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Abstract

Low-shot image classification, where training images
are limited or inaccessible, has benefited from recent
progress on pre-trained vision-language (VL) models with
strong generalizability, e.g. CLIP. Prompt learning meth-
ods built with VL models generate text features from the
class names that only have confined class-specific informa-
tion. Large Language Models (LLMs), with their vast en-
cyclopedic knowledge, emerge as the complement. Thus, in
this paper, we discuss the integration of LLMs to enhance
pre-trained VL models, specifically on low-shot classifica-
tion. However, the domain gap between language and vi-
sion blocks the direct application of LLMs. Thus, we pro-
pose LLaMP, Large Language Models as Prompt learners,
that produces adaptive prompts for the CLIP text encoder,
establishing it as the connecting bridge. Experiments show
that, compared with other state-of-the-art prompt learning
methods, LLaMP yields better performance on both zero-
shot generalization and few-shot image classification, over
a spectrum of 11 datasets. Code will be made available at:
https://github.com/zhaohengz/LLaMP.

1. Introduction

Low-shot image classification tasks, including few-shot and
zero-shot variants, are to learn from a set of class names
along with a limited or null set of images. Such capacities
are crucial for the extension and generalization of vision
systems. Vision-Language (VL) models trained on large-
scale web data, such as CLIP [32] and ALIGN [14], pro-
vide a new paradigm due to their generalization capabilities
that includes zero-shot classification, and have been used in
recent work [17–19, 23, 24, 48, 49]. Due to the scarcity of
images for training, methods built for both tasks rely heav-
ily on merely category names as the source of class-specific
knowledge, resulting in a shortage of distinguishable de-
scriptions. Meanwhile, Large Language Models (LLMs),

In one sentence, describe the distinctive 
appearance of a Yak-40, a type of aircraft.

The Yak-40 has a unique trijet configuration
with a large passenger window section and 
a sloping nose, along with three engines
mounted on the rear of the aircraft, creating 
an unmistakable silhouette in the sky.
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(b) LLMs’ Knowledge Boosts the Performance.

Figure 1. Demonstration of LLaMP: (a) LLMs can provide visual
descriptions for fine-grained object categories; (b) Zero-shot base-
to-novel generalization benefits from the LLM knowledge.

e.g. GPT-4 [28] and LLaMA [38, 39], have demonstrated
their encyclopedic knowledge and thus can provide linguis-
tic visual descriptions for objects. Here, we investigate how
to leverage LLMs for low-shot image classification.

The emergence of prompt learning has provided an ef-
ficient way to adapt large pre-trained models. Previous
work has explored various strategies to prompt vision-
language (VL) models, including vision-conditioned text
prompt learning [48], joint VL prompt learning [18] and
self-regulated VL prompts[19]. On the text side, regardless
of the learning strategy, learned prompt vectors are shared
across all categories. The only difference among text in-
puts is the class name. In low-shot scenarios where visual
data is limited, the extraction of class-specific knowledge
from textual inputs becomes essential. However, the cur-
rent paradigm, which relies on the CLIP text encoder to
distinguish between class names, faces challenges, partic-
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ularly with fine-grained target categories. For example, in
FGVCAircraft [25], the class name “Yak-40”, can barely
provide any information for recognizing the object.

Large Language Models, trained with large text corpora,
are good candidates to serve as the complement. As in
Fig. 1a, being queried about “Yak-40”, the LLM gener-
ates a sentence detailing the visual appearance of the Yak-
40 that can be further parsed into noun phrases and inte-
grated into text prompts, providing richer information, com-
pared with the ordinary prompt. We also show in Fig. 1b
that by simply incorporating noun phrases extracted from
a LLM’s response, the performance of the ordinary CLIP
models is improved by more than 1% without any train-
ing. Although recent prompt-learning based methods have
shown notable improvements, it is non-trivial to apply them
on textual visual descriptions generated by LLMs. Thus,
instead of directly taking LLM generations as the textual
input, we aim at producing class-specific representations by
adapting LLMs to low-shot image classification.

One challenge of the adaption is the domain gap be-
tween vision and language. When trained exclusively with
textual corpora, the latent feature space of a LLM signif-
icantly diverges from that of its visual counterpart. Even
worse, the data scarcity under the low-shot scenario make it
virtually impossible to align two spaces through plain con-
trastive loss. We argue that, the CLIP text encoder, which
is trained to project features from the language domain into
the joint VL domain, can serve as the bridge. Thus, we
propose the LLaMP framework, Large Language Models
as Prompt learners, which leverages LLMs to learn infor-
mative prompts for CLIP models. In LLaMP, we treat
LLMs as the prompt learner of the CLIP text encoder.
More specifically, for each object category, LLaMP ex-
tracts corresponding knowledge from the LLM and yields
class-specific prompt vectors, which are further combined
with class-agnostic prompt embeddings (as in previous ap-
proaches), and encoded by the CLIP text encoder. We de-
sign an efficient tuning pipeline to avoid fully fine-tuning
the language model while performing effective adaptation.

