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Abstract

Infrared and visible image fusion aims to generate a
fused image by integrating and distinguishing complemen-
tary information from multiple sources. While the cross-
attention mechanism with global spatial interactions ap-
pears promising, it only capture second-order spatial inter-
actions, neglecting higher-order interactions in both spatial
and channel dimensions. This limitation hampers the ex-
ploitation of synergies between multi-modalities. To bridge
this gap, we introduce a Synergistic High-order Interaction
Paradigm (SHIP), designed to systematically investigate the
spatial fine-grained and global statistics collaborations be-
tween infrared and visible images across two fundamental
dimensions: 1) Spatial dimension: we construct spatial
fine-grained interactions through element-wise multiplica-
tion, mathematically equivalent to global interactions, and
then foster high-order formats by iteratively aggregating
and evolving complementary information, enhancing both
efficiency and flexibility; 2) Channel dimension: expanding
on channel interactions with first-order statistics (mean),
we devise high-order channel interactions to facilitate the
discernment of inter-dependencies between source images
based on global statistics. Harnessing high-order interac-
tions significantly enhances our model’s ability to exploit
multi-modal synergies, leading to superior performance
over state-of-the-art alternatives, as shown through com-
prehensive experiments across various benchmarks. Code
is available at https://github.com/zheng980629/SHIP.

1. Introduction
Infrared and visible image fusion strives to aggregate and
discern complementary information from source images
into fused images, enhancing their applicability in subse-
quent tasks [8, 10, 18, 32, 48, 50, 75]. Specifically, visible
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Figure 1. Comparison between previous fusion rules and our pro-
posed paradigm. Previous works either (a) lack explicit interaction
or (b) achieve only 2nd order spatial interactions; and (c) our SHIP
incorporates high-order spatial and channel interactions to explore
synergistic correlations between modalities in spatial fine-grained
details and global statistics, progressively integrating and distin-
guishing the complementary information.

images are distinguished by their intricate texture details
and alignment with human visual perception. In contrast,
infrared images excel in capturing essential thermal radi-
ation information, enabling the highlighting of significant
targets like vehicles and pedestrians, especially in low-light
environments. Consequently, there has been considerable
attention on investigating synergistic correlations between
various modalities to integrate complementary information.

Recently, the remarkable advancements in deep learn-
ing [19, 21, 31, 35, 47, 54, 79, 81, 86, 87] have sparked a
revolution within this community. Some approaches typi-
cally begin by pre-training an encoder-decoder for feature
extraction and image reconstruction. Subsequently, spe-
cific fusion rules such as concatenation [45], addition [51],
weight summation [25], and maximum [88] are applied to
capture correlations between source images for information
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fusion. Additionally, the design of loss functions based on
image fusion properties, like saliency-based [39, 45, 62]
and illumination-aware [56], provides crucial guidance for
models to explore complementary information within input
sources. In parallel, GAN-based methods [27, 30, 39, 42]
compels the generator to investigate reciprocal information
between modalities by conceptualizing image fusion as a
game between the generator and discriminator. However, as
shown in Fig. 1(a), these approaches do not explicitly estab-
lish synergistic correlations and inter-dependencies learning
between infrared and visible images.

The emergence of Transformer [6, 20, 38], characterized
by second-order spatial interactions [53] deviating from
the dot-products among key, query, and value, challenges
the dominance of CNNs. YDTR [59] introduces a dy-
namic Transformer module for acquiring local features and
context information from different modalities. SwinFu-
sion [46] develops self-attention and cross-attention mech-
anisms, modeling and integrating dependencies within both
intra-domain and inter-domain features. PanFormer [84]
designs a customized Transformer, incorporating two value
terms from disparate modalities to effectively capture their
collaborations. However, these transformer architectures
limit their interactions to the second order in spatial di-
mensions, neglecting the untapped potential of high-order
interactions in both spatial and channel dimensions. This
limitation results in a restricted exploration of synergistic
modality correlations, as illustrated in Fig. 1 (b).

Motivated by the above analysis, our objective is to
model high-order interactions in spatial and channel di-
mensions to comprehensively explore synergies between
infrared and visible modalities. Regrettably, employing a
straightforward approach of cascading self-attention oper-
ations in two dimensions only captures multiple second-
order interactions, simultaneously imposing an intolerable
computational burden due to matrix multiplications. There-
fore, how to extend second-order interactions to arbitrary
orders without introducing substantial computational over-
head is the key ingredient.

