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Abstract

Segmentation-based scene text detection algorithms that
are accurate to the pixel level can satisfy the detection of
arbitrary shape scene text and have received widespread
attention. On the one hand, due to the complexity and di-
versity of the scene text, the convolution with a fixed kernel
size has some limitations in extracting the visual features
of the scene text. On the other hand, most of the existing
segmentation-based algorithms only segment the center of
the text, losing information such as the edges and direc-
tions of the text, with limited detection accuracy. There
are also some improved algorithms that use iterative cor-
rections or introduce other multiple information to improve
text detection accuracy but at the expense of efficiency. To
address these issues, this paper proposes a simple and effec-
tive scene text detection method, the Kernel Adaptive Con-
volution, which is designed with a Kernel Adaptive Con-
volution Module for scene text detection via predicting the
distance map. Specifically, first, we design an extensible
kernel adaptive convolution module (KACM) to extract vi-
sual features from multiple convolutions with different ker-
nel sizes in an adaptive manner. Secondly, our method pre-
dicts the text distance map under the supervision of a pri-
ori information (including direction map, and foreground
segmentation map) and completes the text detection from
the predicted distance map. Experiments on four publicly
available datasets prove the effectiveness of our algorithm,
in which the accuracy and efficiency of both the Total-Text
and TD500 outperform the state-of-the-art algorithm. The
algorithm efficiency is improved while the accuracy is com-
petitive on ArT and CTW1500.

*Corresponding author: Libo Zhang (libo@iscas.ac.cn)

Figure 1. Performance comparison of several recent scene text de-
tection methods on the Total-Text dataset. Our method achieves a
new ideal tradeoff between effectiveness and efficiency compared
to current state-of-the-art methods.

1. Introduction

Scene text detection, as an important research of com-
puter vision, has a wide range of applications in fields such
as scene parsing, blind assistance, automatic driving, and
product recommendation [14, 25, 27, 44]. Therefore, it has
received extensive attention for a long time. With the devel-
opment of artificial intelligence technology, some excellent
scene text algorithms [19, 20, 37, 41, 42] have achieved im-
pressive progress. However, the complexity and diversity of
the scene text [45], such as the variability of the size, the un-
certainty of the direction, the arbitrariness of the shape, the
randomness of the fonts, and the complexity of the back-
ground, make the scene text detection still challenging.

Segmentation-based algorithms are able to achieve pixel-
level accuracy and are suitable for arbitrary shape text de-
tection, and thus have received increasing attention [15, 19,
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Figure 2. Comparison of the inference detection process of some scene text detection algorithms that are most relevant to ours. Our kernel
adaptive convolution via distance map detects scene text and has a more concise structure.

20]. To separate adjacent text, early segmentation-based al-
gorithms usually shrink the text region to obtain the text
center, which is segmented. The text center region obtained
by segmentation in the inference stage is expanded during
post-processing to obtain the complete text region. The ad-
vantage is that arbitrary shape text can be detected, but the
disadvantage is that only the central region of the text is
used in the detection, while other effective information in-
cluding text edge information is lost. In order to alleviate
this problem, some algorithms [7, 32, 33] that learn mul-
tiple text information are gradually proposed. These algo-
rithms usually incorporate multiple ideas such as classifica-
tion of text, regression, etc., to complete text detection, as
shown in Fig.2(a). To enhance the suppression of noise in
complex backgrounds, some algorithms [16, 29, 43] have
been proposed to construct different variants of the same
type of information and correct the segmentation map or
text border points by iterative or progressive, as shown in
Fig.2(b).To further improve the scene text detection accu-
racy, two-stage scene text detection algorithms have been
gradually proposed [6, 37, 41, 42, 46]. The first stage of
such algorithms generates rough boundary proposal points,
and in the second stage, these boundary proposal points are
optimized by iteration or decoding, as shown in Fig.2(c).
This type of two-stage algorithm achieves the current rela-
tively superior detection results, but at the same time sacri-
fices the efficiency of the algorithm due to the increase in
model complexity. The requirements for performance and
real-time cannot be met simultaneously. In conclusion, the
main challenges of current scene text detection algorithms
remain in the areas of performance and efficiency.

