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Abstract

Deep learning-based monocular depth estimation
(MDE), extensively applied in autonomous driving, is
known to be vulnerable to adversarial attacks. Previous
physical attacks against MDE models rely on 2D ad-
versarial patches, so they only affect a small, localized
region in the MDE map but fail under various viewpoints.
To address these limitations, we propose 3D Depth Fool
(3D2Fool), the first 3D texture-based adversarial attack
against MDE models. 3D2Fool is specifically optimized
to generate 3D adversarial textures agnostic to model
types of vehicles and to have improved robustness in bad
weather conditions, such as rain and fog. Experimental
results validate the superior performance of our 3D2Fool
across various scenarios, including vehicles, MDE mod-
els, weather conditions, and viewpoints. Real-world
experiments with printed 3D textures on physical vehicle
models further demonstrate that our 3D2Fool can cause
an MDE error of over 10 meters. The code is available at
https://github.com/Gandolfczjh/3D2Fool.

1. Introduction
Monocular depth estimation (MDE), i.e., predicting the dis-
tance from the camera to each pixel in an image, is a
key task in computer vision. This technology finds ex-
tensive use in real-world scenarios, such as robot naviga-
tion [9, 10, 31] and autonomous driving [25]. The devel-
opment of deep neural networks (DNNs) has significantly
enhanced MDE performance, making it an effective alter-
native to traditional RGB-D camera-based and Lidar-based
depth estimation methods [12, 14, 20, 21, 28, 29, 38, 39].
Leading players in the self-driving vehicle industry, such as
Tesla, have been exploring the integration of MDE into their
production-grade autopilot systems [1, 2], which leverage
low-cost cameras and advanced autonomous driving.

Despite the effectiveness of DNNs, recent studies have
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Figure 1. (a) Existing 2D adversarial patch-based attacks [8, 16]
and (b) their modified versions with 3D adversarial textures fail to
completely remove the vehicle from the MDE map, while (c) our
3D2Fool with robust 3D adversarial textures makes the car vanish.

demonstrated their vulnerability to adversarial attacks [6,
15], which also poses a practical threat to DNN-based
MDE [7, 8, 16, 17, 40, 42]. There are two main types of
adversarial attacks: digital [6, 15, 43, 45, 46] and physi-
cal [5, 32–34, 36, 37, 41, 44] attacks. Digital attacks in-
volve adding small perturbations to image pixels, and their
success is hard to directly translate into the physical world
due to their sensitivity to physical transformations, such as
printing, weather conditions, and viewpoint changes [32].
Physical attacks address these limitations by optimizing the
perturbations under various physical constraints, and they
have shown success in misleading real-world autonomous
driving systems [32, 33, 36, 37, 44].

In physical-world attacks, the attacker designs a 2D ad-
versarial patch [5, 13, 34] or 3D camouflage texture [32, 33,
36, 37, 44] and pastes it to the target vehicle, which will be
captured by cameras and then fed to the victim model. A
2D adversarial patch is pasted on only a small local planar
part of the object’s surface, failing to achieve adversarial ef-
fects at different viewing angles and distances. In contrast,

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

24452



a 3D camouflage texture is crafted to cover the entire sur-
face of the vehicle, leading to a better attack performance
regardless of the viewpoint.

However, existing physical-world attacks in autonomous
driving have been mainly focused on object detection [32,
33] with only a few on MDE. Moreover, all existing attacks
against MDE are based on 2D adversarial patches [8, 16,
17, 42], which are inevitably limited in challenging condi-
tions with various angles and distances. In this work, we
propose 3D Depth Fool (3D2Fool), the first 3D adversarial
camouflage attack against MDE models. 3D2Fool generates
robust camouflage texture applicable to a wide range of tar-
get vehicles regardless of the viewpoint changes. Moreover,
beyond those similar studies on object detection, we further
simulate weather conditions during attack optimization to
achieve improved attack performance in bad weather.