In this paper, we introduce a Synergistic High-order In-
teraction Paradigm (SHIP), offering an innovative approach
to efficiently capture synergies in spatial fine-grained and
global statistics among multiple modalities through high-
order interactions. Specifically, it involves two dimensions:
1) Spatial dimension: we employ the frequency domain to
establish spatial fine-grained correlations between infrared
and visible representations through element-wise multipli-
cation, a mathematically equivalent yet computationally ef-
ficient alternative to the costly matrix multiplication. Sub-
sequently, we iteratively aggregate complementary infor-
mation and evolve the synergistic correlations, thus fos-
tering high-order spatial interactions and effectively exca-
vating collaborations between modalities. 2) Channel di-

mension: building on the SE block’s adaptive recalibration
of feature responses using first-order statistics (mean) for
first-order channel interaction, we elevate this concept into
a high-order format. This extension enables the exploration
of synergistic correlations grounded in global statistics from
source images, providing a deeper insight into distinguish-
ing intricate inter-dependencies among different modalities.

Our contributions are summarized as follows:
• The novel Synergistic High-order Interaction Paradigm

(SHIP) in this study explores intricate high-order inter-
actions in infrared and visible image fusion. By incorpo-
rating high-order interactions in both spatial and channel
dimensions, SHIP stands as a pioneering approach, inves-
tigating synergistic correlations between modalities.

• This paradigm investigates high-order interactions in-
volving spatial fine-grained and global statistics, collabo-
ratively aggregating complementary information and dis-
tinguishing inter-dependencies from source modalities.

• Our experiments on multiple infrared-visible benchmarks
show that the proposed framework outperforms state-of-
the-art methods. Furthermore, we also demonstrate its
effectiveness in the pan-sharpening task.

2. Related Work

2.1. Infrared and Visible Image Fusion

Infrared and visible image fusion aims to obtain a synthetic
image effectively highlights salient objects from the source
images while preserving visual quality. To align the synthe-
sized fusion results more closely with human visual percep-
tion, various image processing techniques were introduced,
including discrete wavelet [36], Laplacian pyramid [49],
contourlet transform [74], sparse representation [37], low-
rank representation [26], principal component analysis [9],
and total variation [41]. However, these methods involved
the formulation of fusion rules and intricate activity levels,
constraining their applicability in complex scenarios.

Recently, explosive deep learning-based methods [17,
28, 29, 33, 34, 58, 62, 70, 78, 80, 83] have revolution-
ized image fusion, falling into three main categories: auto-
encoder (AE)-based methods, CNN-based methods, and
generative adversarial network (GAN)-based methods. AE-
based methods [25, 57, 65, 66, 76] typically employ pre-
trained auto-encoders for feature extraction and image re-
construction, emphasizing the design of network architec-
tures and fusion strategies. CNN-based methods [40, 45,
45, 55, 56, 61] integrate these components within an end-
to-end framework. Zhang et al. [72] developed intensity
and gradient branches to preserve these essential properties
of source images. In addition, researchers have developed
various loss functions [40, 43, 45, 56] grounded in image fu-
sion properties, providing substantial guidance during net-
work training. For example, Ma et al. [45] designed a fusion
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Figure 2. The detailed framework of the proposed Synergistic High-order Interaction Paradigm (SHIP) comprises alternating spatial and
channel high-order interactions, executed over L iterations. Specifically, the spatial high-order interaction sufficiently excavates collabora-
tions between two modalities and integrates spatial fine-grained complementary information through high-order modelling. Subsequently,
the channel high-order interaction, rooted in the global first-order statistic (mean), further investigates global statistics, distinguishing inter-
dependencies between visible and infrared modalities.

loss that utilizes a specialized target mask, allowing for se-
lective fusion of target and background regions. However,
due to the absence of authentic fused images for reference,
researchers [27, 30, 42, 44, 82] attempted to introduce GAN
into the learning paradigm. They utilized the discrimina-
tor to compel the generator to preserve more texture details
highlight salient objects from source images.

