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Abstract

Style transfer aims to render an image with the artis-
tic features of a style image, while maintaining the origi-
nal structure. Various methods have been put forward for
this task, but some challenges still exist. For instance, it
is difficult for CNN-based methods to handle global infor-
mation and long-range dependencies between input images,
for which transformer-based methods have been proposed.
Although transformers can better model the relationship be-
tween content and style images, they require high-cost hard-
ware and time-consuming inference. To address these is-
sues, we design a novel transformer model that includes
only the encoder, thus significantly reducing the computa-
tional cost. In addition, we also find that existing style
transfer methods may lead to images under-stylied or miss-
ing content. In order to achieve better stylization, we de-
sign a content feature extractor and a style feature extrac-
tor, based on which pure content and style images can be
fed to the transformer. Finally, we propose a novel network
termed Puff-Net, i.e., pure content and style feature fusion
network. Through qualitative and quantitative experiments,
we demonstrate the advantages of our model compared to
state-of-the-art ones in the literature. The code is available
at https://github.com/ZszYmy9/Puff-Net.

1. Introduction
As personalized expression gains popularity, people in-
creasingly seek to transform images into new artistic styles.
Imagine turning a plain landscape photo into an oil painting
or a snapshot into an Impressionist-inspired image. This
technology, known as Style Transfer in computer vision,
offers possibilities for artistic expression. It captures and
blends the essence of artistic styles into different images,
creating pieces that merge original content with artistic
styles.

Early style transfer methods primarily relied on opti-
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Figure 1. Comparison of different models based on loss and ca-
pacity, with the loss being a combination of 60% content loss and
40% style loss. Our model shows a favorable balance between
capacity and loss. Details can be found in the Method and Experi-
ments sections.

mization algorithms which minimize the differences be-
tween the input image and the reference image. How-
ever, the high computational complexity of these meth-
ods greatly limited their practical applications. With tech-
nological advancements, image style transfer techniques
based on direct inference have made significant progress.
The method introduced by Gatys et al. [11], which em-
ploys convolutional neural networks (CNN), extracts fea-
tures of content and style from different layers of a pre-
trained CNN model. This approach has significantly re-
duced computational complexity and spurred a wave of re-
lated research, including developments like AdaIN [12],
Avatar [24], SANet [21], and MAST [5]. Despite the
achievements of these CNN-based inference methods for
image style transfer, they still face limitations. They de-
pend on convolution operations to capture image features,
and their performance is limited when the network layers
are insufficient to capture global information. On the other
hand, as the number of layers increases, the content details
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Figure 2. Some results of our Puff-Net. Our method achieves
a better balance between maintaining stylized effects and reduc-
ing computational costs. The main body and background of the
content image can be stylized more reasonably based on the style
image.

of the synthesized image may be lost, which in turn affects
the overall quality of the stylized image. Therefore, effec-
tively transferring style while maintaining content integrity
remains a challenge in the field of image style transfer.

Vision transformer (ViT) [7] offers a novel approach for
utilizing transformer models [25] in visual tasks. By di-
viding input images into a series of small patches and re-
arranging them to form embedding vectors, this method
has been shown to surpass the performance of traditional
CNNs in several visual tasks. For example, a transformer-
based model [8] has achieved significant breakthroughs in
style transfer tasks. The success of transformers in han-
dling image data can be attributed to their attention mech-
anism, which captures the global context of images. Addi-
tionally, this mechanism helps the model better understand
the relationship between content and style in images, en-
hancing stylization efforts. However, the model capacity
of transformer is large, with high hardware requirements
and slow training speed. In order to tackle these difficul-
ties, we design a transformer that includes only the encoder.
We modify the encoder structure of the transformer so that
we can obtain stylized output sequences of image patches
through the encoder alone. The modified transformer is
of lower complexity and has a significantly improved in-
ference speed.

By analyzing the generated results, we found that the
generated images may have significant differences from the
content images. The feature distribution of the generated
images is not visually reasonable where the content features
of some style images also appear. Our objective is to elim-
inate the style attributes from the content images, preserv-
ing only their content structure. Simultaneously, we hope
that style images can focus less on content details and al-
low their style features to participate in the stylization pro-
cess. Therefore, we preprocess the content images and style
images before feeding them to the transformer for styliza-

tion. Accordingly, we develop two distinct feature extrac-
tors: one to isolate content features and the other to isolate
style features from the input images.

