] deploy
multi-view stereo from dense input views to produce mesh
surfaces as a proxy for image warping. DNR [54] directly
produces learnable features on the surface of mesh proxies
for neural rendering. Obtaining these proxies is not straight-
forward since high-quality multi-view stereo and surface re-
construction requires dense input views. MonoFVV [8],
LookinGood [28] and Function4D [69] implement RGBD
fusion to attain real-time human rendering. Point clouds
from SfM [30, 41] or depth sensors [35] can also be en-
gaged as geometry proxies. These methods highly depend
on the performance of 3D reconstruction algorithms or the
quality of depth sensors. FWD [2] designs a network to
refine depth estimations, then explicitly warps pixels from
source views to novel views with the refined depth maps.
FloRen [47] utilizes a coarse human mesh reconstructed by
PIFu [45] to render initialized depth maps for novel views.
Arguably most related to ours is FloRen [47], as it also
realizes 360◦ free view human performance rendering in
real-time. However, the appearance flow in FloRen merely
works in 2D domains, where the rich geometry cues and
multi-view geometric constraints only serve as 2D supervi-
sions. The difference is that our approach lifts 2D priors
into 3D space and utilizes the point representation to syn-
thesize novel views in a fully differentiable manner.

Point-based Graphics. Point-based representation has
shown great efficiency and simplicity for various 3D human
tasks [20, 23, 27, 70, 73, 75]. Previous attempts integrate
point cloud representation with 2D neural rendering [1, 42]

or NeRF-like volume rendering [52, 64]. Still, such a hy-
brid architecture does not exploit rendering capability of
point cloud and takes a long time to optimize on different
scenes. Then differentiable point-based [62] and sphere-
based [15] rendering have been developed, which demon-
strates promising rendering qualities, especially attaching
them to a conventional network pipeline [2, 35]. In addi-
tion, isotropic points can be substituted by a more reason-
able Gaussian point modeling [12, 26] to realize a rapid dif-
ferentiable rendering framework with a splatting technique.
This advanced representation has showcased prominent per-
formance in concurrent 3D human work [10, 18, 22, 50, 65].
However, a per-scene or per-subject optimization strategy
limits its real-world application. In this paper, we go further
to generalize 3D Gaussians across diverse subjects while
maintaining its fast and high-quality rendering properties.

3. Preliminary
Since the proposed GPS-Gaussian harnesses the power of
3D-GS [12], we give a brief introduction in this section.

3D-GS models a static 3D scene explicitly with point
primitives, each of which is parameterized as a scaled Gaus-
sian with 3D covariance matrix Σ and mean µ

G(X ) = e−
1
2 (X−µ)TΣ−1(X−µ) (1)

In order to be effectively optimized by gradient descent, the
covariance matrix Σ can be decomposed into a scaling ma-
trix S and a rotation matrix R as

Σ = RSSTRT (2)

Following [78], the projection of Gaussians from 3D space
to a 2D image plane is implemented by a view transforma-
tion W and the Jacobian of the affine approximation of the
projective transformation J. The covariance matrix Σ′ in
2D space can be computed as

Σ′ = JWΣWTJT (3)

followed by a point-based alpha-blend rendering which
bears similarities to that used in NeRF [32], formulated as

Ccolor =
∑
i∈N

ciαi

i−1∏
j=1

(1− αi) (4)

where ci is the color of each point, and density αi is rea-
soned by the multiplication of a 2D Gaussian with covari-
ance Σ′ and a learned per-point opacity [66]. The color is
defined by spherical harmonics (SH) coefficients in [12].

To summarize, the original 3D Gaussians methodol-
ogy characterizes each Gaussian point by the following at-
tributes: (1) a 3D position of each point X ∈ R3, (2) a color
defined by SH c ∈ Rk (where k is the freedom of SH basis),
(3) a rotation parameterized by a quaternion r ∈ R4, (4) a
scaling factor s ∈ R3

+, and (5) an opacity α ∈ [0, 1].
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Figure 2. Overview of GPS-Gaussian. Given RGB images of a human-centered scene with sparse camera views and a target novel
viewpoint, we select the adjacent two views on which to formulate our Gaussian representation. We extract the image features followed
by conducting an iterative depth estimation. For each source view, the depth map and the RGB image serve as a 3D position map and a
color map, respectively, to formulate the Gaussian representation while the other parameters of 3D Gaussians are predicted in a pixel-wise
manner. The Gaussian parameter maps defined on 2D image planes of both views are further unprojected to 3D space and aggregated for
novel view rendering. The fully differentiable framework enables a joint training mechanism for all networks.