The optimization of 3D2Fool consists of two main mod-
ules: texture conversion (TC) and physical augmentation
(PA). First, TC converts the 2D adversarial texture seed into
the 3D camouflage texture pasted onto the full surface of
the vehicle. In particular, TC is independent of the object-
specific UV map, so it can be directly applied to various
types of target objects, such as cars, buses, and even pedes-
trians. Second, PA places the rendered 3D vehicle (with
textures) into different scenes to obtain photo-realistic im-
ages. In particular, we add noise and perturb local image
regions to simulate various weather conditions, such as ex-
treme brightness and fog. This improves the robustness of
our 3D2Fool in bad weather. Figure 1 shows that our 3D
texture-based 3D2Fool makes the vehicle under attack van-
ish from the MDE map completely, while other 2D patch-
based methods only affect a small region of the vehicle.

Our main contributions can be summarized as follows:
• We propose 3D Depth Fool (3D2Fool), the first 3D adver-

sarial camouflage attack against MDE models. 3D2Fool
can be applied to a wide range of target vehicles (and even
pedestrians) under various physical constraints, such as
viewpoint changes.

• We design a new module called texture conversion in
3D2Fool, to generate object-agnostic 3D camouflage tex-
tures, by optimizing the 2D adversarial texture seed inde-
pendent of the vehicle-specific UV map.

• We design a new module called physical augmentation
in 3D2Fool, to improve the robustness of 3D2Fool un-
der various weather conditions, by integrating weather-
related data augmentation into the attack optimization.

2. Related Work
2.1. Monocular Depth Estimation

Monocular depth estimation (MDE) plays an important
role in perceiving environmental information from 2D im-
ages. Eigen et al. [12] first utilized deep neural networks

to predict depth estimation. Monodepth2 [14] greatly im-
proved the performance through self-supervised learning
and multi-scale loss function. RobustDepth [29] improved
the robustness and performance of MDE by employing data
augmentation to simulate different weather conditions. In
this work, we propose 3D2Fool, a new attack that is shown
to be effective against various widely-used MDE methods.

2.2. Physical Adversarial Attacks

Physical adversarial attacks have been extensively studied.
Conventional works [5, 13, 23, 24, 34] rely on adversarial
patches with only digital-space constraints, making it hard
to achieve effective attacks in the complex, physical world.
Later studies [32, 33, 36, 37, 44] propose 3D texture-based
attacks to improve the robustness by painting the texture
onto the nonplanar surface of vehicles. Specifically, Dual
Attention Suppression (DAS) [37] suppresses both model
and human attention based on differentiable rendering [18].
Differentiable Transformation Attack (DTA) [32] designs a
novel differentiable transformation network to reflect vari-
ous real-world characteristics and complex scenes.

Physical adversarial attacks against MDE. Early stud-
ies on attacking MDE [7, 40] rely on conventional and
image-level perturbations, known to be ineffective in the
physical world. Recent works [8, 16] improve them by
instead relying on printable adversarial patches. Specifi-
cally, Stealthy and Physical-Object-Oriented (SPOO) [8] re-
stricts the patch to be small and leverages style transfer [22]
to further improve the stealthiness. Adaptive Adversarial
(APARATE) selectively fools MDE by corrupting the esti-
mated distance and manifesting an object into disappearing.
Different from 2D patch-based attacks, our attack, 3D2Fool,
is the first 3D texture-based attack against MDE, leading to
state-of-the-art attack performance under various viewpoint
changes. Moreover, 3D2Fool is designed to be robust to
weather changes and applicable to multiple target vehicles.

3. Methodology
3.1. Problem definition

The problem we need to solve is to cover the entire sur-
face of a vehicle with adversarial texture to attack MDE in
the physical world regardless of viewpoints, under various
weather, such as rain, fog, etc.

To realize an adversarial camouflage attack, we repeat
the 2D adversarial texture seed ts as a whole camouflage
texture to paint on the vehicle’s surface. To make the seed
suitable for different kinds of objects, we use the texture
conversion TC (introduced in Section 3.2) to eliminate the
influence of object-specific UV maps. We can calculate the
final 2D adversarial texture tadv by the following:

tadv = TC(ts) (1)
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Figure 2. Overview of our 3D2Fool attack against MDE models. 3D2Fool optimizes the adversarial texture seed ts via backpropagation
using Ltotal through our new texture conversion (TC) and physical augmentation (PA) modules.