2.2. High-Order Interaction Modeling

The vanilla convolution operation does not inherently cap-
ture the spatial interactions between a specific location and
its neighboring region. A refined approach, known as dy-
namic convolution [2, 13, 22], introduces a first-order spa-
tial interaction by generating dynamic weights adapted to
the input. In Transformers [6], the self-attention mech-
anism facilitates a second-order spatial interaction via its
key ingredient: the intrinsic matrix multiplication involving
queries, keys, and values. Shifting to the channel dimen-
sion, the Squeeze-and-Excitation block [15, 63] utilizes the
first-order statistic (mean) to recalibrate channel responses.
Generally, these improvements only focus on capturing in-
teractions in either the spatial or channel dimensions, rather
than achieving high-order interactions in both dimensions.

3. Methods
3.1. Overview Framework

The proposed paradigm, illustrated in Fig. 2, operates as
follows: given an infrared image, IR ∈ RH×W×1, and a
visible image, IV ∈ RH×W×3, we extract corresponding

shallow features using separate convolution layers for each
modality, yielding FR ∈ RH×W×C and FV ∈ RH×W×C.
Then, these modality-aware features undergo a series of
core Synergistic High-order Interactions Paradigm (SHIP),
incorporating both spatial and channel dimensions. This
process explores synergies between the two modalities in
spatial fine-grained details and global statistics. Finally,
these features are projected back into the image space to
generate the fused result, IF ∈ RH×W×1. The fusion pro-
cess specifically targets the Y channel in the YCbCr color
space, following the approach of prior works [24, 57]. In
summary, the paradigm can be formulated as follows:

IF = SHIPL(ψ(IR), ϕ(IV)), (1)

where ψ(·) and ϕ(·) denote feature extractors and L indi-
cates the iteration number of our SHIP.

3.2. High-Order Spatial Interactions

Revisiting the Self-attention. The self-attention mecha-
nism, the key ingredient of Transformer [6], fosters second-
order spatial interactions through matrix multiplications
among key, query, and value components. This process em-
powers the model to dynamically distinguish and aggregate
complementary information, grounded in the query modal-
ity. For the infrared and visible image fusion, the query Q,
key K, and value V are derived by:

Q = FVW
Q, K = FRWK , V = FRWV , (2)

where WQ, WK , and WV indicate linear transformations
applied to project modality-aware feature representations.
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Figure 3. Feature visualization after each interaction at different spatial high-order interaction step. For instance, F 2
V3
s

indicates the feature

after the third-order interaction in the 2nd spatial high-order interaction. These visualizations illustrate the efficacy of high-order spatial
interactions in two perspectives: (1) within each high-order interaction, feature responses escalate as the order increases, highlighting the
salient objects; (2) distinct high-order interactions yield unique responses, showcasing the diversity in feature representations.

The self-attention mechanism, which captures second-order
spatial interactions centered on the input FV , is realized
through dot-product operations among these components:

OS((FV)
2) = F 1

VS
= softmax

(
Q⊗KT

√
dk

)
⊗V = A⊗V,

(3)
where dk represents the dimension of the key, ⊗ indicates
the dot-product operation, A ∈ RHW×HW is the corre-
lation matrix, and OS((FV)

2) signifies the output of the
self-attention module, capturing second-order spatial inter-
actions about the input feature FV .

However, the dot product, despite its effectiveness,
comes with significant computational costs, rendering it im-
practical for achieving high-order operations through cas-
cading self-attention mechanisms.

Equivalently efficient form. Each element of A can be
redefined by the inner product: Aij = ⟨qi,kj⟩ , qi ∈ Q,
kj ∈ K, and ⟨·⟩ indicates the inner product. The convolu-
tion theorem establishes that the correlation or convolution
of two signals in the spatial domain equals them Hadamard
product between them in the frequency domain. To lever-
age this property, we incorporate the frequency domain into
the self-attention mechanism, simplifying matrix multipli-
cation to a lightweight element-wise operation. Initially, we
transform the modality-aware features FR and FV into the
frequency domain using fast Fourier transform (FFT). The
correlation is computed as follows:

A = F−1
(
F
(
FVW

Q
)
⊙F (FRWK)

)
, (4)

where F(·) and F−1(·) denote FFT and inverse FFT, ⊙ in-
dicates the Hadamard product, and F(·) represents the con-
jugate transpose operation. Furthermore, the integrated fea-
tures with second-order spatial interactions are obtained:

