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Abstract

Pre-training a model and then fine-tuning it on down-
stream tasks has demonstrated significant success in the 2D
image and NLP domains. However, due to the unordered
and non-uniform density characteristics of point clouds, it
is non-trivial to explore the prior knowledge of point clouds
and pre-train a point cloud backbone. In this paper, we
propose a novel pre-training method called Point cloud
Diffusion pre-training (PointDif). We consider the point
cloud pre-training task as a conditional point-to-point gen-
eration problem and introduce a conditional point genera-
tor. This generator aggregates the features extracted by the
backbone and employs them as the condition to guide the
point-to-point recovery from the noisy point cloud, thereby
assisting the backbone in capturing both local and global
geometric priors as well as the global point density distri-
bution of the object. We also present a recurrent uniform
sampling optimization strategy, which enables the model
to uniformly recover from various noise levels and learn
from balanced supervision. Our PointDif achieves substan-
tial improvement across various real-world datasets for di-
verse downstream tasks such as classification, segmentation
and detection. Specifically, PointDif attains 70.0% mIoU
on S3DIS Area 5 for the segmentation task and achieves
an average improvement of 2.4% on ScanObjectNN for the
classification task compared to TAP. Furthermore, our pre-
training framework can be flexibly applied to diverse point
cloud backbones and bring considerable gains. Code is
available at https://github.com/zhengxiaozx/PointDif.

1. Introduction
In recent years, a surging number of studies, including
SAM [21], VisualChatGPT [55], and BLIP-2 [23], have
demonstrated the exceptional performance of pre-trained
models across a broad range of 2D image and natural lan-
guage processing (NLP) tasks. Pre-training on large-scale
datasets endows the model with abundant prior knowledge,
enabling the pre-trained models to exhibit superior perfor-
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Figure 1. Schematic illustration of our PointDif. Our Point-
Dif can pre-train different backbones by reconstructing the origi-
nal point cloud point-to-point from the noisy point cloud. During
pre-training, the latent features guide the restoration of noisy point
clouds at various levels, allowing the backbone to learn more hier-
archical geometric prior.

mance and enhanced generalization capabilities after fine-
tuning, compared to models trained solely on downstream
tasks [13, 19, 20, 23]. Similar to the 2D and NLP fields,
pre-training methods in point cloud data [18, 33, 60] have
also become essential in enhancing model performance and
boosting model generalization ability.

Contemporary point cloud pre-training methods can
be casted into two categories, i.e., contrastive-based and
generative-based pre-training. Contrastive-based meth-
ods [1, 57, 63] resort to the contrastive objective to make
deep models grasp the similarity knowledge between sam-
ples. By contrast, generative-based methods involve pre-
training by reconstructing the masked point cloud [33, 62]
or its 2D projections [15, 51]. However, several factors
mainly account for the inferior pre-training efficacy in the
3D domain. For contrastive-based methods [1, 57], select-
ing the proper negative samples to construct the contrastive
objective is non-trivial. The generative-based pre-training
approaches, such as Point-MAE [33] and Point-M2AE [62],
solely reconstruct the masked point patches. In this way,
they cannot capture the global density distribution of the ob-
ject. Additionally, there is no precise one-to-one matching
for MSE loss and set-to-set matching for Chamfer Distance
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loss between reconstructed and original point cloud due to
its unordered nature. Besides, the projection from 3D to
2D by TAP [51] and Ponder [15] inevitably introduces the
geometric information loss, making the reconstruction ob-
jective difficult to equip the backbone with comprehensive
geometric prior.

To combat against the unordered and non-uniform den-
sity characteristics of point clouds, inspired by adding noise
and denoising of the diffusion model [14], we propose
a novel diffusion-based pre-training framework, dubbed
PointDif. It pre-trains the point cloud backbone by restor-
ing the noisy data at each step as illustrated in Fig. 1. This
procedural denoising process is similar to the visual streams
in our human brain mechanism [43]. Humans use this sim-
ple brain mechanism to obtain broad prior knowledge from
the 3D world. Similarly, we find that low-level and high-
level neural representation emerges from denoising neural
networks. This aligns with our goal of applying pre-trained
models to downstream low-level and high-level tasks, such
as classification and segmentation. Moreover, the diffusion
model has strong theoretical guarantees and provides an in-
herently hierarchical learning strategy by enabling the un-
derstanding of data distribution hierarchically.