We apply the adversarial texture on the surface of a 3D
object O and project it to the camouflaged 2D vehicle image
with a differentiable renderer [18]. Then we can obtain the
adversarial image xadv through the physical augmentation
PA (introduced in Section 3.2), mimicking the natural light-
ness and weather conditions. We define R as the renderer
and the adversarial image is expressed as follows:

xadv = PA(R(tadv, O; θc), b,m) (2)

where θc is the camera parameters (i.e., transformation and
location) required for rendering, b is the road background
image and m is the object mask in the scenario.

D(·) is a hypothesis function for the monocular depth es-
timation model, and x denotes a 2D image input where the
vehicle may be with a benign or adversarial texture. We can
obtain the prediction d = D(x), where d as the output de-
notes the depth estimation map. The goal of our proposed
method is to make MDE mispredict the depth of the tar-
get vehicle, visually making the vehicle vanish, by modify-
ing the surface texture of the target vehicle, which satisfies
dt = D(xadv). The notion dt represents the target depth
we expect MDE to predict, and xadv denotes the 2D im-
age where the target vehicle is covered with an adversarial
texture. Suppose L(D(x), d) is the loss function applied
to D(·) that makes the depth estimation of input image x
close to d. So we can ultimately obtain the adversarial tex-
ture seed by solving Equation (3):

ts = argminL(D(xadv), dt) (3)

3.2. Generating Adversarial Texture

To generate robust and effective adversarial texture, we pro-
pose the 3D adversarial camouflage attack framework, illus-
trated in Figure 2. Our training set (B,M,Θc) is sampled

under different camera parameters and environment settings
from Carla [11], a photo-realistic simulator. 3D2Fool first
converts the adversarial texture seed ts to the adversarial
texture tadv through our new texture conversion (TC) mod-
ule. Then, it renders the camouflage texture onto the vehi-
cle’s surface with the same camera parameters to obtain the
camouflaged 2D vehicle Oadv. Next, it transfers the camou-
flaged vehicle into different physical scenarios through our
new physical augmentation (PA) module. The adversarial
texture seed is optimized via backpropagation with the total
loss function Ltotal (introduced below).

Texture Conversion. Since the texture UV map is spe-
cialized for different vehicles, it is difficult to directly ap-
ply camouflage attack to other vehicles. Inspired by [32],
we propose the Texture Conversion (TC) to convert the ad-
versarial texture seed to the vehicle texture in a repetitive
manner, which is beneficial to generating object-agnostic
adversarial textures.

Different from the repeated texture projection in [32], it
uses a 3D rotation operation to convert the repeated pattern
to the 3D view, based on the same camera pose as the pro-
jection of the target vehicle, which would lose the original
details of the car surface. So the Differential Transforma-
tion Network (DTN) [32] is employed to simulate the sur-
face details. In contrast, we can adjust the region where the
adversarial texture can be pasted and only need to employ
a differentiable renderer [18] to obtain the accurately ren-
dered 2D vehicle texture without distortion.

The conversion process is shown in Figure 3. We define
an n × n adversarial texture seed by ts. First, we add a va-
riety of random transformations to improve the adversarial
texture robustness, such as rotation, flipping, etc. Then we
augment the transformed texture seed to the size of τn×τn,
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Figure 3. The initial texture seed is transferred into a specified-size
texture through the texture conversion module.

where τ denotes the magnification, and concatenate multi-
ple texture seeds at the edges. To resist the impact of object-
specific texture UV map, we use random clipping to obtain
the final texture, which can directly replace the original tex-
ture to cover the target vehicle through a mask. The above
transformations can be expressed as Equation (4):

tadv = RC(Mrepeat ·Mrobust · ts) (4)

where Mrobust is a matrix representing the composition of
the random transformations, Mrepeat is the repeat opera-
tion, and RC(·) is the random clipping function to crop the
texture to the specified size of N ×N .