OS((FV)
2) = F 1

VS
= Norm(A)⊙ (FRWV), (5)

where Norm represents layer normalization applied to A.
Delving into the High-Order Format. Recent method-

ologies, such as [3, 4, 73], have shown a strong preference

for employing self-attention mechanisms. However, these
approaches, often seen in cascading self-attention blocks,
tend to generate multiple second-order interactions centered
around the query feature, rather than achieving higher-order
modeling. Formally, the recursive format of L cascaded
self-attention can be expressed as:

OS((F
i−1
VS

)2) = F i
VS

= Attention (Qi,Ki,Vi) ,

Qi = F i−1
VS

WQi ,Ki = FRWKi ,Qi = FRWVi ,
(6)

where 1 ≤ i ≤ L. It is apparent that this process only
captures second-order interactions about the input feature
FVi−1

while inducing huge computational costs.
In contrast, standing on the equivalently efficient form,

we progress beyond second-order interactions and extend
our reach to arbitrary-order interactions (N -order) while
maintaining efficiency. Concretely, for each ith iteration,
we extend Eq. 5 into the following high-order formulation:

OS((F
i−1
V )j) = F i

Vj
s
= Norm(F i

Vj−1
S

WQi
j)⊙ (F i

Rj−1
S

WVi
j),

F i
Vj−1

S

= Norm(F i
Vj−2

S

WQi
j−1), F i

Rj−1
S

= F i
Rj−2

S

WVi
j−1 ,

(7)
where 2 ≤ j ≤ N . This formulation enables us to capture
interactions up to the N -th order efficiently.

In general, for the traditional transformer chain with L,
the sequence unfolds as follows:

FV → OS((FV)
2) → F 1

VS
→ OS((F

1
VS

)2) → F 2
VS
. . .

→ OS((F
i
VS

)2) → F i+1
VS

. . .OS((F
L−1
VS

)2) → FL
VS
.

(8)
In contrast, our high-order modeling replaces this with:

FV → OS((FV)
N ) → F 1

VS
→ OS((F

1
VS

)N ) → F 2
VS
. . .

→ OS((F
i
VS

)N ) → F i+1
VS

. . .OS((F
L−1
VS

)N ) → FL
VS
.
(9)

Indeed, this modification empowers us to capture interac-
tions up to theN -th order within each iteration. As depicted
in Fig. 3, diverse orders within each spatial high-order in-
teraction integrate complementary information of varying
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granularity. Moreover, interactions at different iterations
exhibit discriminative responses, enriching the feature di-
versity throughout the iterative process.

3.3. High-Order Channel Interaction

Revisiting Squeeze and Excitation Block. The Squeeze-
and-Excitation (SE) block [15] leverages the first-order
global statistic, mean, to model channel interactions. This
approach enables the SE block to explicitly capture inter-
dependencies between input feature channels. For the in-
frared and visible image fusion, the SE block formulates
the dependency between infrared and visible features from
the ith high-order spatial interaction as follows:

Zi =
1

H ×W

H∑
x=1

W∑
y=1

F i(x, y),

OC((F
i)1) = F i

C = σ
(
WZi

1Zi
)
· F i,

(10)

where F i = concat[F i
VS
, F i

RS
], Zc represents the first-

order statistic, and σ denotes the Sigmoid function. WZ

includes two linear transformations and a ReLU function.
Delving into the High-Order Format. Similar to high-

order spatial interactions, we extend the SE block to achieve
high-order channel interactions:

OC((F
i)j) = F i

Cj = σ
(
WZi

jZi
j−1

)
· (WFi

jF i
j−1),

Zi
j−1 = σ(WFi

j−1Zi
j−2), F

i
j−1 = WFi

j−1F i
j−2.

(11)
Finally, a convolution layer integrates F i

C into the fused
modality, yielding the integrated feature, F i

VC
.

Through N -order spatial and channel interactions con-
ducted over L iterations, the interaction chain can be math-
ematically expressed as follows:

FV → OS((FV)
N ) →OC((F

1
VS

)N ) → OS((F
1
VC

)N )

→ OC((F
2
VS

)N ) → . . .OS((F
L−1
VC

)N ) → OC((F
L
VS

)N ).
(12)

We analyze channel responses at 2nd channel high-order
interaction along the channel dimension. Contrary to con-
sistent responses across different orders, our high-order
modeling adaptively distinguishes inter-dependencies be-
tween source modalities, as illustrated in Fig. 4.

