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Abstract

Tensor network (TN) representation is a powerful tech-
nique for computer vision and machine learning. TN struc-
ture search (TN-SS) aims to search for a customized struc-
ture to achieve a compact representation, which is a chal-
lenging NP-hard problem. Recent “sampling-evaluation”-
based methods require sampling an extensive collection of
structures and evaluating them one by one, resulting in pro-
hibitively high computational costs. To address this issue,
we propose a novel TN paradigm, named SVD-inspired TN
decomposition (SVDinsTN), which allows us to efficiently
solve the TN-SS problem from a regularized modeling per-
spective, eliminating the repeated structure evaluations. To
be specific, by inserting a diagonal factor for each edge of
the fully-connected TN, SVDinsTN allows us to calculate
TN cores and diagonal factors simultaneously, with the fac-
tor sparsity revealing a compact TN structure. In theory,
we prove a convergence guarantee for the proposed method.
Experimental results demonstrate that the proposed method
achieves approximately 100∼1000 times acceleration com-
pared to the state-of-the-art TN-SS methods while maintain-
ing a comparable level of representation ability.

1. Introduction
Tensor network (TN) representation, which aims to express
higher-order data with small-sized tensors (called TN cores)
by a specific operation among them, has gained significant
attention in various areas of data analysis [1, 11, 25, 37],
machine learning [5, 9, 27], computer vision [21, 30, 35,
36, 39], etc. By regarding TN cores as nodes and oper-

*Corresponding author.

ations as edges, a TN corresponds to a graph (called TN
topology). The vector composed of the weights of all edges
in the topology is defined as the TN rank. TN structure (in-
cluding topology and rank) search (TN-SS) aims to search
for a suitable TN structure to achieve a compact represen-
tation for a given tensor, which is known as a challenging
NP-hard problem [13, 18]. The selection of TN structure
dramatically impacts the performance of TN representation
in practical applications [12, 15, 17, 18].

Recently, there have been several notable efforts to tackle
the TN-SS problem [12, 15, 17, 18]. But most of them adopt
the “sampling-evaluation” framework, which requires sam-
pling a large number of structures as candidates and con-
ducting numerous repeated structure evaluations. For in-
stance, for a tensor of size 40×60×3×9×9 (used in Sec-
tion 4.2), TNGA in [15] requires thousands of evaluations
and TNALE in [18] requires hundreds of evaluations, where
each evaluation entails solving an optimization problem to
compute TN cores iteratively. Consequently, the computa-
tional cost becomes exceedingly high. A meaningful ques-
tion is whether we can optimize the TN structure simultane-
ously during the computation of TN cores, thus escaping the
“sampling-evaluation” framework and fundamentally ad-
dressing the computationally consuming issue.

In this paper, we introduce for the first time a regularized
modeling perspective on solving the TN-SS problem. This
perspective enables us to optimize the TN structure simul-
taneously during the computation of TN cores, effectively
eliminating the need for repetitive structure evaluations. To
be specific, we propose a novel TN paradigm, termed as
SVD-inspired TN decomposition (SVDinsTN), by inserting
diagonal factors between any two TN cores in the “fully-
connected” topology (see Figure 1(b)). The intuition behind
SVDinsTN is to leverage the sparsity of the inserted diago-
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Figure 1. (a) A graphical illustration of SVD. (b) A graphical illustration of SVD-inspired TN decomposition on a fifth-order tensor.
(c) Comparison of the compression ratio (↓) and run time (↓) of different methods on a fifth-order light field image Knights, where the
reconstruction error bound is set to 0.05, TRALS [38] and FCTNALS [41] are methods with pre-defined topologies, and TNGreedy [12],
TNGA [15], TNLS [17], and TNALE [18] are TN-SS methods (please see more results in Table 2).

nal factors to reveal a compact TN structure and utilize the
TN cores (merged with the diagonal factors) to represent a
given tensor. Based on SVDinsTN, we establish a regular-
ized model, which updates the TN cores and diagonal fac-
tors iteratively and imposes a sparse operator to induce the
sparsity of the diagonal factors. In theory, we prove a con-
vergence guarantee for the proposed method and establish
an upper bound for the TN rank. In particular, we design a
novel initialization scheme for the proposed method based
on the upper bound. This initialization scheme enables the
proposed method to overcome the high computational cost
in the first several iterations, which is caused by the utiliza-
tion of a “fully-connected” topology as the starting point.
As a result, SVDinsTN is capable of capturing a customized
TN structure and providing a compact representation for a
given tensor in an efficient manner. In summary, we make
the following three contributions.