Physical Augmentation. The Expectation over Trans-
formation (EoT) [4] is not enough to resist the impact of
bad weather conditions. Inspired by the weather rendering
transformation such as [27, 35], we propose the Physical
Augmentation (PA) to bridge the gap between simulation
and physical environment, improving the attack robustness
under various weathers. Specifically, we add data augmen-
tation perturbations to the 2D rendered vehicle image Oadv,
such as exposure, shadow, rain noise, and fog noise. Refer
to Automold [3], we employ a polynomial model for gen-
erating an exposure or shadow mask and utilize a Gaussian
blur to smooth the border for naturalness. Let θb denote the
pixel area where the exposure or shadow is placed, by mod-
ifying each-pixel intensity to simulate the effect of natural
lighting. Similar to physics-based renderer (PBR) [35], we
utilize prior information from depth maps to create realistic
rain and fog augmentations. Let θr and θf denote the pixel-
wise rain and fog noise matrices, respectively. Finally, we
apply EoT by randomly transforming the rendered texture
in saturation, etc., expressed as EoT(·). Thus, PA can be
summarized as Equation (5):

Oadv p = EoT(θb ⊙Oadv + θr + θf) (5)

where Oadv p is the adversarial 2D texture after PA, which
can be directly placed in natural scenarios in training set
through a mask m. We can get the final adversarial images
by Equation (6):

xadv = b⊙ (1−m) +Oadv p ⊙m (6)

Vehicle Vanishing Loss. Our goal is to make the vehicle
with the adversarial texture disappear from the perspective

of the MDE, that is, the depth estimation map is wrong in
the area of the target vehicle. In previous works attacking
MDE with adversarial patches, a mask was usually used to
cover the object area and compute the mean squared error
between prediction depth and target depth as a loss function.
We observe that the patches obtained by previous methods
can only successfully affect part of the target vehicle, which
is not enough to make the whole object vanish. To overcome
the limitation, we cover the adversarial texture over the full
surface of the target vehicle. Our loss function is:

La = MSE(D(xadv)
−1 ⊙m, 0) (7)

where MSE(·, ·) is the mean square error between two vari-
ables, and the mask m covers the whole area of the target
vehicle. Our goal is to minimize La so that we optimize the
adversarial texture seed.

Smooth Loss. To ensure the naturalness of the generated
adversarial texture seed, we utilize a smooth loss (i.e., Total
Variation loss [26]) to reduce the inconsistency among ad-
jacent pixels. For the adversarial texture seed ts, the smooth
loss can be calculated as:

Lst =
∑
i,j

√
(ti,js − ti+1,j

s )2 + (ti,js − ti,j+1
s )2 (8)

where ti,js is the pixel value of ts at coordinate (i, j).
NPS Loss. To attack MDE in the physical world, the

printability of the adversarial texture seed by the printer is
necessary. We utilize Non-Printability Score (NPS) [30]
loss to regulate the object texture color set. Meanwhile,
considering the stealthiness, we only randomly select 10
colors. For the adversarial texture seed ts, the NPS loss
can be calculated as:

Lnps =
1

n× n

∑
i,j

min
c∈C
|c− ti,js | (9)

where n is the side length of the texture seed as a scale factor
and C is the object texture color set. Finally, our total loss,
Ltotal, is constructed as Equation (10):

Ltotal = La + αLst + βLnps (10)

where α and β are the weights to control the contribution of
each loss function. Algorithm 1 summarizes our 3D2Fool
against MDE models.

4. Experiments

In this section, we first describe the experimental settings.
Then we conduct comprehensive experiments to investigate
the performance of our proposed method in multiple aspects
and compare it with previous works.
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Algorithm 1 3D2Fool against MDE

Input: Car model O, Texture Conversion module TC,
Physical Augmentation module PA, Color set C, Neural
renderer R, Training set (B,M,Θc), MDE model D(·),
number of training iterations K

Output: Adversarial Texture Seed ts
Initial ts with random noise
for k ← 1 to K do

Sample minibatch b ∈ B,m ∈M, θc ∈ Θc

tadv = TC(ts)
Oadv = R(tadv, O; θc)
xadv = PA(Oadv, b,m)
Calculate Ltotal by Equation (10)
Update ts based on gradients of Ltotal

end for
return ts

4.1. Implementation Details

MDE Model Selection. In our experiments, we use
four MDE models: the Monodepth2 [14], Depthhints [38],
Manydepth [39], and Robustdepth [29]. The first three mod-
els are chosen regarding [8], while Robustdepth is chosen
because of its robustness to severe weather.