3.4. Loss Functions

The loss function comprises the intensity and gradient
terms: L = Lint + λLgra. λ represents the trade-off pa-
rameter. To emphasize salient objects from visible and in-
frared images [30, 39], we introduce a saliency-based inten-
sity loss, defined as follows:

Lint = ∥(ωV ◦ IV + ωR ◦ IR)− IF∥1 , (13)

Figure 4. Channel interactions of different orders across channel
indices. This observation serves as compelling evidence, suggest-
ing that the interactions of varying orders explore diverse inter-
dependencies between infrared and visible modalities.

where ∥ · ∥1 denotes ℓ1 norm. The weighted maps ωV
and ωR are derived from the visible and infrared images
as ωV = SV/ (SV − SR) and SR = 1−SV , where S is the
saliency matrix computed using the algorithm in [11].

To preserve crucial texture details from the source im-
ages in the fused results, we introduce a gradient loss:

Lgra =
1

HW
∥∇IF −max (∇IR,∇IV)∥1 , (14)

where ∇ indicates the gradient operator used for texture in-
formation measurement within an image, and max(·) de-
notes the element-wise maximum operation.

4. Experiments
4.1. Experimental Settings

Datasets and metrics. To assess the effectiveness of our
SHIP, we conduct comprehensive experiments on three pub-
licly available datasets: M3FD [30], RoadScene [64], and
TNO [60]. The M3FD dataset comprises 4200 paired in-
frared and visible images, with 3900 allocated for training
and 300 for official testing. To further evaluate the gener-
alization capability of our approach, we test our algorithm
(trained on M3FD) on the RoadScene and TNO datasets.
Since the latter two datasets lack a predefined split, we fol-
low the configuration described in [72] and randomly select
25 pairs from each dataset for comparison.

A high-quality fused image should capture both salient
objects and visual quality from the multi-modal images. To
comprehensively measure the fusion results, we employ six
metrics, including spatial frequency (SF) [7], mutual infor-
mation (MI) [52], visual information fidelity (VIF) [14], av-
erage gradient (AG) [5], Qabf [68], and feature mutual in-
formation (FMI) [12]. Moreover, higher values for these
metrics indicate superior fusion performance.

Implementations. We implement our SHIP with Py-
Torch on a single NVIDIA GTX 3090 GPU. We use the
Adam optimizer with β1 = 0.9, β2 = 0.99 to update our
model for 30K, each with a batch size of 8. The initial
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Figure 5. Qualitative results of different fusion methods on M3FD, RoadScene, and TNO datasets, respectively.

learning rate is set to 1× 10−4 and decreases by a factor of
0.5 every 5K iterations. The patch size is set to 128× 128.

4.2. Comparison with State-of-the-Arts

We compare our proposed SHIP with 9 state-of-the-art ap-
proaches: DDcGAN [44], DenseFuse [25], AUIF [77],
DIDFuse [76], ReCoNet [16], SDNet [71], TarDAL [30],
U2Fusion [64], and UMFusion [61] on three datasets.

Qualitative Comparisons. The qualitative results for
three typical image pairs from various datasets are illus-
trated in Fig. 5. Compared to other existing methods, our
proposed SHIP boasts two notable advantages. Firstly, our
algorithm excels in preserving prominent objects from both
infrared and visible images. As demonstrated in Fig. 5,
pedestrians and tree branches in our method showcases high
contrast, and distinctive contours, enhancing its suitabil-
ity for visual observation (see red tangles of the first and
third examples). Additionally, our results generate fusion
outputs with intricate textures, aligning well with human
visual perception. In contrast, visualization results show
that DenseFuse, SDNet, and U2Fusion fail to effectively

highlight discriminative targets, whereas DDcGAN and Re-
CoNet lack the ability to capture intricate textural details.