• We propose SVDinsTN, a new TN paradigm, that enables
us to optimize the TN structure during the computation of
TN cores, greatly reducing the computational cost.

• In theory, we prove a convergence guarantee for the pro-
posed method and establish an upper bound for the TN
rank involved in SVDinsTN. The upper bound serves as a
guide for designing an efficient initialization scheme.

• Experimental results verify numerically that the proposed
method achieves 100∼1000 times acceleration compared
to the state-of-the-art TN-SS methods with a comparable
representation ability (see Figure 1(c)).

1.1. Related Works

TN representation1 aims to find a set of small-sized TN
cores to express a large-sized tensor under a given TN struc-

1We focus on TN representation in scientific computing and machine
learning, while acknowledging its history of research in physics [7, 23, 31].

ture (including topology and rank) [4, 5, 31]. In the past
decades, many works focused on TN representation with a
fixed TN topology, such as tensor train (TT) decomposition
with a “chain” topology [24], tensor ring (TR) decompo-
sition with a “ring” topology [38], fully-connected tensor
network (FCTN) decomposition with a “fully-connected”
topology [41], etc. In addition, these works also presented
various methods to optimize the TN cores, such as alternat-
ing least square (ALS) [38], gradient descent (GD) [32, 34],
proximal alternating minimization (PAM) [41, 42], etc. In
contrast, SVDinsTN can reveal a compact TN structure for
a given tensor, surpassing methods with pre-defined topolo-
gies in terms of representation ability.

TN structure search (TN-SS) aims to search for a suit-
able or optimal TN structure, including both topology and
rank, to achieve a compact representation for a given ten-
sor [8, 12, 15, 17–20, 22, 26]. However, the majority of
existing TN-SS methods follow the “sampling-evaluation”
framework, which necessitates the use of heuristic search
algorithms like the greedy algorithm [12], genetic algo-
rithm [15], and alternating local enumeration algorithm [18]
to sample candidate structures and subsequently evaluate
them individually. Therefore, these methods inevitably suf-
fer from prohibitively high computational costs due to the
numerous repeated evaluations, each involving the iterative
calculation of TN cores within an optimization problem. In
contrast, SVDinsTN addresses the TN-SS problem from a
regularized modeling perspective, thereby avoiding the re-
peated structure evaluations and significantly reducing com-
putational costs.

2. Notations and Preliminaries

A tensor is a multi-dimensional array, and the number of
dimensions (also called modes) of which is referred to as
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the tensor order. In the paper, first-order tensors (vectors),
second-order tensors (matrices), and N th-order tensors are
denoted by x ∈ RI1 , X ∈ RI1×I2 , and X ∈ RI1×I2×···×IN ,
respectively. We use ∥X∥F and ∥X∥1 to denote the Frobe-
nius norm and ℓ1-norm of X , respectively. For brevity, we
let KN denote the set {1, 2, · · · , N}, which is used for la-
beling individual indices. Similarly, we let TLN denote the
set {(t, l)|1 ≤ t < l ≤ N ; t, l ∈ N}, which is used for
labeling paired indices.