Following the protocol in [48, 49], we evaluate LLaMP
with two typical scenarios: zero-shot base-to-novel general-
ization [49] and few-shot image classification. For each sce-
nario, we run LLaMP with 11 datasets covering a spectrum
of tasks. On average, LLaMP achieves a 1.3% boost on the
harmonic mean against the state-of-the-art PSRC [19], and
9.6% over the ordinary CLIP [32], on base-to-novel gen-
eralization. We also observe an average improvement of
0.94% on 16-shot image classification.

In summary, our approach makes use of Large Language
Models to improve performance in low-shot image classi-
fication scenarios. The main contributions are: i) To the
best of our knowledge, we are the first to investigate how
to use the encyclopedic knowledge inherent in Large Lan-

guage Models (LLMs) to enhance low-shot image classifi-
cation; ii) We design a framework, LLaMP, to effectively
adapt LLMs for image classification, without training the
entire language model, and achieve state-of-the-art in both
few-shot and zero-shot settings; iii) We conduct extensive
analysis investigating the effectiveness of each components
of LLaMP, and discuss the optimal setup for LLM-aided
image classification.

2. Related Work
Large Language Models (LLMs). Recent years have wit-
nessed remarkable progress in scaling up the size and capa-
bilities of LLMs. Zhang et al. [47] first introduced a suite
of transformers pre-trained at scale, followed by PaLM [6].
ChatGPT/GPT-4 [27, 28] emerged as a milestone conversa-
tional model, demonstrated impressive conversational abil-
ities as a generalist model. Vicuna [5] further advanced by
learning from ChatGPT, while LLaMA [38] demonstrates
that larger scale training yields stronger foundation models.
The subsequent LLaMA-2 [39] and PaLM-2 [2] achieved
further gains in scale, efficiency and reasoning. Most re-
cently, Almazrouei et al. [1] released Falcon, a 400B model.

Zero-Shot Learning (ZSL). ZSL stands in contrast to
traditional fully-supervised paradigms. Instead of relying
on direct visual training samples, it leverages side informa-
tion that can be drawn from a multitude of non-visual do-
mains, including attributes [22], word embeddings [36, 40],
and descriptive texts [34]. Zhang et al. [46] designed an
embedding model to bridge the gap between seen and un-
seen categories. Concurrently, studies like [4, 44, 50] have
spotlighted that generative models can produce features for
unseen categories. Moreover, Graph Convolution Networks
(GCN) [20] has been explored in research such as [16, 40]
for further generalization.

Prompt Learning. With the progress in large-scale
vision-language models, such as CLIP [32] and ALIGN
[14], which reveal their capacity in zero-shot transferabil-
ity, prompt learning has emerged as an efficient learning
scheme, where learnable prompts are appended to the in-
put to fine-tune models. For low-shot image classifica-
tion, CoOp [49] and CoCoOp [48], which modeled context
words as learnable vectors to automate prompt engineering,
have shown significant improvements over regular CLIP.
MaPLe [18] further employed a hierarchical multi-modal
prompting strategy across transformer blocks for progres-
sive feature modeling. Kan et al. [17] incorporated ex-
ternal knowledge by designing knowledge-aware prompts
and adaptation head for better generalization. Lee et al.
[23] used masked attention to prevent internal representa-
tion shift for better generalization. Khattak et al. [19] fur-
ther improved prompt learning by guiding prompts to bal-
ance task-specific and task-agnostic knowledge via mutual
agreement maximization and prompt ensemble.

28454



3. Approach
3.1. Preliminaries

Similar to previous CLIP-based learning approaches, we
consider the classification problem as an image-text match-
ing problem. We denote the image encoder and the text en-
coder, in CLIP-like models, as F and G, parameterized by
θF and θG , respectively. An input image x ∈ RC×H×W is
split into M equal-sized patches which are converted into a
sequence of embeddings x̃ = {ecls, e1, e2, . . . , eM}. The
visual input sequence x̃ is encoded by the image encoder,
producing the image feature f = F(x̃). On the text side,
the text label y and the associated name is formatted as “A
photo of [STH]” and tokenized into a sequence of to-
kens ỹ = {tbos, t1, t2, . . . , tL, teos}, where L is the length
of input tokens. The input sequence is then encoded into
g = G(ỹ). For image classification, target class labels
{1, 2, . . . , C} are encoded into text features gi. The clas-
sification is done by picking the class that has the highest
similarity with the vision feature: ŷ = argmaxi C(f , gi),
where C is the softmax cosine-similarity function C(f , g) =

exp (f ·g/τ)∑C
j=1 exp (f ·gj/τ)

with temperature τ .