Quantitative Comparisons. Table 1 reveals the excep-
tional performance of our method across multiple metrics
on the three datasets. The superior MI and FMI scores in-
dicate our model’s ability to effectively leverage informa-
tion from both source images, showcasing its competence
in transferring abundant information into the fused results.
Furthermore, our approach’s leading performance in SF,
AG, and Qabf signifies its remarkable capacity to integrate
multi-modal complementary information and preserve in-
tricate texture details. These achievements contribute to the
preservation of fine-grained textures, ultimately resulting in
visually appealing and detailed fused images. Moreover,
the highest VIF also demonstrates that our fusion results
have high-quality visual effects and small distortion, satis-
fying the human visual perception. These results collec-
tively emphasize the robustness and generalization of our
SHIP across various evaluation metrics, confirming its ef-
fectiveness in diverse scenarios and datasets.
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Table 1. Quantitative comparison of our SHIP with 9 state-of-the-
art methods on M3FD, RoadScne, and TNO datasets. The best and
the second results are marked in bold and underlined.

Methods M3FD dataset [30]
SF↑ MI↑ VIF↑ AG↑ Qabf↑ FMI↑

DDcGAN [44] 0.059 2.540 0.768 5.275 0.480 0.836
DenseFuse [25] 0.037 2.930 0.762 3.303 0.503 0.863

AUIF [77] 0.046 3.049 0.819 3.922 0.503 0.845
DIDFuse [76] 0.055 3.048 0.877 4.871 0.494 0.831
ReCoNet [16] 0.041 3.049 0.818 3.929 0.486 0.845
SDNet [71] 0.053 3.231 0.678 4.730 0.528 0.846

TarDAL [30] 0.049 3.162 0.810 4.136 0.405 0.825
U2Fusion [64] 0.042 2.759 0.709 3.967 0.538 0.850
UMFusion [61] 0.034 3.087 0.709 2.928 0.397 0.855

Ours 0.060 4.813 0.922 5.177 0.549 0.892

Methods RoadScene dataset [64]
SF↑ MI↑ VIF↑ AG↑ Qabf↑ FMI↑

DDcGAN [44] 0.039 2.618 0.595 3.771 0.309 0.859
DenseFuse [25] 0.040 3.128 0.803 4.012 0.513 0.868

AUIF [77] 0.055 3.111 0.847 5.318 0.517 0.856
DIDFuse [76] 0.052 3.184 0.827 5.038 0.487 0.853
ReCoNet [16] 0.033 3.159 0.796 3.484 0.394 0.858
SDNet [71] 0.054 3.423 0.821 5.531 0.533 0.863

TarDAL [30] 0.050 3.464 0.787 4.389 0.448 0.852
U2Fusion [64] 0.047 2.811 0.740 4.885 0.526 0.861
UMFusion [61] 0.038 3.202 0.791 3.715 0.505 0.866

Ours 0.058 3.914 0.905 5.589 0.550 0.873

Methods TNO dataset [60]
SF↑ MI↑ VIF↑ AG↑ Qabf↑ FMI↑

DDcGAN [44] 0.048 1.847 0.674 4.831 0.349 0.858
DenseFuse [51] 0.037 2.402 0.800 3.634 0.423 0.890

AUIF [77] 0.051 2.271 0.815 4.712 0.426 0.879
DIDFuse [76] 0.049 2.442 0.829 4.636 0.405 0.863
ReCoNet [16] 0.029 2.426 0.827 3.323 0.357 0.878
SDNet [71] 0.050 2.186 0.762 4.844 0.421 0.883

TarDAL [30] 0.051 2.648 0.860 4.887 0.467 0.881
U2Fusion [64] 0.035 1.922 0.688 3.733 0.418 0.879
UMFusion [61] 0.036 2.247 0.717 3.166 0.398 0.888

Ours 0.052 3.849 0.933 5.012 0.518 0.890

4.3. Ablation Studies

We conduct ablation studies on the M3FD dataset to further
investigate the effectiveness of our proposed SHIP under
different the number of orders N and iterations L. For ex-
ample, L4N5 denotes SHIP with 4 iterations and 5-order
spatial and channel interactions.

Effect of the number of orders N : To investigate the
impact of different orders of spatial and channel interac-
tions, we conduct experiments on proposed SHIP with vary-

SF MI VIF

AG Qabf FMI

Figure 6. Ablation studies of the proposed SHIP with different
numbers of order N on the M3FD dataset.