We next provide a review of several operations on ten-
sors [41]. The generalized tensor unfolding is an opera-
tion that converts a tensor into a matrix by merging a group
of tensor modes into the rows of the matrix and merging
the remaining modes into the columns. For example, an
I1× I2× I3× I4 tensor can be unfolded into an I1I3× I2I4
matrix, denoted by X[1,3;2,4]. We also use X(2) to simply
denote X[2;1,3,4] ∈ RI2×I1I2I4 , which is also called mode-2
unfolding, and we use X = fold(X(2), 2) to denote its cor-
responding inverse operation [14]. The generalized tensor
transposition is an operation that rearranges tensor modes.
For example, an I1 × I2 × I3 × I4 tensor can be trans-
posed into an I3 × I2 × I1 × I4 tensor, denoted by X⃗n

with n = (3, 2, 1, 4). The tensor contraction is an opera-
tion that obtains a new tensor by pairing, multiplying, and
summing indices of certain modes of two tensors. For ex-
ample, if a fourth-order tensor X ∈ RI1×I2×I3×I4 and a
third-order tensor Y ∈ RJ1×J2×J3 satisfy I2 = J1 and
I4 = J2, then the tensor contraction between the 2nd and
4th modes of X and the 1st and 2nd modes of Y yields a
tensor Z = X ×1,2

2,4 Y ∈ RI1×I3×J3 . The elements of Z are
calculated as follows:

Z(i1, i3, j3)=
∑I2

i2=1

∑I4

i4=1
X (i1, i2, i3, i4)Y(i2, i4, j3).

The operation “vec()” transforms a tensor to a column vec-
tor by lexicographical reordering of its elements. The op-
eration “diag()” extracts the main diagonal elements as a
column vector from a diagonal matrix, or constructs a diag-
onal matrix using a column vector for its main diagonal.

2.1. Tensor Network

In general, a tensor network (TN) is defined as a set of small-
sized tensors, known as TN cores, in which some or all
modes are contracted according to specific operations [5].
The primary purpose of a TN is to represent higher-order
data using these TN cores. By considering TN cores as
nodes and operations between modes of cores as edges, we
define the graph formed by these nodes and edges as the TN
topology. Additionally, we assign a non-negative integer
weight to each edge to indicate the size of the correspond-
ing mode of TN cores, and call the vector composed of these
edge weights the TN rank. Consequently, a TN structure
refers to a weighted graph comprising nodes, edges, and
weights, encompassing both the TN topology and TN rank.

This paper focuses on only a class of TNs that employs
tensor contraction as the operation among TN cores and
adopts a simple graph as the TN topology. More particu-
larly, when representing an N th-order tensor X , this class
of TNs comprises precisely N TN cores, each correspond-
ing to one mode of X . A notable method is the FCTN de-
composition, which represents an N th-order tensor X ∈
RI1×I2×···×IN by N small-sized N th-order cores denoted
by Gk ∈ RR1,k×R2,k×···×Rk−1,k×Ik×Rk,k+1×···×Rk,N for
k ∈ KN [41]. In this decomposition, any two cores Gl and
Gt for (t, l) ∈ TLN share an equal-sized mode Rt,l used for
tensor contraction. We define the FCTN rank as the vector
(R1,2, R1,3, · · · , R1,N , R2,3, · · · , R2,N , · · · , RN−1,N ) ∈
RN(N−1)/2. According to the concept of tensor contraction,
removing rank-one edges in a TN topology does not change
the expression of the TN. This means that if any element
in the FCTN rank is equal to one, the corresponding edge
can be harmlessly eliminated from the “fully-connected”
topology. For instance, a “fully-connected” topology with
rank (R1,2, 1, · · · , 1, R2,3, 1, · · · , 1, RN−2,N−1, RN−1,N )
can be equivalently converted into a “chain” topology with
rank (R1,2, R2,3, · · · , RN−1,N ) in this manner. This fact
can be formally stated as follows.

Property 1 [16] There exists a one-to-one correspondence
between the TN structure and FCTN rank.

According to Property 1, we can search for a compact
TN structure by optimizing the FCTN rank.

3. An Efficient Method for TN-SS
We propose an efficient method to solve the TN-SS problem
from a regularized modeling perspective. The main idea of
the proposed method is to optimize the TN structure (FCTN
rank) simultaneously during the computation of TN cores.

3.1. SVDinsTN

We start with the definition of the following SVDinsTN.