In this paper, we propose a simple and effective scene
text detection algorithm from two aspects. On the one hand,
a standard Convolution Neural Net (CNN) uses a fixed-size
convolution kernel, and the receptive fields of each convo-
lution layer are fixed [1]. The size of the text in the scene
is variable, and the receptive field should be able to adapt
itself according to the specifics of the text. Based on this

idea, we design a plug-and-play kernel adaptive convolu-
tion module from the perspective of optimizing the con-
volution kernel and enhancing the adaptive ability of the
convolution receptive field. On the other hand, the existing
segmentation-based algorithms only segment the central re-
gion of text without edge information, and the algorithm
accuracy is limited. Or it is necessary to predict multiple
other information, such as boundary regression, foreground
segmentation, etc., at the expense of efficiency. Inspired
by [41–43], this paper propose a method for text detection
based on text distance map prediction. As shown in Fig.1
and 2, the KAC algorithm proposed in this paper has a more
concise structure and also achieves better performance than
SOTA. The main contributions of this paper are as follows:
• We propose a simple and effective scene text detection

network, called Kernel Adaptive Convolutional (KAC),
which has a simple model structure, achieves more than
state-of-the-art performance by means of distance map
prediction, and is competitive in terms of efficiency.

• We propose an extensible Kernel Adaptive Convolution
Module (KACM) that sets up a set of convolutions with
different kernel sizes, and then adaptively provides a set
of weights corresponding to this set of convolutions for
each position in the feature space, thus enhancing the fea-
ture representation at each position.

• Experiments on four publicly available datasets validate
the effectiveness of our method. Specifically, our algo-
rithm outperforms the state-of-the-art algorithms in terms
of accuracy on Total-Text and TD500, with efficiency im-
provements of 127.3% and 115.0%, respectively. On ArT
and CTW1500, the efficiency is improved by 142.1% and
114.9%, while the detection accuracy is also competitive.

2. Related Work

2.1. Regression-Based Methods

The scene text detection methods [17, 18, 24, 48] based
on regression treat scene text detection as a general ob-
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Figure 3. The overall framework of KAC is mainly composed of a Backbone, a kernel adaptive convolution module (KACM), and a
detection head. Backbone and kernel adaptive convolution module extract visual features F̃ from image I ∈ RH×W×3. The detection
head predicts the distance map and segmentation map from the visual features and generates the text outline to complete the text detection.
In the detection head, the red dashed exists only during the training phase, indicating the supervision of prior information.

ject detection task and perform regression on text region
bounding boxes. For example, TextBoxes [17] sets anchor
boxes on visual features, returning anchor boxes that sur-
round the text. EAST [48] directly predicts the rotation
angle of the text box. To improve the accuracy, there are
also some improved methods. For example, MOST[10]
designs a Position-Aware Non-Maximum Suppression(PA-
NMS). HAM [11] proposed a regression method to hide an-
chor frames. This kind of method is usually only applicable
to horizontal, vertical, or a certain angle of the scene text.

2.2. Connected Component-based Methods

In order to be able to detect curved text, Connected
Component-based Methods [2, 28, 40] split the text into a
series of components, and then complete the detection task
by linking the text components. For example, CTPN [28]
uses BLSTM to generate fine-grained text proposal blocks,
CRAFT [2] divides the text into characters and creates af-
filiation attributes between the characters, and DDRG [40]
divides the text into different text components, constructs
geometric attributes such as size, angle, etc. for each text
component, and then groups the text components based on
the set attributes. However, such algorithms are challenging
for arbitrary shape text detection.

2.3. Segmentation-based Methods

Segmentation-based methods [16, 19, 20, 29, 33] can be
accurate to the pixel level, so they have a wide range of
applications in arbitrary shape text detection. For exam-
ple, DB [19] and DB++ [20] directly segment the central
region of the text. LSAE [29] and PAN [30] segment the
center region and the foreground region of the text and de-
termine the text region by combining the results of the cen-

ter and foreground segmentation in post-processing. Lit-
erature [43] constructs multiple probabilistic maps for text
regions, trains the probabilistic maps in an iterative manner,
and then recovers the regions of text from the probabilis-
tic maps. Segmentation-based scene text detection methods
are able to detect arbitrary shape text, but their accuracy has
certain limitations.