In summary, we introduce a novel framework for effi-
cient style transfer, namely pure content and style feature
fusion network (Puff-Net), which incorporates two feature
extractors and a transformer equipped solely with an en-
coder. Our major contributions are summarized as follows:
• We enhance the structure of the encoder in the vanilla

transformer so that style transfer can be performed effi-
ciently through only the encoder, reducing computational
overhead.

• We design two feature extractors that preprocess the input
to obtain pure content images and pure style images, and
consequently, achieving superior stylized results.

• Even with a notable reduction in model capacity, our
model continues to deliver competitive performance over
existing counterparts.
Figure 1 illustrates the comparison of our model with

state-of-the-art models in terms of model capacity and over-
all loss, and Figure 2 provides visual stylized results of our
Puff-Net. It is evident that the proposed Puff-Net achieves a
balance between style transfer effectiveness and model effi-
ciency.

2. Related Work

2.1. Style Transfer

Image style transfer has made significant progress. Gatys
et al. [11] discover that when feeding an input image into
a pre-trained CNN (VGG19), one can capture the content
and style information of the image and integrate both infor-
mation by using an optimization-based method. Then, rel-
evant ensuing studies started emerging. AdaIN [12] aligns
the mean and variance of content image features with the
mean and variance of style images to implement style trans-
fer. SANet [21] integrates local style patterns efficiently and
flexibly based on the semantic spatial distribution of con-
tent images. MAST [5] enhances feature representations
of content images and style images through position-wise
self-attention, calculates their similarity, and rearranges the
distribution of these representations. ArtFlow [1] proposes
a model consisting of reversible neural flows and an un-
biased feature transfer module, which can prevent content
leak during universal style transfer. AdaAttN [19] designs a
novel attention and normalization module and inserts it into
the traditional encoder-decoder pipeline. IEST [4] utilizes
external information and employs contrastive learning for
style transfer. StyleFormer [27] incorporates transformer
components into the traditional CNN workflow. StyTr2 [8]
proposes a model which achieves the style trasnsfer only
through the vanilla transformer. CAP-VSTNet [26] adopts a
reversible framework to protect content images to avoid ar-
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Figure 3. Schematic illustration of the Puff-Net architecture. The network begins by extracting content and style features from the input
images. These features are then divided into patches and encoded into patch sequences through a linear projection. After feeding the
features into the transformer for stylization, we can finally obtain the result image through the decoder. Additionally, the model leverages
a reconstruction loss function during training to enhance its ability to reconstruct content and style features.

tifacts, and achieves style transfer through an unbiased lin-
ear transform module. However, it places more emphasis on
retaining content, which leads to the image under-stylized.
CLIPstyler [15] achieves style transfer through text injec-
tion. We aim to provide a practical solution for style trans-
fer. Puff-Net balances the output quality and efficiency,
while CNN-based methods prioritize speed. StyTr2 focuses
on higher-quality outputs at the cost of efficiency, and CAP-
VSTNet retains more original content details compromising
quality. More recently, diffusion-based models [9] prioritize
creativity over efficiency.

2.2. Transformer

The vanilla transformer [25] is designed to tackle tasks in
the field of natural language processing (NLP). The unique
self-attention mechanism can effectively model the relation-
ships between tokens. In order to apply the transformer to
the field of computer vision (CV), lots of related research
has been carried out. The proposal of the ViT [7] made
a groundbreaking contribution to the application of trans-
formers in CV. It segments images into patches and arranges
them into embeddings, which are fed to ViT for processing.
Since the advent of ViT, variants of transformers have been
proposed to deal with multiple visual tasks. For example,

DETR [3] and YOLOS [10] for object detection, SegFormer
[29] and SETR [31] for semantic segmentation, and CTrans
[16] and Swin-Transformer [20] for image classification.
Transformers are also proven very effective in the area of
multi-modal fusion, e.g., ViLT [13]. StyTr2 [8] adopts only
the vanilla transformer for style transfer for the first time,
and the improvement is very significant. Compared with
the CNN, transformers can capture long-range dependen-
cies of input images by using attention mechanisms. In this
paper, we also leverage the strong global modeling capa-
bility of transformers for style transfer. However, differ-
ent from prior models, we utilize the transformer encoder
to associate the disentangled content feature and disentan-
gled style feature, resulting in better stylizing results with a
smaller model scale.