Specifically, we present a conditional point generator in
our PointDif, which guides the point-to-point generation
from the noisy point cloud. This conditional point generator
encompasses a Condition Aggregation Network (CANet)
and a Conditional Point Diffusion Model (CPDM). The
CANet is responsible for globally aggregating latent fea-
tures extracted by the backbone. The aggregated features
serve as the condition to guide the CPDM in denoising the
noisy point cloud. During the denoising process, the point-
to-point mapping relationship exists in the noisy point cloud
at neighboring time steps. Equipped with the CPDM, the
backbone can effectively capture the global point density
distribution of the object. This enables the model to adapt
to downstream tasks that involve point clouds with diverse
density distributions. With the help of the conditional point
generator, our pre-training framework can be extended to
various point cloud backbones and enhance their overall
performance.

Moreover, as shown in Tab. 8, we find that sampling time
step t from different intervals during pre-training can learn
different levels of geometric prior. Based on this observa-
tion, we propose a recurrent uniform sampling optimiza-
tion strategy. This strategy divides the diffusion time steps
into multiple intervals and uniformly samples the time step t
throughout the pre-training process. In this way, the model
can uniformly recover from various noise levels and learn
from balanced supervision. To the best of our knowledge,
we are the first to demonstrate the effectiveness of genera-
tive diffusion models in enhancing point cloud pre-training.

Our key contributions can be summarized as follows:

• We propose the first framework for point cloud pre-
training based on diffusion models, called PointDif. Per-
forming iterative denoising on the noisy point cloud can
assist backbones in acquiring a comprehensive under-
standing of the original point cloud and extracting hier-
archical geometric prior.

• We present a conditional point generator to guide the
point-to-point generation from the noisy point cloud. This
facilitates the network in capturing the global point den-
sity distribution of the object.

• We introduce a recurrent uniform sampling strategy that
assists the model in uniformly restoring diverse noise lev-
els and learning from balanced supervision.

• Our PointDif demonstrates competitive performance
across various real-world downstream tasks. Further-
more, our framework can be flexibly applied to diverse
point cloud backbones and enhance their performance.

2. Related Work
This section first briefly reviews existing point cloud pre-
training approaches. Since the diffusion model is a primary
component in the proposed pre-training framework, we also
review the relevant studies on diffusion models.
Pre-training for 3D point cloud. Contrastive-based algo-
rithms pre-train the backbone by comparing the similarities
and differences among samples. PointContrast [57] is the
pioneering method, which constructs two point clouds from
different perspectives and compares point feature similar-
ities for point cloud pre-training. Recent research efforts
have improved network performance through data augmen-
tation [56, 63] and the introduction of cross-modal informa-
tion [1, 17, 61]. In contrast, generative-based pre-training
methods focus on pre-training the encoder by recovering
masked information or its 2D projections. Point-BERT [60]
and Point-MAE [33] respectively incorporate the ideas of
BERT [10] and MAE [13] into point cloud pre-training.
TAP [51] and Ponder [15] pre-train the point cloud back-
bone by generating the 2D projections of the point cloud.
Point-M2AE [62] constructs a hierarchical network capa-
ble of gradually modeling geometric and feature informa-
tion. Joint-MAE [12] focuses on the correlation between
2D images and 3D point cloud and introduces hierarchical
modules for cross-modal interaction to reconstruct masked
information for both modalities. Compared to the architec-
tural improvements made in Point-M2AE and Joint-MAE,
our method concentrates on refining the training approach.
Our PointDif leverages the progressive guidance character-
istic of the conditional diffusion model, allowing the back-
bone to learn hierarchical geometric prior by restoring noisy
point clouds at different noise levels.
Diffusion Probabilistic Models. The diffusion model is in-
spired by the principles of non-equilibrium thermodynam-
ics and leverages the diffusion process and noise reduction
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Figure 2. (a) The pipeline of our PointDif. We first divide the input point cloud into point patches, then embed and mask them. Furthermore,
a transformer encoder is used to extract the latent features. Finally, we employ the condition aggregation network (CANet) to aggregate
latent features to obtain the condition c, and then guide the conditional point diffusion model (CPDM) to point-to-point recovery of the
original point cloud from the randomly perturbed point cloud. (b) The detailed structure of CANet. (c) The detailed structure of the point
condition network (PCNet). Note that the CPDM is composed of six PCNet.

to generate high-quality data. It has shown excellent per-
formance in both generation effectiveness and interpretabil-
ity. The diffusion model has achieved remarkable success
across various domains, including image generation [11, 32,
39–41, 64] and 3D generation [25, 27, 45, 50, 59]. Re-
cently, researchers have investigated methods for acceler-
ating the sampling process of DDPM to improve its gener-
ation efficiency [28, 29, 42]. Moreover, some studies have
explored the application of diffusion models in discrimina-
tive tasks, such as object detection[7] and semantic segmen-
tation [2, 4, 53].