2.4. Boundary Points-Based Methods

Boundary points-based methods [2, 27, 31, 46] perform text
detection by predicting or generating key points on the text
boundary. For example, CTD [39] uses RNN decoding to
predict 14 boundary points to depict the text region. Lit-
erature [31] uses BLSTM to adaptively predict text bound-
ary points, including the number of boundary points. BPN
[41], BPN++ [42], and DPText-DETR [37] use a two-stage
detection scheme. The first stage generates coarse bound-
ary proposal points. The second stage corrects the boundary
proposal points of the first stage by iterative boundary defor-
mation or transformer decoder. These two-stage algorithms
improve detection accuracy but do not offer significant effi-
ciency advantages due to the use of iterative corrections or
complex decoding and encoding methods.

3. Methodology

As shown in Fig.3, the KAC proposed in this paper mainly
consists of a Backbone, a plug-and-play kernel adaptive
convolution module KACM, and a detection head. Given
an input image I ∈ RH×W×3, the backbone extracts the
image visual feature Fb. Then, this visual feature is fed to
the kernel adaptive convolution module. Finally, the detec-
tion head, supervised by the a priori information, predicts
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Figure 4. The structure of the kernel adaptive convolution layer,
which consists of kernel adaptive convolutional weights (KACW)
and a set of convolutions with unequal kernel sizes (SCUKS).

the text distance map and segmentation map from the fea-
tures provided by the kernel adaptive convolution module
to complete the text detection. In the training phase, the de-
tection head sets up supervised learning of the text distance
map, segmentation map, and direction map. Considering
the detection efficiency, the prediction of the direction map
is removed in the forward inference stage. Thresholding the
predicted distance map, the text center region is extracted.
Then, the Vatti clipping algorithm [1] is used to expand the
center region and output the text detection results.

3.1. Backbone

As shown in Fig.3, in order to make the extracted features
as adaptable as possible to scene text instances of vary-
ing scales, and to combine high-level semantic information
with low-level context information, we use pyramid net-
work and ResNet structure, which are similar or identical
to algorithms [41–43], as the backbone. The visual fea-
tures extracted by the backbone network from the image
I ∈ RH×W×3 are formulaically expressed as

Fb = R(I) ∈ RH×W×C , (1)

where H and W represent the height and width of the im-
age, and C represents the feature channels. R represents the
backbone network structure shown in Fig.3.

3.2. Kernel Adaptive Convolution Module

Standard convolution uses a fixed-size convolution kernel,
and the receptive field is fixed and cannot be adjusted adap-
tively to accommodate the variable text scales in complex
scenes. To enable the convolution to adjust the receptive
field adaptively, we designed the kernel adaptive convolu-

tion module (KACM). As shown in Fig.3, the kernel adap-
tive convolution module consists of kernel adaptive convo-
lution layer (KACL) and residual linkage.

KPN(Kernel Prediction Network)[23] predicts the same
filter for different channels at each position of the spatial
resolution. FAC(Filter Adaptive Convolutional)[47] pre-
dicts different filters for different channels at each position
of the spatial resolution. KPN [23], and FAC [47] generate
different filters for different positions of the spatial resolu-
tion, which changes the way the same filter is shared by all
the locations and enhances flexibility. Dynamic Convolu-
tion [3] uses the same weights at all spatial positions and the
operation objects are the kernel of the standard convolution.
Inspired by KPN [23], FAC [47], Dynamic Convolution [3],
SENet [12], CondConv [34], we propose the Kernel Adap-
tive Convolution Layer (KACL) as shown in Fig.4.