Multimodal Prompting Learning. Given the size of
the CLIP model, fine-tuning the entire model becomes in-
feasible. As both image and text encoders are built with
standard transformer architecture, prompt learning, which
tunes the model by combining trainable prompts with hid-
den states has been applied on the text encoder [48, 49], the
image encoder [15, 41, 42], or both [18, 19, 33]. Similar to
[19, 33], we build our method following the vision-language
prompting paradigm, with deep prompting [15, 19], which
not only insert prompts to the input layer, but to later en-
coder layers.

More specifically, for each transformer layer that takes
prompts, we define V learnable visual prompts pv =
{p1v, p2v, . . . , pVv } and T learnable language prompts pt =
{p1t , p2t , . . . , pTt }. For the i-th vision encoder layer, vi-
sual prompts pi

v are appended to input embeddings: x̃i
p =

{eicls, ei1, ei2, . . . , eiM ,pi
v}. The prompt-augmented vision

feature, fp = F(x̃p), is produced by jointly encoding
prompts and the image. As the ViT [9] architecture in CLIP
adopts the bi-directional attention mechanism, the place-
ment of pv has no effect on fp. On the language side,
prompts are concatenated with the input of the i-th text
encoder: ỹi

p = {tibos,pi
t, t

i
1, t

i
2, . . . , t

i
L, t

i
eos}. ỹp is fur-

ther processed by the text encoder, resulting in the prompt-
augmented language feature gp = G(ỹp). More specifi-
cally, prompts to the first layer p1

t are initialized with the
embeddings of “A photo of a”.

Low-Rank Adaptation [13] (LoRA). As a parameter-
efficient tuning technique, LoRA is designed to adapt
large transformer model without updating original model
weights. The LoRA technique is, in particular, applied to

linear projection layers. More specifically, for a linear layer
with weight W0 ∈ Rd×k, LoRA creates ∆W by learning
two low rank matrices B ∈ Rd×r and A ∈ Rr×k:

h = (W0 +∆W )x = W0x+BAx. (1)

We adopt a hybrid tuning scheme on the vision encoder,
which performs prompt learning on the first few layers and
applies LoRA on the rest.

3.2. Adaptive Prompt Learning with LLMs

The goal of prompt tuning is to find a set of optimal
prompts p = {pv,pt} which maximizes the log likeli-
hood of P (x, y|θF , θG) over target downstream distribution
(x,y) ∼ (X,Y ):

p = argmax
p

E(x,y)∼(X,Y ) log C(F(x;pv),G(y;pt))

(2)
However, the p optimized through Eqn. 2 has two issues.

First, p is shared for all categories for the downstream task,
while the optimal prompt for each category might be dif-
ferent. Second, in low-shot scenarios, p are usually empiri-
cally estimated from a limited training-set Xtrain with lim-
ited categories {1, 2, ..., Cbase}, and therefore such p can
often be over-fitted to the small training-set Xtrain and fail
to generalize to novel categories outside {1, 2, ..., Cbase}.

To overcome these problems, we propose to learn a meta
function on the language side pt = Θ(y) which can adap-
tively estimate the optimal prompt for each category. An in-
tuitive way to estimate proper prompts p for category name
y is to take advantage of the knowledge of the pre-trained
Large Language Models (LLM) D and extract discrimina-
tive descriptions of category y. For example, given the input
text z:“Describe {y}”,

pt = {p1, p2, ..., pk} = D(z). (3)

while pi being sequentially generated by D such that

pi = D(z, t1, ..., ti−1) = D(i)(z)

ti = M(pi),
(4)

where D(i) is the i-th forward iteration of D, and M maps
continuous hidden states into discrete language tokens. To
accelerate the process and to obtain p in one pass, we
approximate the above process with K learnable prompts
pl = {θ1, ..., θK} so that

pt = Θ(y) = D({θ1, ..., θK}|z) (5)

Discussion. While Large Language Models (LLMs)
possess robust foundational knowledge within the linguis-
tic domain, it is not feasible to directly substitute the text
encoder of CLIP with an LLM. The reason lies in the in-
herent divergence between the LLM’s latent space, which
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Figure 2. An Overview of the LLaMP Framework: We first generate the knowledge cache by passing the query prompt through the LLM D
and use the knowledge cache to encode pl, resulting the adaptive prompts h̃i

l = Whi
l + bi for the CLIP text encoder. h̃l is combined with

regular learnable prompts of G to generate the final text feature vector gp. The image feature vector fp is obtained through a hybrid-tuning
strategy combining prompt learning and low-rank adaptation (LoRA).

is purely language-oriented, and the image-focused latent
space of vision encoders. Attempting a direct alignment
via contrastive learning would require an extensive dataset
that is typically beyond the scope of low-shot learning. To
bridge this gap, we introduce LLaMP—an adaptive prompt
learning framework that leverages the LLM to craft class-
specific prompt vectors, to reinforce the text encoder for
low-shot image classification.