4. Method

The overview of our method is illustrated in Fig. 2. Given
the RGB images of a human-centered scene with sparse
camera views, our method aims to generate high-quality
free-viewpoint renderings of the performer in real-time.
Once given a target novel viewpoint, we select the two
neighboring views and extract the image features using a
shared image encoder. Following this, a binocular depth es-
timator takes the extracted features as input to predict the
depth maps for both source views (Sec. 4.1). The depth val-
ues and the RGB values in foreground regions of the source
view determine the 3D position and color of each Gaus-
sian point, respectively, while the other parameters of 3D
Gaussians are predicted in a pixel-wise manner (Sec. 4.2).
Combined with the depth map and source RGB image, these
parameter maps formulate the Gaussian representation in
2D image planes and are further unprojected to 3D space.
The unprojected Gaussians from both views are aggregated
and rendered to the target viewpoint in a differentiable way,
which allows for end-to-end training (Sec. 4.3).

4.1. View Selection and Depth Estimation

View Selection. Unlike the original 3D Gaussians that opti-
mize the characteristics of each Gaussian point on all source
views, we synthesize the desired novel view with two adja-

cent source views. Given N input images {In}Nn=1, with
their camera position {Cn}Nn=1, source views can be repre-
sented by Vn = Cn−O, where O is the center of the scene.
Similarly, the target novel view rendering can be defined as
Itar with camera position Ctar and view Vtar = Ctar−O.
By conducting a dot product of all input views vectors and
the novel view vector, the nearest two views (vl, vr) can be
selected as the ‘working set’ of binocular stereo, where l
and r stand for ‘left’ and ‘right’ view, respectively.

The rectified source images Il, Ir ∈ [0, 1]H×W×3 are
fed to a shared image encoder Eimg with several residual
blocks and downsampling layers to extract dense feature
maps fs ∈ RH/2s×W/2s×Ds where Ds is the dimension
at the s-th feature scale

⟨{fsl }Ss=1, {fsr }Ss=1⟩ = Eimg(Il, Ir) (5)

where we set S = 3 in our experiments.
Depth Estimation. The depth map is the key component of
our framework bridging the 2D image planes and 3D Gaus-
sian representation. Note that, depth estimation in binocular
stereo is equivalent to disparity estimation. For each pixel
(u, v) in one view, disparity estimation ϕdisp aims to find its
corresponding coordinate (u+ϕdisp(u), v) in another view,
considering the displacement of each pixel is constrained to
a horizontal line in rectified stereo. Since the predicted dis-
parity maps can be easily converted to depth maps given
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camera parameters, we do not distinguish them in the fol-
lowing sections. In theory, any alternative depth estimation
methods can be adapted to our framework. We implement
this module in an iterative manner inspired by [21] mainly
because it avoids using prohibitively slow 3D convolutions
to filter the cost volume.

Given the feature maps fSl , f
S
r ∈ RH/2S×W/2S×DS , we

compute a 3D correlation volume C ∈ RH/2S×W/2S×W/2S

using a matrix multiplication

C(fSl , f
S
r ), Cijk =

∑
h

(fSl )ijh · (fSr )ikh (6)

Then, an iterative update mechanism predicts a sequence of
depth estimations {dt

l}Tt=1 and {dt
r}Tt=1 by looking up in

volume C, where T is the update iterations. For more de-
tails about the update operators, please refer to [53]. The
outputs of final iterations (dT

l , dT
r ) are upsampled to full

image resolution via a convex upsampling. The depth esti-
mation module Φdepth can be formulated as

⟨Dl,Dr⟩ = Φdepth(f
S
l , f

S
r ,Kl,Kr) (7)

where Kl and Kr are the camera parameters, Dl,Dr ∈
RH×W×1 are the depth estimations. The classic binocu-
lar stereo methods estimate the depth for ‘reference views’
only, while we pursue depth maps of both inputs to formu-
late the Gaussian representation, which makes our imple-
mentation highly symmetrical. By leveraging this nature,
we realize a compact and highly parallelized module that
results in a decent efficiency increase. Detailed designs of
this module can be seen in our supplementary material.