To further enhance the flexibility of the convolution
kernels, the Kernel Adaptive Convolution Layer provides
weights for a set of convolution kernels of different scales at
each position of the spatial resolution. Similar to Dynamic
Convolution, Kernel Adaptive Convolution has n convolu-
tion kernels. The Kernel Adaptive Convolution Layer con-
sists mainly of Kernel Adaptive Convolution Weights and a
set of convolutions with unequal kernel sizes.
Kernel Adaptive Convolution Weights. In this paper, we
set up a branch consisting of a 5×5 convolution, a Relu ac-
tivation function, a 3×3 convolution, a sigmoid activation
function, and a normalization layer to generate its adaptive
weights from the input feature Fb. The purpose of the nor-
malization layer is to make the sum of the weights 1. This
process can be formulated as{

W̃ ′ = σ(Conv3(γ(Conv5(Fb))))

W̃(x,y,i) =
W ′

(x,y,i)∑n
j=1 W ′

(x,y,j)
, i ∈ [1, n],

(2)

where Conv3, Conv5 represent convolutions with kernel
size of 3×3 and 5×5. γ, σ represent activation functions
Relu and Sigmoid. n is the maximum number of con-
volution. W̃(x,y,i) and W̃ ′

(x,y,i)denote the values of W̃ ∈
RH×W×n and W̃ ′ ∈ RH×W×n on (x, y, i), respectively.
Set of Convolution with Unequal Kernel Sizes. Generate
a set of convolution kernels with sizes ranging from small
to large. The size of the i− th convolution kernel is defined
as ki × ki. The formula for ki is expressed as follows:

ki = 2× (i− 1) + 1; i ∈ [1, n], (3)

where n is the maximum number of convolutions.
Kernel Adaptive Convolution Module computing fea-
tures. The features Fb input a set of convolutions in paral-
lel, and the size of each convolution kernel is determined by
the above formula (3). Then, the output is activated by the
Relu function. Finally, the output features of each convolu-
tion are broadcast multiplied with the corresponding kernel
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adaptive convolution weight. The adaptive feature formula-
tion of the i− th convolution kernel can be expressed as

fi = γ(Convki(Fb)) ∗ W̃(:,:,i), i ∈ [1, n], (4)

where fi ∈ RH×W×C , and ∗ denotes the broadcast multi-
plication of the matrix. The adaptive feature of this set of
convolution can be expressed as

TC = Concat(f1, . . . , fn). (5)

In addition, we set residual links, and the kernel adaptive
convolution module transform feature can be formulated as

F̃ = γ(Bn(Conv1(TC))) + Fb, (6)

where F̃ ∈ RH×W×C , Bn denotes the batch normal op-
eration. The size of different text instances in the scene
varies greatly, and adaptive convolution kernels to provide
different receptive fields are necessary. Dynamic Convolu-
tion [3], SENet[12] and CondConv [34] adjust convolution
operations based on the unit of the channel or the whole
feature of an instance, while the kernel adaptive convolu-
tion module takes spatial position as the unit, making the
convolution operations at each position adaptive.

3.3. Detection Head

Unlike TextPMs [43], which split multiple probability
maps, KAC only needs to predict one distance map and one
segmentation graph when inference is performed, thus pro-
viding higher efficiency. And unlike DB [19] which seg-
mented the text center dropping the text edge information,
we predict the complete text region distance map and thus
have higher accuracy.

We used a detection head similar to BPN++ [42], as
shown in Fig.3. Inspired by [41–43], during training, dis-
tance maps, segmentation maps, and direction maps in x
and y directions are set as prior information to supervise
training. The detection head consists of a 3 × 3 convolution
with an expansion rate of 2, a relu activation function, a 3 ×
3 convolution with an expansion rate of 2, a relu activation
function, and four output modules. Two of the four output
modules are composed of convolution with kernel 3×3 and
sigmoid activation function, and the other two 3×3 convo-
lutions output direction maps in the x and y directions.