To our knowledge, we are the first to apply the diffu-
sion model for point cloud pre-training and have achieved
promising results. The most relevant work is the 2D pre-
training method DiffMAE [52]. However, there are four
critical distinctions between our PointDif and DiffMAE.
Firstly, as to the reconstruction target, DiffMAE pre-trains
the network by denoising pixel values of masked patches. In
contrast, our PointDif pre-trains the network by recovering
the original point clouds from randomly noisy point clouds,
which is beneficial for the network to learn both local and
global geometrical priors of 3D objects. Secondly, as for
the guidance way, DiffMAE uses the conditional guidance
method of cross-attention. We adopt a point condition net-
work (PCNet) for point cloud data to facilitate 3D gener-
ation through point-by-point guidance. It also assists the
network in learning the global point density distribution
of the object. Thirdly, regarding the loss function, Diff-
MAE introduces an additional CLIP loss to constrain the
model, whereas our PointDif demonstrates strong perfor-
mance in various 3D downstream tasks without additional
constraints. Finally, with regard to the unity of the frame-
work, DiffMAE can only pre-train the 2D transformer en-
coder. In comparison, with the help of our conditional point
generator, we can pre-train various point cloud backbones

and enhance their performance.

3. Methodology
We take pre-training the transformer encoder as an example
to introduce our overall pre-training framework, i.e., Point-
Dif. The framework can also be easily applied to pre-train
other backbones. The pipeline of our PointDif is shown in
Fig. 2a. Given a point cloud, we first divide it into point
patches and apply embedding and random masking opera-
tions to each patch. Subsequently, we use a transformer en-
coder to process visible tokens to learn the latent features,
which are then used to generate the condition c through the
CANet. Finally, this condition gradually guides the CPDM
to recover the original input point cloud from the random
noise point cloud in a point-to-point manner. We pre-train
the transformer encoder to acquire the hierarchical geomet-
ric prior through the progressively guided process.

3.1. Preliminary: Conditional Point Diffusion

During the diffusion process, random noise is continuously
introduced into the point cloud through a Markov chain, and
there exists a point-to-point mapping relationship between
noisy point clouds of adjacent timestamps. Formally, given
a clean point cloud X0 ∈ Rn×3 containing n points from
the real data distribution pdata, the diffusion process gradu-
ally adds Gaussian noise to X0 for T time steps:

q(X1:T |X0) =

T∏
t=1

q(Xt|Xt−1), (1)

where q(Xt|Xt−1) = N (Xt;
√

1− βtX
t−1, βtI), (2)

the hyperparameters βt are some pre-defined small con-
stants and gradually increase over time. Xt is sampled from
a Gaussian distribution with mean

√
1− βtX

t−1 and vari-
ance βtI . Moreover, according to [14], it is possible to
elegantly express XT as a direct function of X0:
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q(Xt|X0) = N (Xt;
√
ᾱtX

0, (1− ᾱt)I), (3)

where ᾱt =
∏t

i=1 αi and αt = 1 − βt. As the time step t
increases, ᾱt gradually approaches 0 and q(Xt|X0) will be
close to the Gaussian distribution pnoise.

The reverse process involves using a neural network pa-
rameterized by θ to gradually denoise a Gaussian noise into
a clean point cloud with the help of condition c. This pro-
cess can be defined as:

pθ(X
0:T , c) = p(XT )

T∏
t=1

pθ(X
t−1|Xt, c), (4)

where pθ(Xt−1|Xt, c) = N (Xt−1;µθ(X
t, t, c), σ2

t I), (5)

the µθ is a neural network that predicts the mean, and σ2
t is

a constant that varies with time.
The training objective of the diffusion model is formu-

lated based on variational inference, which employs the
variational lower bound (vlb) to optimize the negative log-
likelihood:
Lvlb = Eq[−logpθ(X0|X1, c) +DKL(q(X

T |X0)||p(XT ))

+

T∑
t=2

DKL(q(X
t−1|Xt, X0)||pθ(Xt−1|Xt, c))],

(6)
where DKL(·) is the KL divergence. However, training Lvlb

is prone to instability. To address this, we adopt a simplified
version of the mean squared error [14]:
L(θ) = Et,X0,c,ϵ

[
∥ϵ− ϵθ(

√
ᾱtX

0 +
√
1− ᾱtϵ, c, t)∥2

]
, (7)

where ϵ ∼ N (0, I), ϵθ(·) is a trainable neural network that
takes the noisy point cloudXt at time t, along with the time
t and condition c as inputs. This network predicts the added
noise ϵ. Additional details regarding derivations and proofs
can be found in Sec. 6.