3.3. The LLaMP Framework

Fig. 2 shows an overview of the LLaMP framework. For
convenience, we denote the decoder-only LLM as D. The
input to the decoder D consists of two components: textual
prompts y in the form of sentences, tokenized as ỹ, and
learnable prompts pl. We append prompt embeddings to the
end of the input sequence and obtain the last hidden states
of D as the feature hl:

hl = D(ỹ,pl)[L+ 1 : L+K], L = Length(ỹ). (6)

Hidden states of D are then mapped to the input space of the
CLIP text encoder by the projection matrix W ∈ Rd1×d2 ,
where d1 and d2 are respectively the hidden sizes of the
LLM D and the CLIP text encoder G. A set of prompt-
specific biases b ∈ RK×d2 are added:

h̃l = Whl + b (7)

We combine h̃l from LLM with regular learnable
prompts, as in previous approaches [19], to construct the
input for CLIP text encoder. Similar to deep prompting
[15, 19], we create layer-specific prompts through differ-
ent W matrices and b vectors. For the i-th layer, we let
h̃i
l = W ihl + bi and the entire sequence is constructed as

ỹi
l = {tibos,pi

t, t
i
1, t

i
2, . . . , t

i
L, h̃

i
l , t

i
eos} (8)

LLM Knowledge Cache. A Large Language Model
(LLM), as implied by its name, typically comprises billions
of parameters. For example, the most compact LLaMA
[38, 39] model has 7B parameters. Thus, even perform-
ing prompt learning on a LLM become impractical. The
memory consumption to store gradients for back propaga-
tion can go beyond the limit of mainstream GPUs. Instead,
the causal attention mechanism inherent in decoder-only
LLMs, where the embedding of an input token only depends
on the preceding tokens, facilitates a feasible workaround.

As previously mentioned, the prompt embeddings pl are
appended to the end of text tokens ỹ. According to the
causal attention mechanism, ỹ is encoded independently of
pl. Thus, we design a two-stage process, where we cre-
ate the LLM knowledge cache by passing ỹ through D and
leverage the cache to convert pl into class-specific embed-
dings for the CLIP text encoder G.

To compute the attention of a token, the only dependency
is the Key and Value vectors from the preceding tokens.
Thus, we adopt the KV-cache [31, 43], a technique used
in inference acceleration of LLMs, to create the knowledge
cache. At the first stage, we pass text tokens ỹ through
the language model D and save the Keys and Values as the
knowledge cache for the second stage. Once computed, the
knowledge cache remains fixed throughout the entire train-
ing process and bears the information that is needed for fur-
ther computation. Thus, in LLaMP, we leverage the knowl-
edge cache obtained at the first stage to generate class-
specific prompt embeddings.

At the second stage, we create class-specific prompt em-
beddings from the pre-computed knowledge cache. As pl

is not initialized in the natural language domain, it need
not pass through the entire LLM; instead, we insert those
prompts pl to the last layer of the LLM DN . It is achieved
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by encoding them alongside the cache from ỹ, as in

Hl = DN (Kỹ,Vỹ,pl), (9)

where Kỹ,Vỹ represent the knowledge cache. This de-
sign enables LLaMP to efficiently learn informative prompt
embeddings for the CLIP encoder G. It accomplishes this
by incurring modest training costs, compared with training
the entire LLM. Simultaneously, it maintains the essential
knowledge inherent in the LLM decoder D.

Training Targets of LLaMP. Although the training
strategy in Eqn. 9 has reduced the number of learnable pa-
rameters, a full decoder inside a LLM still consists of an
enormous number of parameters. For example, one layer
in LLaMA-7B bears 200M parameters, making training of
the entire layer costly. As the goal is to leverage the knowl-
edge from LLM, altering a full layer can lead to the loss
of knowledge. Thus, as shown in Fig. 2, a typical decoder
layer has two major components: the self attention module,
consisting Query, Key, Value and Output projection layers,
and the Feed-Forward Network (FFN). LLaMP targets the
Query and Output projection layer inside the self-attention
module. By updating the Query layer, LLM prompts pl are
learned to distill pertinent information from the knowledge
cache and the Output layer projects it to the latent space.
We keep the Key and Value layers frozen to ensure the align-
ment between pl and knowledge cache. We leave the FFN
unchanged to preserve the knowledge. Further discussions
regarding these choices are made in Sec. 4.3.