4.2. Pixel-wise Gaussian Parameters Prediction

Each Gaussian point in 3D space is characterized by at-
tributes G = {X , c, r, s, α}, which represent 3D position,
color, rotation, scaling and opacity, respectively. In this
section, we introduce a pixel-wise manner to formulate 3D
Gaussians in 2D image planes. Specifically, the proposed
Gaussian maps G are defined as

G(x) = {Mp(x),Mc(x),Mr(x),Ms(x),Mα(x)} (8)

where x is the coordinate of a foreground pixel in an im-
age plane, Mp,Mc,Mr,Ms,Mα represents Gaussian
parameter maps of position, color, rotation, scaling and
opacity, respectively. Given the predicted depth map D, a
pixel located at x can be immediately unprojected from im-
age planes to 3D space using projection matrix P ∈ R3×4

structure with camera parameters K

Mp(x) = Π−1
P (x,D(x)) (9)

Thus the learnable unprojection in Eq. 9 bridges 2D fea-
ture space and 3D Gaussian representation. Considering our

human-centered scenario is predominantly characterized by
diffuse reflection, instead of predicting the SH coefficients,
we directly use the source RGB image as the color map

Mc(x) = I(x) (10)

We argue that the remaining three Gaussian parameters are
generally related to (1) pixel level local features, (2) the
global context of human bodies, and (3) detailed spatial
structures. Image features {fs}Ss=1 from encoder Eimg have
already derived strong cues of (1) and (2). Hence, we con-
struct an additional encoder Edepth, which takes the depth
map D as input, to complement the geometric awareness for
each pixel. The image features and the spatial features are
fused by a U-Net like decoder Dparm to regress pixel-wise
Gaussian features in full image resolution

Γ = Dparm(Eimg(I)⊕ Edepth(D)) (11)

where Γ ∈ RH×W×DG is Gaussian features, ⊕ stands for
concatenations at all feature levels. The prediction heads,
each composed of 2 convolution layers, are adapted to
Gaussian features for specific Gaussian parameter map re-
gression. Before being used to formulate Gaussian repre-
sentations, the rotation map should be normalized since it
represents a quaternion

Mr(x) = Norm(hr(Γ(x))) (12)

where hr is the rotation head. The scaling map and the
opacity map need activations to satisfy their range

Ms(x) = Softplus(hs(Γ(x)))

Mα(x) = Sigmoid(hα(Γ(x)))
(13)

where hs and hα represent the scaling head and opacity
head, respectively. The detailed network architecture in this
section is provided in our supplementary material.

4.3. Joint Training with Differentiable Rendering

The pixel-wise Gaussian parameter maps defined on both
source views are then lifted to 3D space and aggregated to
render photo-realistic novel view images using the Gaussian
Splatting technique in Sec. 3.
Joint Training Mechanism. The fully differentiable ren-
dering framework simultaneously enables joint training
from two perspectives: (1) The depth estimations of both
source views. (2) The depth estimation module and the
Gaussian parameter prediction module. As for the former,
the independent training of depth estimators on two source
views makes the 3D representation inconsistent due to the
mismatch of the source views. As for the latter, the classic
stereo-matching based depth estimation is fundamentally a
2D task that aims at densely finding the correspondence be-
tween pixels from two images. The differentiable rendering

19684



Table 1. Quantitative comparison on THuman2.0 [69], Twindom [55] and our collected real-world data. All methods are evaluated on
an RTX 3090 GPU to report the speed of synthesizing one novel view with two 1024× 1024 source images. Our method and FloRen [47]
use TensorRT for fast inference. † 3D-GS [12] requires per-subject optimization, while the other methods perform feed-forward inferences.

Method
THuman2.0 [69] Twindom [55] Real-world Data

FPS
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3D-GS [12]† 24.18 0.821 0.144 22.77 0.785 0.153 22.97 0.839 0.125 /
FloRen [47] 23.26 0.812 0.184 22.96 0.838 0.165 22.80 0.872 0.136 15
IBRNet [57] 23.38 0.836 0.212 22.92 0.803 0.238 22.63 0.852 0.177 0.25
ENeRF [19] 24.10 0.869 0.126 23.64 0.847 0.134 23.26 0.893 0.118 5
Ours 25.57 0.898 0.112 24.79 0.880 0.125 24.64 0.917 0.088 25

integrates auxiliary 3D awareness. On the other hand, op-
timal depth estimation contributes to enhanced precision in
determining the 3D Gaussian parameters.
Loss Functions. We use L1 loss and SSIM loss [59], de-
noted as Lmae and Lssim respectively, to measure the dif-
ference between the rendered and ground truth image

Lrender = βLmae + γLssim (14)

where we set β = 0.8 and γ = 0.2 in our experiments.
Similar to [21], we supervise on the L1 distance between the
predicted and ground truth depth over the full sequence of
predictions {dt}Tt=1 with exponentially increasing weights.
Given ground truth depth dgt, the loss is defined as

Ldisp =

T∑
t=1

µT−t∥dgt − dt∥1 (15)

where we set µ = 0.9 in our experiments. Our final loss
function is L = Lrender + Ldisp.