3. Method

In this section, we will introduce the workflow of the pro-
posed Puff-Net. We set the dimensions of the input and
output to be H ×W × 3. To make use of the transformer
encoder, we treat style transfer as a sequential patch gen-
eration task. We split both content and style images into
patches and use a linear projection layer to project input
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patches into a sequential feature embedding ε in the shape
of L×C, where L = H×W

m×m is the length of ε, m = 8 is the
patch size, and C is the dimension of ε. Figure 3 illustrates
the overall architecture of the proposed Puff-Net.

3.1. Efficient Transformer Encoder

StyTr2 [8] employs the transformer to implement the task of
style transfer. However, their proposed model necessitates a
large number of computational resources. In addition to the
encoder, a transformer decoder is adopted to translate the
encoded content sequence according to the encoded style
sequence. The output sequential feature embedding εo can
only be obtained through a complete transformer. This is
very cumbersome, and thus we hope to obtain εo directly
through the encoder alone. With this objective in mind, we
modify the transformer encoder as follows. We append a
learnable sequence feature embedding εo whose shape is
the same as εc, and we process it in the encoder based on
the purified content and style images. The FFN layer of
the transformer consumes much of the computation, but its
role in capturing context features is not significant. To this
end, we make it process and transmit the information of
εo. Through the encoder, we can obtain the required se-
quence feature embedding εo. After applying the decoder,
we can obtain the result image. The overview of the Effi-
cient Transformer Encoder (ETE) is shown in Figure 3.

Considering that the output image should be close to
the content image, we initialize the learnable εo based
on εc. We intend to connect εc and εs and feed them
to the encoder. Each layer of the encoder consists of a
multi-head self-attention module (MSA) and a feed-forward
network (FFN). However, its computational complexity is
O((2L)2 × C + 2L × C2). Therefore, we redesign the
transformer model. εc is encoded into a query (Q) and εs is
encoded into a key (K) and a value (V). The computational
complexity isO(L2×C+L×C2). We can also better build
the connection between the content and style images in this
way. Moreover, when we use the attention mechanism, the
positional encoding should be included in the input. Here,
we use Content-Aware Positional Encoding (CAPE) in [8],
which takes image semantics into account when implement-
ing positional encoding. We only calculate CAPE for the
content image as follows:

Q = (εc + PCA)Wq,K = εsWk, V = εsWv (1)

where Wq,Wk,Wv ∈ RC×dhead . The multi-head attention
is then calculated by

FMSA = Concat(head1, . . . . . . , headn)Wo;

headi = Attentioni(Q,K, V )
(2)

where Wo ∈ RC×C , n is the number of attention heads,
and dhead = C

N . In each encoder layer, the output Y is

calculated as

Y ′ = FMSA(Q,K, V ) + εo;

Y = FFFN (Y ′) + Y ′ (3)

where FFFN (Y ′) = max(0, Y ′W1 + b1)W2 + b2. Layer-
norm [2] is applied in each layer.

Through the encoder, we can obtain the output sequence
in the form of H×W

m×m × C. To obtain the final result, we
employ a three-layer CNN decoder proposed in [31]. In
each layer, we expand the scale by executing a series of
operations including 3 × 3 Conv + ReLU + 2 × Upsample.
Finally, we can save the resultant image in the form of H ×
W × 3.

3.2. Feature Extraction

Since we aim to transfer the style of the content image, we
hope that the underlying model can change the color and
other characteristics. Meanwhile, we ought to avoid dam-
aging content images as much as possible. Therefore, we
try to increase the proportion of the content loss when de-
signing the loss function. Doing so may result in a small
difference between the results and content images, yet still
including style features such as color. In order to ensure
that the content is not missing while the style of the result
image is closer to that of the style image, we preprocess the
content and style images to extract their distinct features.
To extract different kinds of features from the content and
style images, we assume the two images contain informa-
tion from two modalities, from which we can capture their
unique features. Therefore, we handle the two types of im-
ages separately to obtain pure content and style images. To-
wards this end, we employ different feature extractors for
content images and style images, respectively.