Textual Priors from Pre-Generated Responses.
We extend the initial prompt, “In one sentence,
describe the distinctive appearance of
[STH]”, by incorporating the response generated by the
language model into the input sequence. This approach
enriches the base content: the generated text provides a
clear and explicit description of the object’s appearance,
acting as a valuable informative prior for language model
adaptation. However, it is common for responses from
an LLM to include filler words like “sure” for sentence
structure coherence. To refine the input, we parse the noun
phrases from the LLM’s response through spaCy [12],
an NLP engine, and merge them with the initial prompt,
forming a more focused and informative language prior.

Textual Augmentations. Following the insights of
Khattak et al. [19], which highlight the performance bene-
fits of diverse textual inputs, we aim to further augment the
text inputs used in the CLIP text encoder. Our approach,
building upon the methods in [19, 48], incorporates hand-
crafted templates and expands their diversity through a
two-step process: i) We introduce noun phrases into the
existing templates for CLIP, for example, transforming “A
photo of [STH]” to “A photo of [STH] with
[NP]”, thereby enriching the descriptive content; ii) We
create a variety of new prompt templates for the LLM

similar to “In one sentence, describe the
distinctive appearance of [STH]” through
GPT-4 [28], to further diversify the text input.

3.4. Training and Inference

Similar to PSRC [19], our objective function consists of
three components: The main cross-entropy loss LCE ,
feature-level L1 regularization Ll1, and soft distillation loss
Ldist. Given C training categories and N training samples,
LCE is defined as

LCE = − 1

N
∑
i

log
exp (f i

p · gi
p/τ)∑

exp (f i
p · gj

p/τ)
. (10)

The L1 regularization is computed between learned features
fp, gp and pre-trained CLIP features f̂ , ĝ:

Ll1 =
1

N
∑
i

λv|f i
p − f̂ i|+ 1

C

∑
i

λt|gi
p − ĝi|, (11)

where λv and λt are coefficients. The prediction of LLaMP
is further bound by the KL-Divergence between predicted
distributions of LLaMP and vanilla CLIP:

Ldist = λdistDKL(fp · gp, f̂ · ĝ). (12)

We sum all three losses up as the final objecttive function:
L = LCE + Ll1 + Ldist.

During training, we randomly sample one LLM template
as the input of LLaMP for each batch. For inference, we
compute the probability distribution predicted from each in-
put template and average them.

4. Experiments
4.1. Experiment Setup

Datasets. Similar to previous work [18, 19, 48], in our
study, we evaluate LLaMP performance over a spectrum
of classification tasks with 11 datasets, including Ima-
geNet [8] and Caltech101 [10] for generic image classi-
fication, OxfordPets [29], StanfordCars [21], Flowers102
[26], Food101 [3], and FGVCAircraft [25] for fine-grained
classification, SUN397 [45] for scene recognition, UCF101
[37] for action recognition, DTD [7] for texture classifica-
tion, and EuroSAT [11] for satellite image recognition.

Scenarios & Metrics. We evaluate LLaMP on two typi-
cal low-shot scenarios: zero-shot base-to-novel generaliza-
tion and few-shot image classification. In zero-shot base-to-
novel generalization, the base classes are seen during train-
ing, while the novel classes are unseen. We measure models
performance through accuracies of base and novel classes,
and the harmonic mean of the two. For few-shot classifica-
tion, we assess the accuracy with 16 shots per class.

Implementation Details. We build LLaMP through
the PyTorch [30] framework. All models are trained with

28457



Method
Average ImageNet [8] Caltech101 [10] OxfordPets [29]

Base Novel HM Base Novel HM Base Novel HM Base Novel HM

CLIP [32] 69.34 74.22 71.70 72.43 68.14 70.22 96.84 94.00 95.40 91.17 97.26 94.12
CoOp [49] 82.69 63.22 71.66 76.47 67.88 71.92 98.00 89.81 93.73 93.67 95.29 94.47
CoCoOp [48] 80.47 71.69 75.83 75.98 70.43 73.10 97.96 93.81 95.84 95.20 97.69 96.43
KAPT∗ [17] 78.41 70.52 74.26 71.10 65.20 68.02 97.10 93.53 95.28 93.13 96.53 94.80
ProDA [24] 81.56 72.30 76.65 76.66 70.54 73.47 97.74 94.36 96.02 95.43 97.76 96.58
MaPLe [18] 82.28 75.14 78.55 75.40 70.32 72.72 98.27 93.23 95.68 95.43 97.83 96.62
RPO [23] 81.13 75.00 77.78 76.60 71.57 74.00 97.97 94.37 96.03 94.63 97.50 96.05
PSRC [19] 84.26 76.10 79.97 77.60 70.73 74.01 98.10 94.03 96.02 95.33 97.30 96.30