Datasets. For the adversarial texture training, we ran-
domly select 210 spawn locations and capture the back-
ground pictures from Carla [11], including urban roads,
highways, country roads, etc., in different weather environ-
ments. For the locations used to place the vehicle, we take
8400 images with the RGB camera sensor in Carla at a ran-
dom angle of 0-360◦ and within a distance range of 3-15m.
For attack evaluation, we overlay the generated adversarial
texture on four kinds of vehicles and other objects common
in autonomous driving scenarios such as buses and pedestri-
ans, by world-aligned texture function in Unreal Engine, ig-
noring the specific texture UV map of each vehicle, and col-
lect 6124 images in total. The camera positions are chosen
in the same way as for the training set. In addition, to evalu-
ate the attack performance under severe weather, we choose
four kinds of weather: foggy, rainy, sunny, and cloudy. For
the experiment in the physical world, we use the Tesla car
model instead of the real vehicle.

Evaluation Metrics. To evaluate the performance of our
proposed attack, we use the mean depth estimation error
Ed of the target object and the ratio of the affected region
Ra [8]. Ed represents the average of the differences be-
tween the depth prediction of the adversarial vehicles and
the benign vehicles. The larger it is, the better the perfor-
mance, the same for the Ra metric. When the depth estima-
tion error of a pixel location exceeds a certain threshold, the
attack is considered to be successful. Therefore, Ra repre-
sents the proportion of pixels where the attack is success-

ful over the whole target vehicle area. Given the difference
△d = |D(xadv)−D(xbenign)|, Ed can be expressed as:

Ed =
sum(△d⊙m)

sum(m)
(11)

The ratio of the affected region Ra can be represented by:

Ra =
sum(I(△d⊙m ≥ Vthre))

sum(m)
(12)

where I(x) is the indicator function that evaluates to 1 only
when x is true. We choose the threshold of 10, i.e., when the
depth estimation error exceeds 10, the attack is considered
successful and the affected region is counted.

Compared Methods. We compare our adversarial cam-
ouflage attack with previous works [8, 16, 17, 42] in the
physical domain against MDE models. SPOO [8] and
APARATE [16] are object-oriented methods for attacking
the target objects with patches on them, while Adversarial
Patches Attack(APA) [42] and Stealthy Adversarial Attack
(SAAM) [17] are patch-oriented methods that affect the lo-
cal patch area independent of objects. To conduct a fair
comparison, we retrain the above methods on our training
set and then overlay their generated patches and a random
color texture on the target vehicles in the same way.

Attack Parameters. Our adversarial texture is opti-
mized using Adam [19] with 10 epochs. For EoT, we use
0.2 random brightness, [0.9, 1.1] random contrast, etc. For
texture conversion, we use a random vertical or horizontal
flip and a rotation of ±90◦ with 0.5 probability. We set the
initial size of the adversarial patch n = 128, repetition pa-
rameter τ = 6, and the size after random clipping N = 512.
For loss hyperparameters, we use α = 0.1, β = 5 as default.

4.2. Main results

Attack Effectiveness. We run our adversarial camou-
flage attack and previous attack methods on the four MDE
models, and we target the four types of vehicles for each
model. For each type of vehicle, instead of a specific tex-
ture UV map, we apply a world-aligned texture [33] to the
surface. Then we use the above four MDE models to pre-
dict the depth of the target vehicles with the adversarial
texture to evaluate the performance. As shown in Table 1,
our method consistently has the best attack performance on
all models. In the test of full texture coverage, the patch-
oriented and object-oriented methods achieve similar effec-
tiveness. Among them, SPOO suffers the degradation in
performance for naturalness. Compared with the patch at-
tack methods shown in the original papers, camouflage at-
tacks by pasting the generated patches on the vehicle’s sur-
face get poorer results. Beyond insufficient adaptability to
complicated weather conditions in prior approaches, signifi-
cant degradation arises due to the warping and deformation
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Figure 4. Comparison of our attack and other attacks in Carla simulation. The first column shows the normal vehicle and the rest columns
show the vehicles covered with adversarial textures achieved by different attacks. The depth estimation map is generated by Monodepth2.

Table 1. Comparison of our attack and other attacks in Carla sim-
ulation regarding the mean depth estimation error Ed and the ratio
of the affected region Ra.