Definition 1 (SVDinsTN) Let X ∈ RI1×I2×···×IN be an
N th-order tensor such that

X (i1, i2, · · · , iN ) =

R1,2∑
r1,2=1

R1,3∑
r1,3=1

· · ·
R1,N∑

r1,N=1

R2,3∑
r2,3=1

· · ·
R2,N∑

r2,N=1

· · ·
RN−1,N∑

rN−1,N=1

S1,2(r1,2, r1,2)S1,3(r1,3, r1,3) · · ·S1,N (r1,N , r1,N )

S2,3(r2,3, r2,3) · · ·S2,N (r2,N , r2,N ) · · ·
SN−1,N (rN−1,N , rN−1,N )

G1(i1, r1,2, r1,3, · · · , r1,N )

G2(r1,2, i2, r2,3, · · · , r2,N ) · · ·
Gk(r1,k, r2,k, · · · , rk−1,k, ik, rk,k+1, · · · , rk,N ) · · ·
GN (r1,N , r2,N , · · · , rN−1,N , iN ),

(1)
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where Gk ∈ RR1,k×R2,k×···×Rk−1,k×Ik×Rk,k+1×···×Rk,N

for ∀k ∈ KN are N th-order tensors and called TN cores,
and St,l ∈ RRt,l×Rt,l for ∀(t, l) ∈ TLN are diagonal ma-
trices. Then we call (1) an SVD-inspired TN decomposition
(SVDinsTN) of X , denoted by X = STN(G,S), where G
denotes {Gk|k ∈ KN} and S denotes {St,l|(t, l) ∈ TLN}.

As shown in Figure 1(b), SVDinsTN includes both TN
cores and diagonal factors, and can use the sparsity of diag-
onal factors to reveal a compact TN structure and utilize TN
cores (merged with diagonal factors) to represent a tensor.

Remark 1 (SVDinsTN & SVD) SVDinsTN extends upon
the “core&diagonal factor&core” form of SVD to higher-
order cases (see Figure 1(a) & (b)), incorporating the idea
of determining rank through non-zero elements in the diag-
onal factor. In particular, SVDinsTN can degrade into SVD
in second-order cases when TN cores satisfy orthogonality.

Remark 2 (SVDinsTN & FCTN) SVDinsTN builds upon
FCTN decomposition [41] but can reveal the FCTN rank.
It achieves this by inserting diagonal factors between any
two TN cores in FCTN decomposition and leveraging the
number of non-zero elements in the diagonal factors to de-
termine the FCTN rank. In particular, SVDinsTN can trans-
form into a TN decomposition by merging the diagonal fac-
tors into TN cores through the tensor contraction operation.

3.2. A Regularized Method for TN-SS

We present an SVDinsTN-based regularized method, which
updates TN cores and diagonal factors alternately, and im-
poses a sparse operator to induce the sparsity of diagonal
factors to reveal a compact TN structure.

We consider an ℓ1-norm-based operator for diagonal fac-
tors S and Tikhonov regularization [10] for TN cores G. The
ℓ1-norm-based operator is used to promote the sparsity of S,
and the Tikhonov regularization is used to constrict the fea-
sible range of G. Mathematically, the proposed model can
be formulated as follows:

min
G,S

1

2
∥X − STN(G,S)∥2F +

µ

2

∑
k∈KN

∥Gk∥2F

+
∑

(t,l)∈TLN

λt,l∥St,l∥1,
(2)

where λt,l > 0 and µ > 0 are regularization parameters.
We use the PAM-based algorithm [2] to solve (2), whose

solution is obtained by alternately updating

Gk=argmin
Gk

1

2
∥X−STN(G,S)∥2F +

µ

2
∥Gk∥2F

+
ρ

2
∥Gk−Ĝk∥2F , ∀k ∈ KN ,

St,l=argmin
St,l

1

2
∥X−STN(G,S)∥2F +λt,l∥St,l∥1

+
ρ

2
∥St,l−Ŝt,l∥2F , ∀(t, l) ∈ TLN ,

(3)

where ρ>0 is a proximal parameter (we fix ρ=0.001), and
Ĝk and Ŝt,l are the solutions of the Gk-subproblem and St,l-
subproblem at the previous iteration, respectively. The de-
tailed solution processes for Gk- and St,l-subproblems are
provided in the Supplementary Material2. Here, we only
present their core processes and results.