LLaMP 85.16 77.71 81.27 77.99 71.27 74.48 98.45 95.85 97.13 96.31 97.74 97.02
∆ w.r.t. PSRC +0.90 +1.61 +1.30 +0.39 +0.54 +0.47 +0.35 +1.82 +1.11 +0.98 +0.44 +0.72

Method
StanfordCars [21] Flowers102[26] Food101 [3] FGVCAircraft [25]

Base Novel HM Base Novel HM Base Novel HM Base Novel HM

CLIP [32] 63.37 74.89 68.65 72.08 77.80 74.83 90.10 91.22 90.66 27.19 36.29 31.09
CoOp [49] 78.12 60.40 68.13 97.60 59.67 74.06 88.33 82.26 85.19 40.44 22.30 28.75
CoCoOp [48] 70.49 73.59 72.01 94.87 71.75 81.71 90.70 91.29 90.99 33.41 23.71 27.74
KAPT∗ [17] 69.47 66.20 67.79 95.00 71.20 81.40 86.13 87.06 86.59 29.67 28.73 29.19
ProDA [24] 72.94 74.00 73.47 95.92 72.46 82.56 90.71 92.05 91.38 37.44 35.61 36.50
MaPLe [18] 74.70 71.20 72.91 97.70 68.68 80.66 90.30 88.57 89.43 36.90 34.13 35.46
RPO [23] 73.87 75.53 74.69 94.13 76.67 84.50 90.33 90.83 90.58 37.33 34.20 35.70
PSRC [19] 78.27 74.97 76.58 98.07 76.50 85.95 90.67 91.53 91.10 42.73 37.87 40.15

LLaMP 81.56 74.54 77.89 97.82 77.40 86.42 91.05 91.93 91.49 47.30 37.61 41.90
∆ w.r.t. PSRC +3.29 -0.43 +1.31 -0.25 +0.90 +0.47 +0.38 +0.40 +0.39 +4.57 -0.26 +1.75

Method
SUN397 [45] DTD [7] EuroSAT [11] UCF101 [37]

Base Novel HM Base Novel HM Base Novel HM Base Novel HM

CLIP [32] 69.36 75.35 72.23 53.24 59.90 56.37 56.48 64.05 60.03 70.53 77.50 73.85
CoOp [49] 80.60 65.89 72.51 79.44 41.18 54.24 92.19 54.74 68.69 84.69 56.05 67.46
CoCoOp [48] 79.74 76.86 78.27 77.01 56.00 64.85 87.49 60.04 71.21 82.33 73.45 77.64
KAPT∗ [17] 79.40 74.33 76.78 75.97 58.30 65.97 84.80 67.57 75.21 80.83 67.10 73.33
ProDA [24] 80.82 78.70 79.75 80.36 59.18 68.16 94.07 73.23 82.35 83.00 78.66 80.77
MaPLe [18] 78.47 76.93 77.79 80.67 56.48 66.44 83.90 66.00 73.88 85.23 71.97 78.04
RPO [23] 80.60 77.80 79.18 76.70 62.13 68.61 86.63 68.97 76.79 83.67 75.43 79.34
PSRC [19] 82.67 78.47 80.52 83.37 62.97 71.75 92.90 73.90 82.32 87.10 78.80 82.74

LLaMP 83.41 79.90 81.62 83.49 64.49 72.77 91.93 83.66 87.60 87.13 80.66 83.77
∆ w.r.t. PSRC +0.74 +1.43 +1.10 +0.12 +1.52 +1.02 -0.97 +9.76 +5.28 +0.03 +1.86 +1.03

Table 1. Comparison with state-of-the-art methods on base-to-novel generalization. LLaMP shows strong generalization results over
previous approaches on 11 image classification tasks. Absolute gains over PSRC are indicated in blue. ∗KAPT is trained with ViT-B/32
image encoder instead of ViT-B/16.

2 NVIDIA A100 40GB GPUs. For LLaMP, we adopt
LLaMA2-7B [39] as the language model D, and ViT-B/16
[9] as the image encoder, following [18, 19, 48, 49]. On the
text side, we set prompt learning depth to 9. To tune the vi-
sion encoder, we adopt the hybrid tuning scheme which per-
forms deep prompt learning on the first 6 layers and LoRA
on the rest. Similar to [13], LoRA is applied to the Query
and Value projection layers inside attention modules. The
number of pl prompts, K, is set to 16. We set a global
learning rate of 2E-4 with a batch size of 8. The learning

rate of LoRA modules is set to 2E-5. λt, λv and λdist are
set to 25, 10 and 2.5, respectively.