3.2. Point Cloud Processing

The goal of point cloud processing is to convert the given
point cloud into several tokens, which consist of point patch
embedding and patch masking.
Point Patch Embedding. Following Point-BERT [60]
and Point-MAE [33], we divide the point cloud into point
patches using a grouping strategy. Specifically, for an input
point cloud X ∈ Rn×3 consisting of n points, we first em-
ploy the Farthest Point Sampling (FPS) algorithm to sample
s center points {Ci}si=1. For each center point Ci, we use
the K Nearest Neighborhood (KNN) algorithm to gather the
k nearest points as a point patch Pi.

{Ci}si=1 = FPS(X), {Pi}si=1 = KNN(X, {Ci}si=1). (8)

It is noteworthy that we apply a centering process to the
point patches, which involves subtracting the coordinates of
the point center from each point within the patch. This op-
eration helps improve the convergence of the model. Sub-
sequently, we utilize a simplified PointNet [34] ξϕ(·) with

parameter ϕ, which employs 1 × 1 convolutions and max
pooling, to embed the point patches {Pi}si=1 into tokens
{Fi}si=1.

{Fi}si=1 = ξϕ({Pi}si=1). (9)

Patch Masking. In order to preserve the geometric in-
formation within the patch, we randomly mask the entire
points in the patch to obtain the masked tokens {Fm

i }ri=1

and visible tokens {F v
i }

g
i=1, where r=⌊s×m⌋ is the num-

ber of masked tokens, g=s−r is the number of visible to-
kens, ⌊.⌋ is the floor operation and m denotes the mask-
ing ratio. We conduct experiments to assess the impact of
different masking ratios and find that higher masking ra-
tios (0.7-0.9) result in better performance, as discussed in
Sec. 4.3.

3.3. Encoder

The transformer encoder is responsible for extracting latent
geometric features, which is retained for feature extraction
during fine-tuning for downstream tasks. Φρ(·) is our en-
coder with parameter ρ, composed of 12 standard trans-
former blocks. To better capture meaningful 3D geometric
prior, we remove masked tokens and encode only on visible
tokens {F v

i }
g
i=1. Furthermore, we introduce a position em-

bedding ψτ (·) with parameter τ to embed the position infor-
mation of the visible token into Posvi , which is comprised
of two learnable MLPs and the GELU activation function.
Then, the position embedding output Posvi is concatenated
with F v

i and sent through a sequence of transformer blocks
for feature extraction.

{T v
i }gi=1 = Φρ({Concat(F v

i , Pos
v
i )}gi=1), (10)

where {Posvi }gi=1 = ψτ ({Cv
i }gi=1). (11)

3.4. Conditional Point Generator

Our conditional point generator consists of the CANet and
the CPDM.
Condition Aggregation Network (CANet). To be specific,
we concatenate features {T v

i }
g
i=1 of the visible patches ex-

tracted by the encoder with a set of learnable masked patch
information {Tm

i }ri=1, while preserving their original posi-
tion information. Afterward, the concatenated features are
encoded using the CANet, denoted as fω(·) with the param-
eter ω. As shown in Fig. 2b, our CANet consists of four 1x1
convolutional layers and two max-pooling layers to aggre-
gate the global contextual features of the point cloud. Ulti-
mately, this process yields the guiding condition c required
for the CPDM:

c = fω(Concat({T v
i }gi=1, {T

m
i }ri=1)}). (12)

Conditional Point Diffusion Model (CPDM). Inspired
by [30], we adopt a point diffusion model, which utilizes the
condition to guide the recovery of the original point cloud
from a randomly perturbed point cloud in a point-to-point

22938



Figure 3. Visualization results on the ShapeNet validation set.
Each row visualizes the input point cloud, masked point cloud,
and reconstructed point cloud. Even though we mask 80% points,
PointDif still produces high-quality point clouds.

way. As illustrated in Fig. 2c, the conditional point diffu-
sion model comprises six point condition network (PCNet).
The specific structure of each PCNet can be represented as:

Hl = Rl⊙(WlhHl−1+blh)+Wlby, Rl = σ(Wlry+blr), (13)

where Hl−1 and Hl are respectively the input and output of
PCNet, σ represents the sigmoid function, and Wl∗, bl∗ are
all trainable parameters. y represents the feature obtained
by concatenating the condition c with the time step embed-
ding. The input dimensions for each PCNet are [3, 128, 256,
512, 256, 128] and the output dimension of the last PCNet
is 3. By incorporating the condition into the control mech-
anism of the reset gate Rl, the model can adaptively select
geometric features to denoise. Recovering from noisy point
clouds through point-to-point guidance can aid the network
in learning the overall point density distribution of the ob-
ject. This, in turn, assists different backbones in learning a
broader range of dense and sparse geometric priors, result-
ing in enhanced performance in downstream tasks related to
indoor and outdoor scenes.