The segmentation map contains the confidence score of
whether each pixel is text or not. The distance map defined
as the distance of the internal pixels of the text from the
text edges and the distance value between pixels outside the
text region and the text boundary is 0. The distance map
contains richer information about the geometry of the text
compared to the text center segmentation map and provides
more flexibility in extracting the text center. The direction
map represents the direction of a pixel within a text region

to its nearest point on the text boundary. Inference stage,
the distance map and segmentation map only need to be
predicted. The center region of the text is intercepted from
the distance map, and the number and position of the text
are preliminarily determined. The pixel confidence score of
the segmentation map is used as auxiliary information to re-
move the fake text center region and preserve the true text
center region.

3.4. Loss Function

Four types of supervised information are set up in the train-
ing phase, where the supervision in the x, y direction can
be considered as a two-dimensional vector. Therefore, the
multi-objective loss function contains three components:
distance map, segmentation map, and direction map. We
adopted the boundary proposal loss of [41, 42]. The formu-
lae are expressed as

Loss = α1Losscls + α2Lossdis + α3Lossdir, (7)

where Losscls denotes the cross-entropy loss function
(cross-entropy loss) between the predicted segmentation
map and the segmentation map ground truth, and Lossdis
denotes the L2 loss between the predicted distance map and
the distance map ground truth. Lossdir is the L2 −Norm
distance and angular distance of the direction map. α1, α2,
α3 are equilibrium factors, similar to [41, 42], taking values
of 1,3,1 respectively.

4. Experiments

4.1. Datasets

SynthText [8] collects about 800k synthetic scene images,
and the text in the scene images is synthesized from render-
ing. The use of SynthText in the training stage can reduce
the cost of manual annotation and alleviate the problem of
insufficient training samples to some extent.
Total-Text [4] contains horizontal text, multi-directional
text, and curved text, where the training set contains 1255
images and the test set contains 300 images. The dataset
provides annotations of text instances at the word level.
MSRA-TD500(TD500) [35] contains a training set of 300
scene images and a test set of 200 images. The dataset con-
tains arbitrarily shaped Chinese and English text.
ICDAR19 ArT(ArT) [5] is a large-scale multi-lingual ar-
bitrary shape scene text dataset with a variable number of
boundary point annotations for each text. The training set
contains 5603 images and the test set contains 4563 images.
CTW1500 [21] consists of a training subset of 1000 images
and a testing set of 500 images. The dataset contains a large
number of curved texts, and each text in the training subset
is annotated with 14 edge points.
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4.2. Implementation details

In order to make a fair comparison, this paper adopts ex-
perimental strategies that are as identical or similar as pos-
sible to the SOTA algorithm [37, 41, 42]. The experiment
uses the ResNet [9] in the backbone. Experiments are im-
plemented by Pytorch 1.7.0 and Python 3.7.13. The image
resized to 640 × 640 for training, and the original image
size is maintained for forward inference. Training and in-
ference were performed on a single NVIDIA TITAN RTX
with 24G. Similar to the training strategy of M3 TextSpot-
ter [13], since KAC shares a backbone with the Boundary
Proposal Module of BPN++ [42], we download its model
from the official website of BPN++ and extract the weights
to initialize KAC. The training process is divided into two
phases: pre-train and finetune. Pretraining was performed
on SynthText for one epoch, with the learning rate fixed at
0.0005 and batch size set to 8. Finetune was performed on
two corresponding real datasets with 600 epochs (TD500 is
1200 epochs), the initial learning rate was set to 0.0005, the
learning rate decayed by 0.9 for every additional 50 epochs,
and the batch size was set to 6. The optimizer Adam is used
for training. Data preprocessing operations include random
clipping, random flipping, and random rotation according
to a Gaussian distribution with angles in the range (-30, 30),
among others.

4.3. Ablation Studies

Methods KACM P(%) R(%) F(%)

DB [19] × 91.5 79.2 84.9
DB [19]

√
92.2 80.8 86.1

KAC(Ours) × 93.31 85.91 89.76
KAC(Ours)

√
93.87 88.14 90.79

Table 1. Detection results of KACM embedding into DB and KAC
on TD500.