SF MI VIF

AG Qabf FMI

Figure 7. Ablation studies of the proposed SHIP with different
numbers of block L on the M3FD dataset.

ing orders denoted as N . As illustrated in Fig. 6, the per-
formance significantly increases as the number of stages in-
creases until reaching 5. After this threshold, the perfor-
mance stabilizes with slight improvements as N increases
further. To strike a balance between performance and com-
putational cost, we set N = 5 as the default order number.
Furthermore, we present visualization results of our SHIP’s
feature responses with varied orders in Fig. 8. These visu-
alizations demonstrate that the effectiveness of high-order
interactions in unveiling synergistic correlations between
modalities, thus highlighting salient objects.

Effect of the number of iterations L: We conduct 5
experiment (L1N5, L2N5, L3N5, L4N5, and L5N5) to in-
vestigate the effect of the number of blocks on the results.
From the observations in Fig. 7, it is evident that the model’s
performance improves considerably with an increase in the
number of blocks. However, further increments in L result
in a decreasing trend in SF and AG, possibly due to chal-
lenges in gradient propagation. Consequently, we employ
L = 3 as the default block number in all experiments.

4.4. Extension on Pan-sharpening

To further demonstrate the effectiveness of our SHIP in
the multi-modality image fusion task, we extend it on the
panchromatic and multi-spectral image fusion task, named
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Figure 8. Visualization results of the proposed SHIP with different numbers of orders N on the M3FD dataset.

Table 2. Quantitative comparison of our SHIP with 6 state-of-the-art methods on WorldView II, GaoFen2, and WorldView III datasets.

Methods
WordView II GaoFen2 WordView III

PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ ERGAS↓

GS [23] 35.638 0.918 0.042 1.877 37.226 0.903 0.031 1.674 22.561 0.547 0.122 8.243
PANNet [69] 40.818 0.963 0.026 1.056 43.066 0.969 0.018 0.858 29.684 0.907 0.085 3.426
SRPPNN [1] 41.454 0.968 0.023 0.990 47.200 0.988 0.011 0.559 30.435 0.920 0.077 3.155
GPPNN [67] 41.162 0.968 0.024 1.032 44.215 0.982 0.014 0.736 30.179 0.918 0.078 3.260
MutNet [85] 41.677 0.971 0.022 0.952 47.304 0.989 0.010 0.547 30.491 0.922 0.075 3.113

INNformer [84] 41.690 0.970 0.023 0.951 47.353 0.989 0.010 0.548 30.537 0.921 0.074 3.099
Ours 41.736 0.973 0.022 0.948 47.458 0.990 0.010 0.537 30.615 0.925 0.074 3.056

LRMS PAN PANNET SRPPNN GPPNN MutNet INNformer Ours

PANNET SRPPNN GPPNN MutNet INNformer Ours

GS

GS

Figure 9. Visual comparison on WorldView-II dataset.

d Pan-sharpening. Following [84], we conduct extensive
experiments on three widely used datasets: WorldView II,
GaoFen2, and WorldView III datasets [84].

Quantitative Comparisons. Table 2 presents the eval-
uation metrics across three datasets, with the best and
second-best values highlighted in bold and underline. Our
proposed method consistently outperforms other competi-
tive techniques across all satellite datasets. Specifically, our
method surpasses 0.105 dB over the second-best INNformer
on the GaoFen2 dataset. These consistent performances un-
derscore the lower spectral distortion and superior preserva-
tion of spatial textures achieved by our SHIP.

Qualitative Comparisons. Fig. 9 visually demonstrates
the comparison results, providing further confirmation of
the effectiveness of our method. The last row displays the
Mean Squared Error (MSE) residuals between the output
pan-sharpened results and the ground truth. In comparison,
our model exhibits minimal spatial and spectral distortions.
The outstanding performance of our method underscores
the effectiveness of the proposed synergistic high-order in-
teraction mechanism, which integrates complementary in-
formation and enhance the visual quality of results.

5. Conclusion

In this paper, we pioneer the exploration of the Syner-
gistic High-order Interaction paradigm (SHIP) to inves-
tigate collaborations between infrared and visible image
modalities for image fusion. Our SHIP comprises both
spatial and channel dimensions. The spatial high-order
interaction progressively captures synergistic correlations
between infrared and visible modalities, effectively in-
tegrating spatial fine-grained complementary information
through high-order modeling. The channel high-order in-
teraction, grounded global statistic, investigates and distin-
guishes the inter-dependencies between source modalities.
Extensive experiments on multiple infrared and visible im-
age fusion benchmarks have shown the superiority of our
proposed synergistic high-order interaction paradigm.
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