3.5. Training Objective

We introduce the process of encoding condition c into
Eq. (7). Therefore, the training objective of our model can
be defined as follows:

L(θ, ρ, ω) = Et,X0,ϵ∥ϵ− ϵθ(
√
ᾱtX

0+
√
1− ᾱtϵ, fω(Φρ), t)∥2.

(14)
By minimizing this loss, we can simultaneously train the

encoder Φρ, the CANet fω and the CPDM ϵθ. Intuitively,
the training process encourages the encoder to extract hi-
erarchical geometric features from the original point cloud
and encourages the CPDM to reconstruct the original point
cloud according to the hierarchical geometric features. The
CPDM performs a task similar to point cloud completion in
this process.
Recurrent Uniform Sampling Strategy. According to
Eq. (14), we need to sample a time step t randomly from

Table 1. Object classification results on ScanObjectNN. We re-
port the Overall Accuracy(%).

Methods Pre. OBJ-ONLY OBJ-BG PB-T50-RS

PointNet [34] ✘ 79.2 73.3 68.0
PointNet++ [35] ✘ 84.3 82.3 77.9
PointCNN [24] ✘ 85.5 86.1 78.5
DGCNN [49] ✘ 86.2 82.8 78.1

Transformer [60] ✘ 80.55 79.86 77.24
Transformer-OcCo [60] ✘ 85.54 84.85 78.79
Point-BERT [60] ✔ 88.12 87.43 83.07
MaskPoint [26] ✔ 89.70 89.30 84.60
Point-MAE [33] ✔ 88.29 90.02 85.18
TAP [51] ✔ 89.50 90.36 85.67
PointDif (Ours) ✔ 91.91 93.29 87.61

the range [1, T] for each point cloud data for network train-
ing. However, we observe that networks trained with sam-
ples from different time steps exhibit varying performance
on downstream tasks. As illustrated in Tab. 8, the encoder
trained by sampling t from the early interval is more suit-
able for the classification task. In contrast, the encoder
trained by sampling from the later interval performs bet-
ter on the segmentation task. Based on this discovery, We
propose a more effective recurrent uniform sampling strat-
egy. Specifically, we divide the time step range [1, T] into h
intervals: {[d×i+1, d×(i+1)]}h−1

i=0 where d=⌊T/h⌋. As in
Eq. (15), we randomly sample t from these h intervals for
each sample data, calculate the loss h times, and average
them to obtain the final loss.

L(θ, ρ, ω) = 1

h

h−1∑
i=0

L(θ, ρ, ω)t∼Qi , Qi = [d×i+1, d×(i+1)].

(15)
Intuitively, this sampling strategy allows the encoder to

learn different levels of geometric prior and learn from
balanced supervision. It is more uniform compared to
randomly sampling a single t from [1, T ] in the original
DDPM [14]. Our approach divides the time steps into h
= 4 intervals, as discussed in Sec. 4.3.
Discussion. We chose to pre-train the backbone instead
of the diffusion model ϵθ for two reasons. Firstly, the
backbone can be various deep feature extraction networks,
which is more effective in extracting low-level and high-
level geometric features compared to the typically simpler
diffusion model ϵθ. Secondly, separating the backbone
from the pipeline makes our pre-trained framework more
adaptable to different architectures, thereby increasing its
flexibility.

4. Experiments
4.1. Pre-training

Setups. We use ShapeNet [6] to pre-train the model, a
synthetic 3D dataset that contains 52,470 3D shapes across
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Table 2. Object detection results on ScanNet. We report the
Average Precision(%). ”Pre Dataset” refers to the pre-training
dataset, ScanNet-vid and ScanNet-Medium are both subsets of
ScanNet.

Methods Pre. Pre Dataset AP50

VoteNet [36] ✘ - 33.5
STRL [16] ✔ ScanNet [9] 38.4
PointContrast [57] ✔ ScanNet [9] 38.0
DepthContrast [63] ✔ ScanNet-vid [63] 42.9

3DETR (Baseline) [31] ✘ - 37.9
Point-BERT [60] ✔ ScanNet-Medium [26] 38.3
MaskPoint [26] ✔ ScanNet-Medium [26] 42.1
Point-MAE [33] ✔ ShapeNet [6] 42.8
TAP [51] ✔ ShapeNet [6] 41.4
PointDif (Ours) ✔ ShapeNet [6] 43.7