Kernel Adaptive Convolution Module (KACM). To vali-
date the effectiveness of KACM as a plug-and-play module,
we embed the module into DB [19] for ablation studies, as
shown in Table 1. It can be seen that embedding the Ker-
nel Adaptive Convolution Module improves the DB algo-
rithm by 0.7%, 1.2%, and 1.6% in the Precision, F-measure,
and Recall, respectively. KACM enables KAC to improve
the Precision, F-measure, and Recall by 0.56%, 1.03%, and
2.23%, respectively.
Distance Map prediction. In order to validate the effec-
tiveness of the text distance map prediction (TDMP) strat-
egy proposed in this paper, we compared the performance of
the algorithm when distance map and text region-centered
segmentation (TRCS) [16, 19, 29] were used as the train-
ing targets, and the statistical results were shown in Ta-

Methods TDMP TRCS P(%) R(%) F(%)

KAC(Ours) ×
√

93.01 84.26 88.42
KAC(Ours)

√
× 94.10 88.07 90.98

Table 2. Comparison of detection results between traditional text
regions center segmentation (TRCS) and our text distance map
prediction(TDMP) strategy on Total-Text.

ble 2. It can be seen that the distance prediction strategy
proposed in this paper outperforms the strategy with text
region-centered segmentation. Specifically, the distance
map prediction strategy instead of the text region-centered
segmentation strategy improves the Precision, F-measure,
and Recall by 1.9%, 2.56%, and 3.81%, respectively.

(a) dis thres=0.9 (b) dis thres=0.9 (c) dis thres=0.9

(d) dis thres=0.6 (e) dis thres=0.6 (f) dis thres=0.6

(g) dis thres=0.3 (h) dis thres=0.3 (i) dis thres=0.3

Figure 5. Visualization of the text center regions under different
distance thresholds. (a,d,g) CTW1500. (b,e,h) Total-Text. (c, f, i)
ICDAR19 ArT.

Method DirMap SegMap P(%) R(%) F(%)

Baseline × × 91.12 89.36 87.67
Baseline

√
× 92.45 90.21 88.09

Baseline
√ √

92.50 89.53 90.99

Table 3. Effectiveness of prior information supervision on Total-
Text. DirMap and SegMap represent the prior information on the
direction map and segmentation map, respectively.

Visualization of the Flexibility of Distance Map predic-
tion. Different distance thresholds can separate different
text center regions from the distance map. We visualized the
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obtained text center regions under different distance thresh-
olds, as shown in Fig.5. The distance threshold takes values
in the range (0, 1). The larger the threshold, the smaller
the obtained text region, and the greater the confidence that
the text region is true. And vice versa. This proves that
the strategy of extracting the text center from the predic-
tion distance map is more flexible than the traditional text
center region segmentation strategy. Moreover, the dis-
tance map contains information about the edges of the text,
pixel distribution rules, etc., compared to the center map
that predicts the shrink text regions, so it is more accurate
to predict the text center area based on the distance map.
As shown in Fig.5, the extracted text is relatively complete
when dis thres=0.3.
Effectiveness of Prior information supervision learning.
As shown in Table 3, the use of prior information for su-
pervised learning can improve the performance of the algo-
rithm. Specifically, the direction map improves Precision,
Recall, and F-measure by 1.33%, 0.85%, and 0.42%. By us-
ing the distance map and segmentation map simultaneously,
the Precision and Recall of the algorithm can be improved
by 1.38%, and 3.32%, respectively.

Number P(%) F(%) R(%) FPS

n = 3 92.67 90.54 87.49 29.5
n = 4 94.10 90.98 88.07 30.0
n = 5 93.31 90.78 88.36 30.0
n = 6 93.34 90.82 88.34 30.3

Table 4. Detection results of KACM with different Kernel num-
bers on Total-Text. n is the number of kernels.

Effectiveness of KACM with different Kernel numbers.
The performance statistics of the kernel adaptive convolu-
tion module with different numbers of kernels are shown in
Table 4. The algorithm has the highest detection accuracy
when the number of kernels is 4, and the Precision reaches
94.10%. KACM with more kernel did not bring significant
performance gains. For example, when the number of ker-
nels in KACM is 5, the Precision is 93.31%. Therefore, the
number of kernels in KACM in our experiment is fixed at 4.