5. Experiments
5.1. Implementation Details

Our GPS-Gaussian is trained on a single RTX3090 graph-
ics card using AdamW [25] optimizer with an initial learn-
ing rate of 2e−4. Since the unstable depth estimation in the
very first training steps can have a strong impact on Gaus-
sian parameter regression, we pre-train the depth estimation
module for 40k iterations. Then we jointly train two mod-
ules for 100k iterations with a batch size of 2 and the overall
training process takes around 15 hours.

5.2. Datasets and Metrics

To learn human priors from a large amount of data, we col-
lect 1700 and 526 human scans from Twindom [55] and
THuman2.0 [69], respectively. We randomly select 200
and 100 scans as validation data from Twindom and THu-
man2.0, respectively. As shown in Fig. 2, we uniformly
position 8 cameras in a cycle, thus the angle between two
neighboring cameras is about 45◦. We render synthetic hu-
man scans to these camera positions as source view images

while randomly choosing 3 viewpoints to render novel view
images, which are positioned on the intersection arc be-
tween each two adjacent input views. To test the robustness
in real-world scenarios, we capture real data of 4 charac-
ters in the same 8-camera setup and prepare 8 additional
camera views for evaluation. Similar to ENeRF [19], we
evaluate PSNR, SSIM [59] and LPIPS [71] as metrics for
the rendering results in foreground regions determined by
the bounding box of humans.

5.3. Comparisons with State-of-the-art Methods

Baselines. Considering that our goal is instant novel view
synthesis, we compare our GPS-Gaussian against three gen-
eralizable methods including implicit method ENeRF [19],
image-based rendering method FloRen [47] and hybrid
method IBRNet [57]. All baseline methods are trained from
scratch on the same dataset as ours and take two source
views as input for synthesizing the targeted novel view.
Note that, our method and FloRen use ground truth depths
for supervision. We further prepare the comparison with the
original 3D-GS [12] which is optimized on all 8 input views
using the default strategies in the released code.
Comparison Results. The comparisons on both synthetic
and real-world data are listed in Table 1. Our GPS-Gaussian
outperforms all methods on all metrics and achieves a much
faster rendering speed. Qualitative rendering results in
Fig. 3 show that our method can synthesize fine-grained
novel view images with more detailed appearances. Once
occlusion happens, some target regions under the novel
view are invisible in one or both of the source views. The
resulting depth ambiguity between input views causes EN-
eRF and IBRNet to render unreasonable results since these
methods are confused when conducting the feature aggre-
gation. The unreliable geometric proxy in these cases also
makes FloRen produce blurred outputs even if it employs
the depth and flow refining networks. In our method, the
human priors learned from massive human images help to
alleviate the adverse effects caused by occlusion. In addi-
tion, 3D-GS takes several minutes for optimization and pro-
duces noisy rendering results of novel views in such a sparse
camera setup. Also, most of the compared methods have
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Figure 3. Qualitative comparison on THuman2.0 [69], Twindom [55] and our collected real-world data. Our method produces more
detailed human appearances and can recover more reasonable geometry.

difficulty in handling thin structures such as hockey sticks
and robes in Fig. 3. We further prepare the sensitivity analy-
sis of camera view sparsity in Table 2. For 6-camera results,
we use the same models trained under 8-camera setup with-
out any fine-tuning. Among baselines, our method degrades
reasonably and holds robustness when decreasing cameras.
We ignore 3D-GS here because it takes several minutes for
per-subject optimization and produces noisy rendering re-
sults, as shown in Fig. 3, even in 8-camera setup.

5.4. Ablation Studies

We evaluate the effectiveness of our designs in more detail
through ablation experiments. Other than rendering met-
rics, we follow [21] to evaluate depth (identical to dispar-

Table 2. Sensibility to camera sparsity. We use the model trained
under 8-camera setup to perform inference on a 6-camera setup.