4.2. Quantitative Evaluation

Zero-Shot Base-to-Novel Generalization. LLaMP out-
performs existing state-of-the-art prompt learning methods
on most metrics of 11 classification datasets in the base-
to-novel generalization benchmark. As shown in Tab. 1,
compared to the latest model PSRC [19], LLaMP achieves
average gains of 0.90% in base accuracy, 1.61% in novel
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CLIP [32] 78.79 (65.02) 67.31 95.43 85.34 80.44 97.37 82.90 45.36 73.28 69.96 87.21 82.11
CoOp [49] 79.89 (73.82) 71.87 95.57 91.87 83.07 97.07 84.20 43.40 74.67 69.87 84.93 82.23
CoCoOp [48] 74.90 (70.70) 70.83 95.16 93.34 71.57 87.84 87.25 31.21 72.15 63.04 73.32 78.14
MaPLe [18] 81.79 (75.58) 72.33 96.00 92.83 83.57 97.00 85.33 48.40 75.53 71.33 92.33 85.03
PSRC [19] 82.87 (77.90) 73.17 96.07 93.67 83.83 97.60 87.50 50.83 77.23 72.73 92.43 86.47

LLaMP 83.81 (78.50) 73.49 97.08 94.21 86.07 98.06 87.62 56.07 77.02 74.17 91.31 86.84

Table 2. Few shot classification results with 16 shots. Numbers in the bracket indicate the average performance over 1/2/4/8/16 shots.

accuracy, and 1.30% in harmonic mean on average. More-
over, LLaMP consistently achieves higher harmonic means
(HM) compared to other models. These improvements indi-
cate that our approach better balances performance on base
and novel data, thus achieving stronger generalization com-
pared to the prior prompt learning techniques.

In particular, LLaMP excels in fine-grained datasets re-
quiring detailed analysis. On FGVCAircraft, LLaMP sur-
passes PSRC by 4.57% on base accuracy and 1.75% on
HM, highlighting its strong understanding of detailed air-
craft features. Furthermore, on EuroSAT, LLaMP achieves
improvements of 9.76% and 5.28% on novel accuracy and
HM, respectively. We also observe similar performance
gains on StanfordCars, where LLaMP outperformns by
3.29% on base accuracy and 1.31% on HM. The informa-
tion embedded in LLM enables LLaMP to capture and uti-
lize the rich semantic information necessary for distinguish-
ing between closely related categories.

Few-Shot Classification. LLaMP also achieves im-
provements across these classification datasets in few-shot
classification tasks. As in Tab.2, with an average classi-
fication accuracy of 83.81%. Notably, on FGVCAircraft
and StanfordCars, LLaMP shows a significant improve-
ment over PSRC, further demonstrating that the knowl-
edge from language models benefits the recognition of fine-
grained object categories, which aligns with our observa-
tion on zero-shot base-to-novel generalization. Moreover,
on DTD, where MaPLe and PSRC achieve around 72% ac-
curacy, LLaMP achieves a higher accuracy of 74.17%, un-
derscoring its ability to recognize textures.

4.3. Ablation Study

Is the knowledge from LLM helping? In Tab. 3, we show
that the knowledge from LLM benefits in both ways: With-
out training, performance of ordinary CLIP model can be
improved by introducing noun phrases; The LLaMP frame-
work shows further improvement after training.

Noun phrases are parsed from the LLM’s responses the
prompt of “Describe [STH]”. We then use the tem-

Method LLM Base Novel HM

CLIP 69.34 74.22 71.70
✓ 70.95 74.93 72.79

LLaMP 82.21 76.44 79.22
✓ 85.16 77.71 81.27

Table 3. Ablation study on the LLM Knowledge.

LP QO KV FFN % Base Novel HM

✓ .03 85.00 77.29 80.96
✓ ✓ ✓ 33 85.20 77.45 81.14
✓ ✓ ✓ 83 85.05 77.73 81.22
✓ ✓ ✓ ✓ 100 85.23 77.56 81.21

✓ ✓ 17 85.16 77.71 81.27

Table 4. Ablation study on the Training Strategy. “%” indicates
the ratio of parameters trained compared to fully tuning a layer.

plate, “A photo of [STH] with [NP]” to generate
the NP-augmented text embedding for CLIP. We take the
average of all augmented embeddings for classification. In
Tab. 3 we show that even ordinary CLIP can benefit from
incorporating LLMs’ knowledge.