55 object categories. We pre-train our model only on the
training set, which consists of 41,952 shapes. For each 3D
shape, we sample 1,024 points to serve as the input for the
model. Following [33, 60], we use the KNN algorithm to
select k=32 nearest points as a point patch, and set s as 64,
which means each point cloud is divided into 64 patches.
Additionally, we set the embedding dimension of the trans-
former encoder to 384 and the number of heads to 6. The
condition dimension is set to 768.
Visualization. To demonstrate the effectiveness of our pre-
training scheme, we visualize the point cloud generated by
our PointDif. As shown in Fig. 3, we apply a high mask
ratio of 0.8 to the input point cloud for masking and use
the masked point cloud as a condition to guide the diffusion
model in generating the original point cloud. Our PointDif
produces high-quality point clouds. Experimental results
demonstrate that the geometric prior learned through our
pre-training method can provide excellent guidance for both
shallow texture and shape semantics.

4.2. Downstream Tasks

A high-quality point cloud pre-trained model should per-
ceive hierarchical geometric prior. To assess the efficacy of
the pre-trained model, we gauged its performance on vari-
ous fine-tuned tasks using numerous real-world datasets.
Object classification. We first use the classification task on
ScanObjectNN [47] to evaluate the shape recognition abil-
ity of our PointDif. The ScanObjectNN dataset is divided
into three subsets: OBJ-ONLY (only objects), OBJ-BG
(objects and background), and PB-T50-RS (objects, back-
ground, and artificially added perturbations). We take the
Overall Accuracy on these three subsets as the evaluation
metric, and the detailed experimental results are summa-
rized in Tab. 1. Our PointDif achieves better performance
on all subsets, exceeding TAP by 2.4%, 2.9% and 1.9%, re-
spectively. The significant improvement on the challenging
ScanObjectNN benchmark strongly validates the effective-
ness of our model in shaping understanding.

Table 3. Semantic segmentation results on S3DIS Area 5. We
report the mean IoU(%) and mean Accuracy(%).

Methods Pre. mIoU mAcc

PointNet [34] ✘ 41.1 49.0
PointNet++ [35] ✘ 53.5 -
PointCNN [24] ✘ 57.3 63.9
KPConv [46] ✘ 67.1 72.8
SegGCN [22] ✘ 63.6 70.4
Pix4Point [38] ✘ 69.6 75.2
MKConv [54] ✘ 67.7 75.1

PointNeXt (Baseline) [37] ✘ 68.5 75.1
Point-BERT [60] ✔ 68.9 76.1
MaskPoint [26] ✔ 68.6 74.2
Point-MAE [33] ✔ 68.4 76.2
PointDif (Ours) ✔ 70.0 77.1

Object detection. We validate our model on the more chal-
lenging indoor dataset ScanNetV2 [9] for 3D object de-
tection task to assess the scene understanding ability. We
adopt 3DETR [31] as our baseline. To ensure a fair com-
parison, we follow MaskPoint [26] and replace the encoder
of 3DETR with our pre-trained encoder and fine-tune it.
Unlike MaskPoint and Point-BERT, which are pre-trained
on the ScanNet-Medium dataset in the same domain as
ScanNetV2, our approach and Point-MAE are pre-trained
on ShapeNet in a different domain and only fine-tuned on
the training set of ScanNetV2. Tab. 2 displays our exper-
imental results. Our method outperforms Point-MAE and
surpasses MaskPoint and Point-BERT by 1.6% and 5.4%,
respectively. Additionally, our approach exhibits a 2.3%
improvement compared to pre-training the transformer en-
coder of 3DETR on the ShapeNet dataset using the TAP
method. The experiments demonstrate that our model ex-
hibits strong transferability and generalization capability on
scene understanding.
Indoor semantic segmentation. We further validate our
model on the indoor S3DIS dataset [3] for semantic seg-
mentation tasks to show the understanding of contextual
semantics and local geometric relationships. We test our
model on Area 5 while training on other areas. To make a
fair comparison, we put all pre-trained models in the same
codebase based on the PointNext [37] baseline and use the
same decoder and semantic segmentation head. We freeze
the encoder pre-trained on ShapeNet and fine-tune the de-
coder and the segmentation head. The experiment results
are shown in Tab. 3. Compared to training from scratch,
our method boosts the performance of PointNext by 1.5%
in terms of mIoU. Compared to other pre-training meth-
ods such as Point-BERT, MaskPoint and Point-MAE, our
method achieves approximately 1.4% improvement for each
on mIoU. Note that, PointNext was originally trained using
a batchsize of 8, since computational resource constraints,
we thus retrained it with a batchsize of 4 for a fair com-
parison. Significant improvements indicate that our pre-
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Table 4. Semantic segmentation results on SemanticKITTI val set. We report the mean IoU(%) and IoU(%) for some semantic classes.