1) Update Gk for ∀k ∈ KN : Solving the Gk-subproblem
requires fixing the other TN cores and diagonal factors. To
address this, we use Mk to denote the matrix obtained by
performing tensor contraction and unfolding operations on
all diagonal factors and TN cores except Gk. Then, the Gk-
subproblem can be directly solved as follows:

Gk(k)=
(
X(k)M

T
k+ρĜk(k)

)(
MkM

T
k+(µ+ρ)I

)−1
. (4)

2) Update St,l for ∀(t, l) ∈ TLN : Solving the St,l-
subproblem requires fixing the other diagonal factors and
TN cores. In a similar fashion, we use Ht,l to denote the
matrix obtained by performing tensor contraction and un-
folding operations on all TN cores and diagonal factors ex-
cept St,l. Then, we use an alternating direction method
of multipliers (ADMM) [6] to solve the St,l-subproblem,
which can be rewritten as follows:

min
st,l,qt,l

1

2
∥x−Ht,lqt,l∥2F +λt,l∥st,l∥1+

ρ

2
∥st,l−ŝt,l∥2F

s.t. st,l−qt,l=0,

(5)

where x = vec(X ), st,l = diag(St,l), and qt,l is an aux-
iliary variable. The augmented Lagrangian function of (5)
can be expressed as the following concise form:

Lβt,l
(st,l,qt,l,pt,l)=

1

2
∥x−Ht,lqt,l∥2F +λt,l∥st,l∥1

+
ρ

2
∥st,l−ŝt,l∥2F +

βt,l

2

∥∥∥st,l−qt,l+
pt,l

βt,l

∥∥∥2
F
,

(6)

where pt,l is the Lagrangian multiplier and βt,l > 0 is the
penalty parameter. Within the ADMM framework, qt,l, st,l,
and pt,l can be solved by alternately updating

qt,l=
[
HT

t,lHt,l+βt,lI
]−1[

HT
t,lx+βt,lst,l+pt,l

]
,

st,l=shrink

(
ρŝt,l+βt,lqt,l−pt,l

ρ+βt,l
,

λt,l

ρ+βt,l

)
,

pt,l=pt,l+βt,l(st,l−qt,l),

(7)

where shrink(a,b) = max(a− b,0) + min(a+ b,0).
We describe the pseudocode to optimize model (2) in Al-

gorithm 1, where the operation “ones(I1, · · · , IN )” returns
an I1 × · · · × IN tensor whose elements are all equal to 1.

Below, we present a brief analysis of the computational
complexity and provide a theoretical convergence guarantee
for the developed algorithm.

2https://yubangzheng.github.io
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Algorithm 1 PAM-based algorithm to optimize model (2).

Input: A tensor X ∈ RI1×I2×···×IN and a parameter γ.
Initialization: Initialize St,l and Rt,l by the initialization scheme

in Section 3.3 and let βt,l = 1 for ∀(t, l) ∈ TLN ; let Gk =
1/

√
Ik ones(R1,k, R2,k, · · · , Rk−1,k, Ik, Rk,k+1, · · · , Rk,N )

for ∀k ∈ KN and µ = 1.
1: while not converged do
2: Let X̂ = X and λt,l = γmax(St,l)(ρ+ βt,l).
3: Update Gk(k) by (4) and let Gk = fold(Gk(k), k).
4: for i = 1 to 5 do
5: Update qt,l, st,l, and pt,l by (7).
6: end for
7: Delete zero elements in st,l, let St,l = diag(st,l), and

define the size of st,l as Rt,l.
8: Delete the corresponding dimensions of Gk and let X =

STN(G,S).
9: Check the convergence condition: ∥X−X̂∥F

∥X̂∥F
< 10−5.