4.4. Comparison with State-of-the-Art Methods

We compare our method with other algorithms on four
benchmarks, including two curved texts (CTW1500, Total-
Text) and two multi-lingual texts (TD500, ICDAR19 ).
Curved text detection. To verify the robustness of Our
method to text shapes, we conducted experiments on the
curved text Total-Text and CTW1500. On the Total-Text
and CTW1500, the binarization threshold dic thres of the
distance map is 0.325 and 0.3, respectively. As shown in
Table 5, the performance and efficiency of our algorithm

Methods P(%) R(%) F(%) FPS

TextSnake [22] 82.7 74.5 78.4 -
CRAFT [2] 87.6 79.9 83.6 -
PAN [30] 89.3 81.0 85.0 39.6
PSENET [16] 84.5 75.2 79.6 8.4
DRRG [40] 86.5 84.9 85.7 -
DB [19] 87.1 82.5 84.7 32.0
ContourNet [32] 86.9 83.9 85.4 3.8
TextFuseNet [36] 89.0 85.3 87.1 3.3
FCENet [49] 85.1 82.7 83.9 -
PCR [6] 88.5 82.0 85.2 -
TextBPN [41] 90.67 85.19 87.85 10.7
I3CL [7] 89.8 84.2 86.9 -
Bezier [27] 90.7 85.7 88.1 12.9
TextPMs [43] 89.95 87.67 88.79 7.0
TCM-DBNet [38] - - 85.9 -
DB++ [20] 88.9 83.2 86.0 28.0
CT-Net [26] 90.8 85.0 87.8 10.1
TextBPN++ [42] 92.44 87.93 90.13 13.2
DPText-DETR [37] 91.8 86.4 89.0 17.3
KAC-ResNet18(Ours) 90.24 83.43 86.70 56.6
KAC-ResNet50(Ours) 94.10 88.07 90.98 25.0

Table 5. Detection results on Total-Text. Bold and underline indi-
cate optimal and suboptimal, respectively.

on the Total-Text outperform current state-of-the-art meth-
ods. Specifically, the proposed algorithm exceeds the cur-
rent state-of-the-art TextBPN++ [42] by 1.66%, 0.85%, and
0.14% in Precision, F-measure, and Recall, respectively.
FPS increased from 13.2 to 25.0, increasing efficiency by
89.4% and significantly improving detection efficiency. As
can be seen from Table 6, the performance of DPText-
DETR [37] on CTW1500 is better than our algorithm, but
as can be seen from Table 5, its efficiency is lower than
ours. It can be concluded that our method can achieve bet-
ter efficiency when the Scene text detection performance is
comparable on CTW1500 dataset.
Multi-language text detection. In order to verify the ef-
fectiveness of our method for multi-lingual scene text, we
conducted experiments on the ICDAR19 ArT and TD500.
On the ICDAR19 ArT and TD500, the binarization thresh-
old dic thres of the distance map is 0.475 and 0.3, respec-
tively. As can be seen from Table 7, efficiency is improved
by 142.1% while remaining performance competitive on the
ICDAR19 ArT. As shown in Table 8, our method achieves
performance and efficiency over current state-of-the-art al-
gorithms on the TD500 dataset. Specifically, compared to
the current optimal TextBPN++ [42] algorithm our algo-
rithm improves Precision, F-measure, and Recall by 0.18%,
0.69%, and 1.37%, while improving efficiency by 18.3%.