Furthermore, the comparison between LLaMP and
LLaMP without the LLM indicates that merely integrat-
ing LoRA [13] to the vision encoder is not beneficial. The
“LLaMP without LLM” is essentially an ordinary prompt-
ing learning model plus LoRAs in the vision encoder. We
show that the improved vision encoding capacity only ben-
efits when the quality of text embeddings s are enhanced by
incorporating LLMs’ knowledge through LLaMP.

Decoder Training strategy. We categorize trainable pa-
rameters of DN into four groups: learnable prompts (LP),
Query and Output projections (QO), Key and Value projec-
tions (KV), and the feed-forward network (FFN). Tab. 4 in-
dicates LLaMP can achieve desirable results by just learn-
ing the prompts of D. One step further, adding QO into op-
timization achieves the best performance. Although other
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Method Priors Base Novel HM

LLaMP
✗ 84.90 77.59 81.08

Plain 85.26 77.56 81.22
NP 85.16 77.71 81.27

Table 5. Ablation Study on Pre-generated Text Priors. ✗ refers to
“without textual priors” and NP stands for noun phrases.

Method Base Novel HM

LLM Only 81.74 35.82 49.81
LLaMP 85.16 77.71 81.27

Table 6. The CLIP text encoder helps adaptation.

Scheme Base Novel HM

Prompt × 9 84.67 77.28 80.81
LoRA × 12 84.89 77.27 80.90

Prompt ×6 + LoRA ×6 85.16 77.71 81.27

Table 7. Study on Vision Tuning Scheme. Our hybrid design
achieves the best performance.

setups introduce much more trainable parameters, they can
not surpass the “LP + QO” strategy.

Effect of Textual Priors. We study the effect of pre-
generated textual priors on LLaMP. We compare three dif-
ferent approaches: without textual priors, using plain re-
sponses as the prior, and LLaMP, which takes parsed noun
phrases. Tab. 5 shows that LLaMP can achieve over 81% on
HM without pre-generated priors, while adding parsed noun
phrases as textual priors further pushes the HM to 81.27%.

CLIP as the bridge. One may wonder if it is possible
to replace CLIP text encoder with a large language model.
Here, we study two setups: i) LLM as encoder, which treats
the output of the language model, h̃l as the text feature;
ii) LLaMP, which treat h̃l as part of the text input prompt.
Tab. 6 reveals that relying solely on the LLM results in poor
accuracy for novel categories. This supports our hypothesis
that aligning LLMs with vision encoders generally requires
a more extensive dataset. Furthermore, LLaMP’s design
significantly improve the novel accuracy by 40%.

Vision Training Strategy. As ViT-16/B has 12 trans-
former layers, we compare different vision training strate-
gies within LLaMP in Tab. 7. Apart from the default hybrid
scheme, we evaluate setups including prompt learning at
first 9 layers (P9), a similar setup to PSRC [19], and LoRA
[13] in all 12 layers. The results suggest that the scheme
leverages the strengths of both prompt learning and LoRA,
addressing potential bottlenecks in the vision encoder and
enhancing overall performance in LLaMP.

Number of LLM Prompts. We vary the number of
LLM prompts and study their effects on LLaMP. As in

2 4 8 16 24
# of LLM Prompts

81.0

81.5

80.94 80.96 81.00

81.27
81.11

Figure 3. Effect of LLM Prompts on Harmonic Mean. 16 prompts
achieve the most balanced performance.

Image Noun Phrases Heatmap

Classname: An-12

four engines,
turboprop aircraft,
large vertical fin

Classname: Industrial Buildings

a cluster,
rectangular structures,

flat roofs,
straight lines

Figure 4. Visualization of LLaMP Predictions by GradCAM [35]
Fig. 3, using 16 prompts optimizes the LLM’s capabilities,
achieving the highest harmonic mean at 81.27%.

Visualizations. In Fig. 4, we visualize the gradient
heatmap of input images from FGVCAircraft and EuroSAT,
through GradCAM [35]. The figure shows that, LLaMP can
capture distinctive features that matches LLM’s description.

5. Conclusion
Our study shows that the encyclopedic knowledge from
LLMs is beneficial for low-shot image classification as extra
class-specific information. To leverage such knowledge, we
propose LLaMP, a framework that adapts LLMs as prompt
learners for the CLIP model. Over two common low-shot
scenarios: zero-shot generalization and few-shot learning,
LLaMP demonstrates notable improvements compared with
previous state-of-the-arts on a spectrum of datasets.

Limitations. While LLaMP reveals an effective way in
leveraging LLMs’ knowledge, both modalities, vision and
language, only interact at the finest feature level. Given the
broader LLM-aided knowledge from the language side, the
performance can be potentially further improved by intro-
ducing language priors at earlier vision encoding stages.
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