To process content images with minimal loss of detail,
we select the INN module [6] as the backbone for our con-
tent extractor, aiming for utmost content preservation. It can
better preserve the content by making its input and output
features mutually generated. Therefore, we adopt the INN
block [6, 32] with affine coupling layers. In each invertible
layer, the transformation is written as follows:

Yk+1[c+ 1 : C] = Yk[c+ 1 : C] + ϕ1(Yk[1 : c])

Yk+1[1 : c] = Yk[1 : c]⊙ exp(ϕ2(Yk+1[c+ 1 : C]))

+ ϕ3(Yk+1[c+ 1 : C])

Yk+1 = Concat(Yk+1[1 : c], Yk+1[c+ 1 : C])
(4)

where ⊙ is the Hadamard product, Yk (k=1,2,· · · ) is the
output of the k-th layer, [1:c] represents the 1st to the c-th
channels, and ϕi (i=1,2,3) are the arbitrary mapping func-
tions. To balance the feature extraction ability and computa-
tional complexity, we employ the bottleneck residual block
(BRB) in MobileNetV2 [23].
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For style images, our focus is on capturing the general
style, rather than the local details. It requires the extractor to
grasp the global information and long-distance dependency
features well. Meanwhile, considering the computational
complexity of the model, we choose the LT block [28] as
the basic unit of the style extractor. It flattens the bottle-
neck of transformer blocks by flattening the feed-forward
network, which saves substantial computation. Please refer
to the supplementary material for the network details of the
two extractors.
3.3. Loss Function

The generated image requires a fusion of content and style.
Therefore, we need a content loss function and a style loss
function, respectively. Following [1, 12], we obtain feature
maps through a pretrained VGG model and use them to con-
struct the content perceptual loss Lc and the style perceptual
loss Ls as follows:

Lc =
1

Nl

Nl∑
i=0

∥ ψi(Io)− ψi(Ic) ∥2

Ls =
1

Nl

Nl∑
i=0

∥ µ(ψi(Io))− µ(ψi(Is)) ∥2

+ ∥ σ(ψi(Io))− σ(ψi(Is)) ∥2

(5)

where Io represents the output of the model, Ic is the con-
tent image and Is is the style image, ψi(·) denotes the fea-
tures extracted from the i-th layer in a pretrained VGG19,
and Nl is the number of layers. µ(·) and σ(·) denote the
mean and variance of the extracted features, respectively.

For the feature extraction module, we can train the two
extractors with these loss functions. We adopt the content
perceptual loss for the input and output of the content ex-
tractor (Lcc: the content perceptual loss w.r.t. the content
image; Lsc: the content perceptual loss w.r.t the style im-
age), and the style perceptual loss for the input and output
of the style extractor (Lcs: the style perceptual loss w.r.t. the
content image; Lss: the style perceptual loss w.r.t. the style
image). Lfe is used to calculate the total loss of feature
extractors. In order to enhance the learning ability of the
extractor, we implement two extractors on both the content
and style images. We reconstruct the result image through
the content and style features extracted from the same im-
age, and the result image should be consistent with the orig-
inal image. Here we employ two identity losses [21] to in-
crease the severity of the penalty as follows:

Lfe =λ1Lcc + λ2Lcs + λ1Lsc + λ2Lss

Lid1 = ∥ Icc − Ic ∥2 + ∥ Iss − Is ∥2

Lid2 =
1

Nl

Nl∑
i=0

∥ ψi(Icc)− ψi(Ic) ∥2

+ ∥ ψi(Iss)− ψi(Is) ∥2

(6)

where λ1, λ2 are the weights set to 0.7 and 1, respectively.
Icc and Iss are the reconstructed images.

In summary, the entire network is optimized by minimiz-
ing the following function:

L = λcLc + λsLs + λfeLfe + λid1Lid1 + λid2Lid2.
(7)

We set λc, λs, λfe, λid1, λid2 to 7, 10, 20, 70, 1 so as to
alleviate the impact from magnitude differences.

4. Experiments
4.1. Implementation Details

We adopt MS-COCO [18] as the content dataset and
WikiArt [22] as the style dataset. In the training stage, all
the images are randomly cropped into a fixed resolution of
256 × 256, while any image resolution is supported at the
test time. We choose the Adam optimizer [14] with a learn-
ing rate of 0.0005 and use the warm-up adjustment strategy
[30]. The batch size is set to 1 and we train our network with
100,000 iterations. Our model is trained on the NVIDIA
Tesla A40 for about half a day.

During the training stage, we found that the style extrac-
tor trained for 12,000 iterations produced the best image
style. Some style features may disappear after more iter-
ations. We believe this is because the difference between
the result image and the content image accounts for a larger
proportion of the total loss, as we tend to preserve content
details as much as possible. In order to reduce the total loss,
the extracted style features will decrease after more rounds
of training. Without stylization, the content perceptual loss
will be very low, and so will the total loss. Therefore, we
freeze the parameters of the style extractor after 12,000 it-
erations of training, while the other parts continue to par-
ticipate in the training. Maybe we can also use two-stage
training scheme [17].