Methods mIoU car bicycle truck preson bicyclist motorcyclist road sidewalk parking vegetation trunk terrain

Cylinder3D [65] 66.1 96.9 54.4 81.0 79.3 92.4 0.1 94.6 82.2 47.9 85.9 66.9 69.2
SPVCNN [44] 68.6 97.9 59.8 79.8 80.0 92.0 0.6 94.2 81.7 50.4 88.0 69.7 74.1
RPVNet [58] 68.9 97.9 42.8 91.2 78.3 90.2 0.7 95.2 83.1 57.1 87.3 71.4 72.0

MinkowskiNet [8] 70.2 97.4 56.1 84.0 81.9 91.4 24.0 94.0 81.3 52.2 88.4 68.6 74.8
MinkowskiNet+PointDif 71.3 97.5 58.8 92.8 81.4 92.3 30.3 94.1 81.7 56.0 88.5 69.1 75.2

Table 5. Object detection results of CAGroup3D with and with-
out pre-training. We report the Average Precision(%).

Methods AP25 AP50

CAGroup [48] 73.20 60.84
CAGroup+PointDif 74.14 61.31

Table 6. Conditional guidance strategies. We report the mean
IoU(%) and mean Accuracy(%) on S3DIS Area 5.

Methods mIoU mAcc

Cross Attention 69.09 75.19
Point Concat 69.43 75.39
Point Condition Network 70.02 77.05

trained model has successfully acquired hierarchical geo-
metric prior knowledge essential for comprehending con-
textual semantics and local geometric relationships.
Outdoor semantic segmentation. We also validate the ef-
fectiveness of our method on the more challenging real-
world outdoor scene dataset KITTI. The SemanticKITTI
dataset [5] is a large-scale outdoor LiDAR segmentation
dataset, consisting of 43,000 scans with 19 semantic cat-
egories. We employ MinkowskiNet [8] as our baseline
model. During the pre-training phase, we discard its seg-
mentation head and utilize the backbone MinkUNet as
the encoder to extract latent features. We pre-train the
MinkUNet using our framework on ShapeNet and subse-
quently fine-tuned it on the SemanticKITTI. Other pre-
training configurations follow the guidelines outlined in
Sec. 7. The experiment results in Tab. 4 demonstrate that
our pre-training method achieves 71.3% mIoU, which is a
1.1% improvement over the train-from-scratch variant. Our
pre-training framework for point-to-point guided generation
can assist the backbone in learning density priors and en-
able it to adapt to downstream tasks with significant density
variations. The entire results are reported in Sec. 8.
Object detection results of CAGroup3D with and with-
out pre-training. We further evaluate our pre-training
method on the competitive 3D object detection model, CA-
Group3D [48], a two-stage fully sparse 3D detection net-
work. We train CAGroup3D from scratch and report the
result for a fair comparison. We use our method to pre-
train the backbone BiResNet on ShapeNet. Specifically,
we treat BiResNet as the encoder to extract features. The
conditional point generator employs the masked features to
guide the point-to-point recovery of the original point cloud.

Table 7. Recurrent uniform sampling. ‘#Point Clouds’ repre-
sents the number of unique point clouds in a batch, and ‘#t’ repre-
sents the number of time steps t sampled for each point cloud.

#Point Clouds #t Intervals Effective Batchsize mIoU mAcc

128 4 4 512 70.02 77.05
128 4 1 512 69.68 75.90

256 2 2 512 69.67 76.26
256 2 1 512 69.36 75.94

64 8 8 512 69.42 75.71
64 8 1 512 69.24 75.50

512 1 4 512 69.91 75.93
512 1 1 512 69.51 75.95

128 1 1 128 69.39 76.45
128 3 3 384 69.63 75.54
128 5 5 640 69.24 75.16

Other pre-training settings follow Sec. 7. The experimental
results are shown in Tab. 5. Compared to the train-from-
scratch variant, our method improves performance by 0.9%
and 0.5% on AP25 and AP50, respectively. Therefore, our
pre-training framework can be flexibly applied to various
backbones to improve performance. Please refer to Sec. 8
for additional results.