10: end while
Output: Gk for ∀k ∈ KN , and St,l and Rt,l for ∀(t, l) ∈ TLN .

Computational complexity. For simplicity, we let the
size of the N th-order tensor X be I × I × · · · × I and the
initial rank be (R,R, · · · , R) satisfied R ≤ I . The compu-
tational cost involves updating G and S, resulting in costs of
O
(
N

∑N
k=2 I

kRk(N−k)+k−1+NIN−1R2(N−1)+N3IRN
)

and O
(
N2

∑N
k=2 I

kRk(N−k)+k−1+N4IRN+N2INR2
)
,

respectively. Hence, the computational cost at each iteration
is O

(
N2

∑N
k=2 I

kRk(N−k)+k−1+N4IRN+N2INR2
)
.

Theorem 1 (Convergence guarantee) The sequence gen-
erated by Algorithm 1, denoted by {G(s),S(s)}s∈N, con-
verges to a critical point of the optimization problem (2).

3.3. Initialization Scheme

SVDinsTN encounters high computational cost in the first
several iterations if the TN rank Rt,l for ∀(t, l) ∈ TLN are
initialized with large values. This is due to the adoption of a
“fully-connected” topology as a starting point. To solve this
challenge, we design a novel initialization scheme aimed at
effectively reducing the initial values of the TN rank.

We first give an upper bound for the TN rank, by which
we then design an initialization scheme for the TN rank Rt,l

and diagonal factors St,l ∈ RRt,l×Rt,l for ∀(t, l) ∈ TLN .

Theorem 2 Let X ∈ RI1×I2×···×IN be an N th-order ten-
sor, then there exists an SVDinsTN (1) with the TN rank
Rt,l ≤ min(rank(X(t)), rank(X(l))) for ∀(t, l) ∈ TLN .

Theorem 2 indicates that min(rank(X(t)), rank(X(l)))
can be the initial value of the TN rank Rt,l. For real-world
data, this value is usually embodied by the rank of mode-
(t, l) slices3 of X . Therefore, we initialize Rt,l and St,l by

3Mode-(t, l) slices are obtained by fixing all but the mode-t and the
mode-l indexes of a tensor [40].

virtue of truncated SVD of mode-(t, l) slices of X , which
consists of the following two steps.

Step 1: We first calculate the mean of all mode-(t, l)
slices of X and denote it by Xt,l. Then we perform SVD on
Xt,l to obtain st,l ∈ Rmin(It,Il), whose elements are singu-
lar values of Xt,l.

Step 2: We first let st,l = shrink
(
st,l,

γ max(st,l)
|st,l|+10−16

)
and

delete zero elements in st,l. Then we let St,l = diag(st,l)
and define the size of st,l as Rt,l.

In practical applications, the shrink operation in Step 2
effectively reduces the initial value of Rt,l by projecting
very small singular values in st,l to zero. As a result, the
challenge of high computational costs in the first several it-
erations of SVDinsTN can be effectively addressed (see Fig-
ure 2 for a numerical illustration).

4. Numerical Experiments

In this section, we present numerical experiments on both
synthetic and real-world data to evaluate the performance of
the proposed SVDinsTN. The primary objective is to vali-
date the following three Claims:

A: SVDinsTN can reveal a customized TN structure that
aligns with the unique structure of a given tensor.

B: SVDinsTN can greatly reduce time costs while achiev-
ing a comparable representation ability to state-of-the-
art TN-SS methods. Moreover, SVDinsTN can also sur-
pass existing tensor decomposition methods with pre-
defined topologies regarding representation ability.

C: SVDinsTN can outperform existing tensor decomposi-
tion methods in the tensor completion task, highlighting
its effectiveness as a valuable tool in applications.

4.1. Experiments for Validating Claim A

We conduct experiments to validate Claim A. Since real-
world data lacks a true TN structure, we consider only syn-
thetic data in this experiment.