Methods
Monodepth2 Depthhints Manydepth Robustdepth

Ed Ra Ed Ra Ed Ra Ed Ra

Normal 1.25 0.019 1.12 0.016 0.82 0.006 0.13 0.000

Random 3.07 0.076 2.83 0.041 1.09 0.011 0.24 0.000
APA [42] 6.14 0.223 5.79 0.199 2.62 0.031 0.83 0.005
SPOO [8] 5.62 0.194 4.78 0.144 2.20 0.023 0.51 0.002

APARATE [16] 6.88 0.265 6.05 0.213 3.13 0.097 0.95 0.007
SAAM [17] 2.82 0.034 2.21 0.025 1.01 0.015 0.31 0.000

Ours 12.75 0.496 10.31 0.413 6.78 0.25 2.24 0.032

of their patches. In contrast, our method maintains attack
performance from the texture seed to camouflage texture,
thanks to our proposed texture conversion. Illustrated in
Figure 4, our adversarial attack affects the depth estimation
of almost the entire target vehicle, effectively causing it to
vanish from the perspective of MDE models.

For the attack performance on different models, it is
noteworthy that both Monodepth2 and Depthhints exhibit
substantial vulnerability to adversarial attacks, while Ro-
bustdepth emerges as the most robust among the four MDE
models. This is understandable because Robustdepth ap-
plies data augmentation to simulate adverse weather condi-
tions during the training phase.

Attack Robustness. To evaluate the resistance to se-
vere weather conditions, we conducted the experiments
under multiple weather in Carla. In the context of au-
tonomous driving scenarios, we have chosen four preva-
lent weather conditions, namely cloudy, sunny, rainy, and
foggy. Cloudy conditions represent normal weather condi-
tions with sufficient and suitable lighting. Figure 5 shows
the impact of different weather conditions on the attacks.
Our proposed method demonstrates superior performance
compared to previous works under both benign and ad-

Figure 5. Attack comparison under different weather conditions.

verse weather conditions. Prior attacks exhibit perfor-
mance degradation under sunny and rainy weather condi-
tions compared to the baseline cloudy conditions. For in-
stance, APA experiences a decline of 19.1% and 6.7% under
sunny and rainy weather, respectively. In contrast, our pro-
posed attack method demonstrates comparatively marginal
decreases, registering reductions of only 3.9% and 3.4%.

Figure 6 shows the attack effect of our camouflage tex-
ture on three kinds of vehicles under four weather condi-
tions. At different viewing angles and distances, our method
maintains a good attack performance, which can effectively
fool the depth estimation of the target vehicle by MDE, al-
most not affected by the changing weather conditions. In
addition to the negative impact of extreme brightness and
rain on attacks, an intriguing observation emerges in foggy
weather, wherein attacks manifest an unexpectedly positive
impact. This phenomenon is attributed to the inherent sus-
ceptibility of Monodepth2. Even in the absence of adversar-
ial attacks, model performance is affected in foggy weather.

To evaluate the attack robustness, we randomly set the
camera position at different viewpoints of the target vehi-
cles. Figure 7 shows the attack comparison with the mean
depth estimation error of Monodepth2 at different view-
points, including viewing distance and angles. Our attack
has a better attack performance under any observation angle
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Figure 6. Evaluation with various target vehicles under different weather conditions. The first column shows the normal vehicle and the
rest columns show the vehicles covered with our adversarial textures. The depth estimation map is generated by Monodepth2.

Figure 7. Attack comparison at different viewpoints, including
viewing distance and angles. Values are the mean depth estimation
error Ed of Monodepth2.

and distance than previous methods. In the range of 60-120◦

and 230-300◦, the mean depth estimation error our attack
achieved is more than 20m. At certain viewing angles, the
attack effect is affected because of the small coverage area
of the adversarial texture and the excessively sloping sur-
face of the target vehicle. Most of the methods have good
attack effects within 9m, and with the increase of distance,
the attack performance gradually decreases. In particular,
the performance of SPOO is relatively stable under different
distances. We believe that it is related to the style transfer
it adopts, which represents the perturbation of adversarial
attacks by the overall style feature.