4.2. Comparison with State-of-the-Art Methods

Transformer networks have proven their powerful perfor-
mances in numerous computer vision fields. So far, state-
of-the-art models, such as StyTr2 [8], have utilized the at-
tention mechanism. CNN-based models, despite their fast
inference, can result in missing details due to their limita-
tions of kernel weight sharing. We have chosen the main-
stream style transfer models CAP-VSTNet [26], StyTr2 [8],
StyleFormer [27], and IEST [4] for comparison. We con-
duct both qualitative and quantitative comparisons.

4.2.1 Qualitative comparison

Figure 4 shows the visual results of the qualitative compar-
isons. The IEST retains more content features, but the de-
gree of stylization is insufficient. CAP-VSTNet also has the
same drawback, but its original content is more protected.
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Figure 4. The visual results of qualitative comparisons

Resolution Ours CAP-VST StyTr2 StyleFormer IEST

256 × 256 0.098 0.107 0.116 0.013 0.065

512 × 512 0.134 0.162 0.661 0.026 0.092

Table 1. Average inference time (in seconds) of the comparison
methods at two output resolutions.

The StyleFormer sometimes exaggerates details, resulting
in some unreasonable stylization. The local details of some
results generated by the StyTr2 are not obvious, leading to
the content missing. By contrast, our model can effectively
utilize the content and style features of input images and
exploit their relationships. It can extract the main content
lines of the original image and adopt attention mechanism
to stylize these main features, which can maintain the global
structure of the content image and make the stylized image
look very coordinated. But we also observe that when the
input content images and style images are more complex,
sometimes there may be unreasonable stylization.

4.2.2 Quantitative comparison

In Table 1, we compare the inference time of these models
at two output resolutions using one NVIDIA Tesla P100.
As can be seen from the table, our model’s inference speed
is at the forefront of these mainstream models.

To quantitatively analyze the effect of generating styl-
ized images, we randomly select 20 content images and 20
style images, and then use the mainstream models to gener-
ate 200 stylized images. We calculate the content difference
and the style difference using (5). Table 2 shows that our
model’s comprehensive performance is at the forefront. In
terms of content difference, we have a small gap compared
to the StyTr2. Our method also achieves the second-lowest
style loss. Although the style difference is slightly greater,
we do not pay much attention to the local detail differences
between the result image and style image. What’s more, we
can see that CAP-VSTNet has the lowest content loss, but
its degree of stylization is lacking. Through the quantitative
analysis, one can see that our proposed model still retains a
good performance despite significantly reduced model ca-
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Model Ours CAP-VST StyTr2 StyleFormer IEST

Lc 1.92 0.86 1.89 2.87 1.97

Ls 2.21 4.42 1.69 3.34 3.99

Table 2. Quantitative comparison on the content perceptual loss
and style perceptual loss.

Figure 5. The features extracted by our model. The first and sec-
ond rows display renderings of the content extractor, while the
third and fourth rows display renderings of the style extractor.

pacity. This provides a better method for the application of
style transfer.

4.3. Ablation Experiment

4.3.1 Feature Extraction

Attention mechanisms are proven to be effective in the field
of style transfer. We intend to investigate whether the fea-
ture extractors work. Figure 5 plots the results generated by
these extractors. By using a content feature extractor, the
structure, lines, and other content features of an input im-
age are extracted, which meet our expectations. Some back-
ground and less important contents are blurred. Through a
style feature extractor, the color, texture, and other aspects
of the input image are extracted. Although the feature distri-
bution of some images has changed, we do not pay attention
to the details of the style image.

In order to further investigate the efficacy of the feature
extractors, we conduct ablation experiments. We remove
the content feature extractor and style feature extractor from
the model and do not extract the pure features of the con-
tent and style images. We directly project their patches
into sequential feature embeddings and feed them into the
encoder-based transformer. In order to offset the impact of
different network depths, we add the encoder layers from 3
to 6. Figure 6 shows the results generated by pure encoder
without those extractors.

As can be observed from Figure 6, some generated im-
ages have lost their original content structure, resulting in
visual distortions (second row, first group). There are also
some content features such as lines in the style image ap-

Figure 6. The results without extractors. Each group has three
images, the first one is a style image, the second one is a content
image, and the last one is the result image.

pearing in the resultant image (first row, second group).
Some images have insufficient stylization in terms of de-
tails (third row, second group). Therefore, it can be con-
cluded that our content and style feature extractors are of
good performance.