Experiments show that compared to other methods
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Methods P(%) R(%) F(%) FPS

TextSnake [22] 67.9 85.3 75.6 -
LSAE [29] 82.7 77.8 80.1 -
CRAFT [2] 86.0 81.1 83.5 -
PAN [30] 86.4 81.2 83.7 39.8
PSENET [16] 82.1 77.8 79.9 8.4
DRRG [40] 85.9 83.0 84.5 -
DB [19] 80.2 83.4 86.9 22.0
ContourNet [32] 83.7 84.1 83.9 4.5
TextFuseNet [36] 87.8 85.4 86.6 3.7
FCENet [49] 87.6 83.4 85.5 -
PCR [6] 87.2 82.3 84.7 11.8
TextBPN [41] 86.45 83.60 85.00 12.2
I3CL [7] 88.4 84.6 86.5 7.6
Bezier [27] 88.1 82.4 85.2 12.9
TextPMs [43] 87.75 83.83 85.75 9.1
TCM-DBNet [38] - - 84.9 -
DB++ [20] 87.9 82.8 85.3 26.0
CT-Net [26] 88.5 83.8 86.1 11.2
TextBPN++ [42] 88.34 84.71 86.49 16.5
DPText-DETR [37] 91.7 86.2 88.8 -
KAC-ResNet18(Ours) 87.52 80.90 84.08 82.9
KAC-ResNet50(Ours) 88.60 85.43 86.84 19.2

Table 6. Detection results on CTW1500. Bold and underline indi-
cate optimal and suboptimal, respectively.

Methods P(%) R(%) F(%) FPS*

CRAFT* [2] 77.2 68.9 72.9 -
TextFuseNet* [36] 82.6 69.4 75.4 -
PCR [6] 84.0 66.1 74.0 -
I3CL [7] 82.7 71.3 76.6 -
TextBPN++ [42] 84.48 77.05 80.59 1.9
DPText-DETR [37] 83.0 73.7 78.1 -
KAC-ReNet50(Ours) 83.0 77.3 80.0 4.6

Table 7. Detection results on ICDAR19 ArT. ’*’ represents the
data reproduced in our experimental environment.

on datasets CTW1500 and ICDAR19 ArT, our method
achieves comparable performance and higher efficiency. On
Total-Text and TD500, our approach outperforms the state-
of-the-art method in both performance and efficiency.

4.5. Qualitative and Efficiency analysis

To further qualitatively analyze the effectiveness of our
method, we show some of the detection results in Fig. 6. As
shown in Fig. 6, our algorithm can detect arbitrary shape
scene text. Our Kernel Adaptive Convolution can handle
situations where scene text is adjacent, text regions partially
overlap, and the large text contains the small text.

Methods P(%) R(%) F(%) FPS

TextSnake [22] 83.2 73.9 78.3 1.1
LSAE [29] 84.2 81.7 82.9 -
CRAFT [2] 88.2 78.2 82.9 8.6
PAN [30] 84.4 83.8 84.1 30.2
DRRG [40] 88.1 82.3 85.1 -
DB [19] 91.5 79.2 84.9 32.0
PCR [6] 90.8 83.5 87.0 -
TextBPN [41] 86.62 84.54 85.57 12.3
TextPMs [43] 91.01 86.94 88.93 10.6
TCM-DBNet [38] - - 88.8 10.0
DB++ [20] 91.5 83.3 87.2 29.0
CT-Net [26] 90.8 84.4 87.5 11.6
TextBPN++ [42] 93.69 86.77 90.10 15.3
KAC-ResNet18(Ours) 88.39 82.47 85.33 90.8
KAC-ResNet50(Ours) 93.87 88.14 90.79 18.1

Table 8. Detection results on TD500. Bold indicates that the cor-
responding value is optimal.

(a) Total-Text (b) CTW1500 (c) ArT (d) TD500

Figure 6. Visual results of our algorithm on four datasets. The
green irregular polygon is the detected text contours.

5. Conclusion
In this paper, we propose a simple yet effective scene text
detection network, Kernel Adaptive Convolution, which is
embedded with a kernel adaptive convolution module for
text detection by predicting the text region distance map.
The kernel adaptive convolution module makes the repre-
sentation of extracted visual features more effective, and
the prediction of distance maps makes text center predic-
tion more accurate. Experiments on benchmark datasets
show that the algorithm in this paper achieves better per-
formance than the state-of-the-art algorithm. In the future,
we will further explore how to build a simple and efficient
end-to-end scene text spotting model to meet the accuracy
and real-time requirements of real-world applications.
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