To evaluate the textures when applied to different ob-
jects common in autonomous driving scenarios, we handle
trucks, buses, and pedestrians with the same parameters and
texture seed, against Monodepth2. As shown in Table 2,
our attack surpasses others across diverse objects, signify-

Table 2. Attack comparison on diverse objects. Values are the
mean depth estimation error Ed of Monodepth2.

Methods
truck bus pedestrian

Ed Ra Ed Ra Ed Ra

Normal 1.11 0.015 1.06 0.013 1.29 0.022

Random 3.12 0.079 3.09 0.076 2.59 0.057
APA [42] 6.93 0.231 7.05 0.242 3.76 0.137
SPOO [8] 6.21 0.214 6.77 0.226 3.22 0.126

APARATE [16] 7.04 0.282 7.29 0.304 3.71 0.144
SAAM [17] 2.90 0.067 3.13 0.103 1.91 0.038

Ours 14.11 0.576 15.07 0.614 8.37 0.353

Figure 8. Our attack on different objects in Carla simulation.

ing its object-agnostic property. As demonstrated in Figure
8, the adversarial textures pasted on the buses and pedestri-
ans severely affect the depth prediction of Monodepth2.

Attack in the Real World. As for the real-world attack,
we conduct several experiments to validate the practical ef-
fectiveness of our generated adversarial texture. Specifi-
cally, we print and paste our adversarial texture on a 1:24
scaled Tesla Model Y car, and place it under different back-
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Table 3. Physical-world evaluation using two scaled car models in
different scenes. Values are Ed and Ra of Monodepth2.

Methods
outdoor indoor

Ed Ra Ed Ra

Normal 1.05 0.014 1.22 0.023

Ours 10.21 0.403 10.67 0.424

Figure 9. Physical-world evaluation using two scaled car models
in different scenes.

ground and lighting conditions. We collect a total of 300
images on various environmental conditions (i.e., direc-
tions, angles, distances, and surroundings) using a Redmi
K60 phone. Figure 9 shows that the depth of the normal ap-
pearance of the car can be accurately estimated by the MDE
model. In contrast, the car with adversarial texture success-
fully deceived the MDE model, extending to regions devoid
of texture coverage. On evaluation, the real-world attack re-
sults on Monodepth2 are presented in Table 3, which shows
that our adversarial texture can successfully perform an ad-
versarial attack even in the real world.

4.3. Ablation Study

To evaluate how each component contributes, we investi-
gate our proposed modules and the loss function items using
ablation studies with default parameters. We attack Mon-
odepth2 and use the vehicle as the target object to report Ed

and Ra. The results in Table 4 verify that our proposed two
transformation modules play a key role in enhancing the at-
tack performance. When both modules are used, the attack
performance is improved from 7.67m to 12.75m. Figure 10
presents the texture seeds and their corresponding attack ef-
fects under each module combination. Notably, the texture
seed after applying the texture conversion reveals a substan-
tial shift from irregular patterns to more structured and vi-
sually natural configurations.

Table 4 also illustrates the results of different combina-
tions of loss functions. The best performance is achieved
using the combination of adversarial loss and smoothness
loss. However, as expected, adding the NPS loss slightly
decreases the attack performance since it additionally con-
strains the texture to be more natural.

Table 4. Ablation study for each proposed module and loss. Values
are Ed of Monodepth2.

Proposed losses Proposed modules

La Lst Lnps None TC PA Full

✓ 7.36 10.93 8.08 12.54
✓ ✓ 7.24 10.1 7.62 11.36
✓ ✓ 8.06 11.42 9.31 13.04
✓ ✓ ✓ 7.67 11.06 8.15 12.75

Figure 10. Attack comparison with different modules.

5. Conclusion

In this paper, we propose 3D Depth Fool (3D2Fool) and
validate its superior performance over the current state-of-
the-art attacks across various scenarios, including vehicles,
MDE models, weather conditions, and viewpoints. In par-
ticular, we validate the effectiveness of 3D2Fool in the phys-
ical world under different backdoor and indoor backgrounds
and lighting conditions by printing and pasting the 3D ad-
versarial texture on a scaled car model.

For future work, we would further improve 3D2Fool in
relatively challenging settings, e.g., for certain angles where
the texture coverage area is limited, and for car models with
complex shapes. In addition, we would explore the transfer-
ability of 3D2Fool in practical, black-box attack scenarios.
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