Data generation. We first randomly generate Gk for
∀k ∈ KN and St,l for ∀(t, l) ∈ TLN , whose elements are
taken from a uniform distribution between 0 and 1. Then
we obtain the synthetic tensor by X = STN(G,S).

Experiment setting. We test both fourth-order tensors
of size 16 × 18 × 20 × 22 and fifth-order tensors of size
14× 16× 18× 20× 22, and consider different kinds of TN
structures. For each structure, we conduct 100 independent
tests and regenerate the synthetic data to ensure reliable and
unbiased results. The ability of the proposed SVDinsTN to
reveal TN structure is measured by the success rate of the
output structures, defined as ST/T ×100%, where T = 100
is the total number of tests and ST is the number of tests
that accurately output the true TN structure. In all tests, the
parameter γ is set to 0.0015.
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Table 1. Performance of SVDinsTN on TN structure revealing under 100 independent tests.
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Success rate 100% 100% 96% 95% 99% 98% 97% 100%

Table 2. Comparison of CR (↓) and run time (×1000s, ↓) of dif-
ferent methods on light field data.

Method
RE bound: 0.01 RE bound: 0.05 RE bound: 0.1

CR Time CR Time CR Time

Bunny

TRALS [38] 60.5% 13.54 17.4% 0.471 5.31% 0.118
FCTNALS [41] 65.1% 13.08 20.9% 0.473 3.93% 0.041
TNGreedy [12] 26.1% 11.02 6.32% 1.021 2.34% 0.362

TNGA [15] 27.9% 1014 5.01% 180.3 2.25% 12.52
TNLS [17] 24.3% 1402 4.26% 63.70 2.16% 24.53

TNALE [18] 26.3% 144.5 4.52% 18.36 2.26% 3.064
SVDinsTN 22.4% 0.745 6.92% 0.029 2.66% 0.005

Knights

TRALS [38] 74.7% 10.31 26.9% 3.835 9.15% 0.423
FCTNALS [41] 73.5% 12.35 20.9% 0.619 3.93% 0.014
TNGreedy [12] 32.1% 12.53 7.55% 1.366 3.50% 0.481

TNGA [15] 38.7% 912.9 5.01% 140.2 2.44% 12.52
TNLS [17] 27.3% 1286 4.73% 75.51 2.15% 5.320

TNALE [18] 27.6% 266.4 4.52% 25.05 2.10% 3.386
SVDinsTN 32.0% 1.548 5.64% 0.104 2.76% 0.019

Truck

TRALS [38] 62.8% 17.62 22.6% 1.738 6.00% 0.090
FCTNALS [41] 69.3% 7.735 20.9% 2.953 3.93% 0.159
TNGreedy [12] 26.9% 6.676 7.26% 1.259 3.35% 0.488

TNGA [15] 27.9% 1029 5.01% 170.3 2.85% 14.83
TNLS [17] 26.4% 992.6 4.99% 119.8 2.57% 19.35

TNALE [18] 24.7% 239.3 5.77% 19.54 2.90% 5.160
SVDinsTN 23.5% 1.051 6.42% 0.152 2.83% 0.023

Result analysis. Table 1 presents the success rate of the
output TN structures obtained by the proposed SVDinsTN
in 100 independent tests on fourth-order and fifth-order ten-
sors. It can be observed that the proposed SVDinsTN con-
sistently yields high success rates of over 95% in all test
cases. Notably, in approximately half of the test cases, the
success rates reach a perfect score of 100%.

4.2. Experiments for Validating Claim B

We conduct experiments to validate Claim B. We consider
both real-world data and synthetic data, and use different
methods to represent it in this experiment.

Experiment setting. We test three light field data4,
named Bunny, Knights, and Truck, which are fifth-order ten-
sors of size 40 × 60 × 3 × 9 × 9 (spatial height× spatial
width×color channel×vertical grid×horizontal grid). We
employ six representative methods as the compared base-
lines, including two methods with pre-defined topology:
TRALS [38] and FCTNALS [41], and four TN-SS methods:
TNGreedy [12], TNGA [15], TNLS [17], and TNALE [18].
We represent the test light field data by different methods
and calculate the corresponding compression ratio (CR) to
achieve a certain reconstruction error (RE) bound. The CR
is defined as FG/FX × 100%, where FG is the number of
elements of TN cores used to represent a tensor and FX is
the number of total elements of the original tensor. The RE
is defined as ∥X − X̃∥F /∥X∥F , where X is the original
data and X̃ is the reconstructed data. In all tests, we select
the parameter γ from the interval [10−7, 10−3].