Model
8-camera setup 6-camera setup

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

FloRen [47] 23.26 0.812 0.184 18.72 0.770 0.267
IBRNet [57] 23.38 0.836 0.212 21.08 0.790 0.263
ENeRF [19] 24.10 0.869 0.126 21.78 0.831 0.181
Ours 25.57 0.898 0.112 23.03 0.884 0.168

ity) estimation with the end-point-error (EPE) and the ratio
of pixel error in 1 pix level. All ablations are trained and
tested on the aforementioned synthetic data.
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Table 3. Quantitative ablation study on synthetic data. We re-
port PSNR, SSIM and LPIPS metrics for evaluating the rendering
quality, while the end-point-error (EPE) and the ratio of pixel error
in 1 pix level for measuring depth accuracy.

Model
Rendering Depth

PSNR↑ SSIM↑ LPIPS↓ EPE ↓ 1 pix ↑

Full model 25.05 0.886 0.121 1.494 65.94
w/o Joint Train. 23.97 0.862 0.115 1.587 63.71
w/o Depth Enc. 23.84 0.858 0.204 1.496 65.87

Ground TruthFull Modelw/o Depth Enc.w/o Joint Train. 

Figure 4. Qualitative ablation study on synthetic data. We show
the effectiveness of the joint training and the depth encoder in the
full pipeline. The proposed designs make the rendering results
more visually appealing with fewer artifacts and less blurry.

Effects of Joint Training Mechanism. We design a model
without the differentiable Gaussian rendering by substitut-
ing it with point cloud rendering at a fixed radius. Thus the
model degenerates into a depth estimation network and an
undifferentiable depth warping based rendering. The ren-
dering quality is merely based on the accuracy of depth es-
timation while the rendering loss could not conversely pro-
mote the depth estimator. We train the ablated model for
the same iterations as the full model for fair comparison.
The rendering results in Fig. 4 witness obvious noise due to
the depth ambiguity in the margin area of the source views
where the depth value changes drastically. The rendering
noise causes a degradation in PSNR and SSIM as mani-
fested in Table 3, while it cannot be reflected in the per-
ception metric LPIPS. The joint regression with Gaussian

parameters precisely recognizes these outliers and com-
pensates for these artifacts by predicting an extremely low
opacity for the Gaussian points centered at these positions.
Please refer to the supplementary material for the visualiza-
tion of opacity maps. Meanwhile, the independent training
of the depth estimation module interrupts the interaction of
two source views, resulting in an inconsistent geometry. As
illustrated in Table 3, joint training makes a more robust
depth estimator with a 5% improvement in EPE.
Effects of Depth Encoder. We claim that merely using im-
age features is insufficient for predicting Gaussian param-
eters. Herein, we ablate the depth encoder from our full
model, thus the Gaussian parameter decoder only takes as
input the image features to predict Mr,Ms,Mα simul-
taneously. As shown in Fig. 4, the ablated model fails to
recover the details of human appearance, leading to blurred
rendering results. The scale of Gaussian points is impacted
by comprehensive factors including depth, texture and sur-
face roughness. The absence of spatial awareness degrades
the regression of scaling map Ms, which deteriorates the
visual perception reflected on LPIPS, even with a compara-
ble depth estimation accuracy, as shown in Table 3. Please
see supplementary material for the visualization of scaling
maps and the shape of the predicted Gaussian points.

6. Discussion

Conclusion. By directly regressing pixel-wise Gaussian
parameter maps defined on source view image planes, our
GPS-Gaussian takes a significant step towards a real-time
photo-realistic human novel view synthesis system under
sparse-view camera settings. The proposed pipeline is fully
differentiable and carefully designed. We demonstrate that
our method notably improves both quantitative and qualita-
tive results compared with baseline methods and achieves a
much faster rendering speed on a single RTX 3090 GPU.
Limitations. Although the proposed GPS-Gaussian synthe-
sizes high-quality images, some elements still impact the
effectiveness of our method. For example, accurate fore-
ground matting is necessary as a preprocessing step since
we mainly focus on synthesizing the novel views of human
performers. Therefore, it is not straightforward to general-
ize our method to more general tasks. Besides, the ground
truth depths are required for supervision, increasing the dif-
ficulty of training data acquisition. We believe that col-
lecting massive high-quality synthetic data covering variant
scenarios is conducive to alleviating these problems.
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