4.3. Ablation Study

Conditional guidance strategies. We study the influence
of different guidance strategies for CPDM on S3DIS. As
shown in Tab. 6, the cross-attention way even performs
worse than the simple pointwise concatenation way. We
speculate this is because the cross-attention mechanism at-
tempts to capture relationships between different points.
However, the density varies across different regions for
point cloud data, potentially impacting the model’s perfor-
mance. In contrast, our PCNet employs a point-to-point
guidance approach, where each point is processed indepen-
dently of others. This approach is advantageous in enabling
the network to capture point density information. Addition-
ally, compared to pointwise concatenation, our utilization
of the reset gate control mechanism assists the network in
adaptively retaining relevant geometric features, thereby en-
hancing performance.
Recurrent uniform sampling. We validate the effective-
ness of our proposed recurrent uniform sampling strategy
on S3DIS. Specifically, (i) we first verify the impact of the
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Figure 4. Masking ratio. We report the Overall Accuracy(%)
on ScanObjectNN and the mean IoU(%) on S3DIS with different
masking ratios.

number of partition intervals and whether the recurrent sam-
pling strategy is adopted on experimental results with the
same effective batchsize. As presented in lines 1-6 of Tab. 7,
each pair of lines illustrates the results obtained with and
without recurrent uniform sampling. The results indicate
that our sampling strategy outperforms the original random
sampling method under the same effective batch size. (ii)
We further investigate the impact of sample diversity on the
experimental results with the same effective batchsize. Our
approach involves sampling t 4 times and calculating the
loss for each sample. We increase the number of unique
point clouds in a batch by a factor of 4, which is equivalent
to sampling only one t for each point cloud sample. For the
experiment in line 7 of Tab. 7, we uniformly sample from
4 intervals for each set of 4 adjacent samples. The experi-
mental results further demonstrate the superiority of our re-
current uniform sampling method for each sample. (iii) We
also validate the experimental results by partitioning differ-
ent numbers of intervals and performing uniform sampling,
while keeping the number of unique point clouds in a batch
constant. The results in lines 10-11 of Tab. 7 indicate that
our algorithm, which divides the samples into 4 intervals
and performs recurrent uniform sampling, is optimal. Com-
pared to the original sampling method in DDPM (line 9 of
Tab. 7), our recurrent uniform sampling strategy resulted in
a 0.6% performance improvement.
Different time intervals. To demonstrate that our pre-
training method learns hierarchical geometric prior, we con-
duct experiments with the same settings by sampling t at
different intervals for pre-training and evaluating the re-
sults. Tab. 8 shows that the classification results are sig-
nificantly better in the [1, 500] time interval than in other
intervals, while achieving unsatisfactory segmentation re-
sults. Conversely, the segmentation performance is better
in the [1501, 2000] time interval, while the classification re-
sults will be slightly worse. We observe a gradual transi-
tion of classification and segmentation results among these
four intervals, which fully validates our theory. In the early
intervals of training, the model needs more low-level ge-
ometric features to guide the recovery of shallow texture
from low-noise point clouds. Moreover, in the later inter-
vals, high-level geometric features become crucial for guid-
ing the recovery of semantic structure in high-noise point
clouds. Therefore, our model can learn hierarchical geo-

Table 8. Different time intervals. We study the impact of pre-
training with different time intervals. We report the object classi-
fication results on ScanObjectNN and semantic segmentation re-
sults on S3DIS Area 5.

Time Intervals
Classification Segmentation

OBJ-ONLY OBJ-BG PB-T50-RS mIoU

[1, 500] 92.43 92.25 88.31 68.83
[501, 1000] 91.57 91.39 87.23 68.52
[1001, 1500] 90.36 92.25 87.13 69.19
[1501, 2000] 89.50 87.61 83.28 69.70
[1, 2000](Ours) 91.91 93.29 87.61 70.02

metric features throughout the entire training process.
Masking ratio. We further validate the impact of different
masking ratios on downstream tasks and separately report
the results for classification on ScanObjectNN and seman-
tic segmentation on S3DIS. As shown in Fig. 4, encoding
all point patches without masking harms the model’s learn-
ing. By employing masking, the overall difficulty of the
self-supervised proxy task is increased, thereby aiding the
backbone in learning more rich geometric priors. Addition-
ally, our method achieves the best classification and seman-
tic segmentation performance when the mask ratio is 0.8.

5. Conclusion

In conclusion, we propose a novel framework for point
cloud pre-training based on diffusion models, called Point-
Dif. It aids the point cloud backbone to learn hierarchi-
cal geometric prior through the progressive guidance char-
acteristic of the conditional diffusion model. Specifically,
we present a conditional point generator to assist the net-
work in learning the point density distribution of the object
through point-to-point guidance generation. We also intro-
duce a recurrent uniform sampling strategy on time steps
to facilitate the balanced supervision during the backbone’s
pre-training. Extensive experiments on various real-world
indoor and outdoor datasets demonstrate significant perfor-
mance improvements of our PointDif compared to existing
methods. Moreover, our proposed method consistently in-
creases performance on competitive backbones. Overall,
our diffusion-based pre-training framework provides a new
direction for advancing point cloud processing.
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