4.3.2 Content-Aware Positional Encoding

Content-Aware Positional Encoding (CAPE) is a learnable
position encoding method based on image semantic infor-
mation proposed by [8]. Since our model extracts features
from the content picture image, the content image will lose
some semantic information. We have already shown some
extracted feature maps in Figure 5. Through the content ex-
tractor, we can extract the structure, lines, and other features
of the input image, but we discard style features such as col-
ors, which destroys some of the semantic information of the
image. Therefore, in order to verify whether CAPE can play
a better role in our model, we carry out a ablation study. In
the ablation experiment, we replace CAPE with traditional
sinusoidal positional encoding and trained the model. We
present the results of this ablation experiment in Figure 7.
As can be seen from the experimental results in Figure 7,
the results using CAPE are better than those using tradi-
tional sinusoidal positional encoding. The results without
using CAPE may have unreasonable stylization, and some
originally similar areas may have significant differences af-
ter stylization. We believe that although extracting features
may cause losses to the semantic information of the image,
we still need positional encoding to exploit the remaining
information for stylization. Some features such as the back-
ground need to be similarly stylized, and different detail
features can be stylized differently. Therefore, we still em-
ploy CAPE as the positional encoding method.

4.4. Output Sequential Feature Embedding

In our model, we can obtain output sequential feature em-
bedding εo only through the encoder. So, we modify the
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Figure 7. Ablation experiments for CAPE. From the first to the
last column: style images, content images, result images using
sinusoidal positional encoding, and result images using CAPE.

transformer encoder, appending a learnable sequence fea-
ture embedding εo to the input. Its shape is the same as
content sequential feature embedding εc. During the train-
ing stage, as we know the resultant image should be closer
to the content image, we use εc to initialize it. In order to
further investigate its role in the model, we experiment with
other initialization methods.

We first initialize it using style sequence feature embed-
ding εs. It can be observed that the resultant image is very
similar to the style image, which does not meet expecta-
tions. We believe that our model realize stylization based
on εo, using the attention mechanism to calculate each part’s
stylization approach. Since we use εs to initialize εo, it is
in the stylized state from the beginning, and the subsequent
stylization effect will not be significant. We also use ran-
dom initialization and zero initialization, and find that the
generated stylized images are blank. We believe that our
model cannot find a suitable way to stylize images without
the content. The qualitative results using different output
feature embedding initialization methods are presented in
supplementary material due to space constraint.

In summary, εo is the basis for style transfer in our
model, and the calculation results of the attention mecha-
nism determine the way of stylization for each patch. There-
fore, we choose to initialize it with εc, which is more in line
with the goal of style transfer.

4.5. User Study

In order to better evaluate the performance of our model, we
conduct a user study. The comparison resources come from
Figure 4. We invited 45 college students and 10 middle-
aged people to conduct this survey. We have set three types
of questions for the purpose of style transfer task. The first
question is which model can better maintain the original
image’s content structure. The second question is which
model’s result is closer to the target style image. The third
question is which model’s result after stylization looks the

Figure 8. Results of User Study. The above three figures corre-
spond to questions one, two, and three, respectively. A-Puff-Net.
B-CAP-VSTNet. C-StyTr2. D-StyleFormer. E-IEST.

most harmonious. We will provide two examples for each
type of question. The results of the survey are shown in
Figure 8. In terms of the example we provided, from the
results, we can see that our model’s ability to maintain the
original image content structure is similar to that of CAP-
VSTNet, and its ability to achieve stylization is optimal,
followed closely by StyTr2 and IEST. As for the ability to
achieve reasonable stylization, our model is also outstand-
ing. In order to further demonstrate the performance of the
model and reduce randomness, we hope that more people
can use our model to produce the expected results.

5. Conclusion
In this paper, we proposed a novel style transfer model
dubbed the Puff-Net. The proposed model consists of two
feature extractors and a transformer that only contains the
encoders. We first obtained pure content images and pure
style images through the two feature extractors. Then we
fed them into an efficient encoder-based transformer for
stylization, in which a sequence of learnable tokens were
added to interact with pure content and style tokens. Our
model solves the problem of huge capacity in existing
transformer-based models. We also verified its good per-
formance through extensive experiments and demonstrated
the potential application of style transfer in practice.
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