Result analysis. Table 2 reports CR and run time of dif-
ferent methods on fifth-order light field data. The results
show that the proposed SVDinsTN achieves significantly
lower CRs than TRALS and FCTNALS, which are methods
with pre-defined topology. This indicates that SVDinsTN
can obtain a more compact structure than the pre-defined
one. Furthermore, while SVDinsTN requires the determi-
nation of diagonal factors alongside TN cores, its iterative
process generates progressively simpler structures, enhanc-
ing the computational efficiency. Consequently, SVDin-
sTN demonstrates faster performance compared to TRALS
and FCTNALS. Compared to the TN-SS methods, the pro-
posed SVDinsTN achieves a substantial speed improve-
ment while maintaining a comparable level of CR. Remark-
ably, SVDinsTN achieves an acceleration of approximately
100∼1000 times over TNGA, TNLS, and TNALE. This is
because TNGreedy, TNGA, TNLS, and TNALE adopt the
“sampling-evaluation” framework, necessitating a signifi-
cant number of repeated structure evaluations. In contrast,
SVDinsTN introduces a regularized modeling framework,
requiring only a single evaluation.

Impact of the initialization scheme. We analyze the
impact of the initialization scheme. In Table 3, we report
CR and run time of SVDinsTN with different initializations
on light field data Truck. As observed, our initialization

4http://lightfield.stanford.edu/lfs.html
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Table 3. Comparison of CR (↓) and run time (×1000s, ↓) of
SVDinsTN with different initializations on light field data Truck.

Initialization
RE bound: 0.01 RE bound: 0.05 RE bound: 0.1

CR Time CR Time CR Time

Random 30.7% 1.203 8.17% 0.474 4.14% 0.208
Ours 23.5% 1.051 6.42% 0.152 2.83% 0.023
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Figure 2. Comparison of the runtime in the first five iterations of
SVDinsTN on light field data Truck when including and excluding
the shrink operation in our initialization scheme.

scheme achieves lower CRs compared to random initializa-
tion, while maintaining higher efficiency. This corroborates
that our initialization scheme can provide a favorable start-
ing point and enhance computational efficiency. In partic-
ular, even with random initialization, our method achieves
significant acceleration compared to other TN-SS methods.
We further analyze the impact of the shrink operation in our
initialization scheme. In Figure 2, we present the run time
comparison of the first five iterations of our method when
including and excluding the shrink operation in our initial-
ization scheme. As observed, the shrink operation in our
initialization scheme enables our method to greatly reduce
the computational costs in the first several iterations.

Higher-order cases. We analyze whether the proposed
SVDinsTN still performs well on higher-order tensors. We
randomly generate 6th-, 8th-, and 10th-order tensors by us-
ing the same procedure in Section 4.1. The size of each ten-
sor mode is randomly selected from {5, 6, 7, 8}, the edge
number of each TN is randomly selected from {6, 8, 10},
and the rank of each edge is randomly selected from {2, 3}.
For each tensor order, we randomly generate 5 tensors. We
compare SVDinsTN and baseline methods in terms of CR
and run time when reaching the RE bound of 0.01, and show
the results in Table 4. As observed, SVDinsTN is appli-
cable to higher orders beyond 5, and even up to 10. The
behind rational is the truncated SVD used in initialization
restricts the initial values of the rank for each edge to a rel-
atively small range, thus improving computational and stor-
age efficiency (see Figure 2). As the iterations progress, the
sparsity regularization in the model leads to progressively
simpler learned structures, further boosting efficiency.

Table 4. Comparison of the CR (↓) and run time (×1000s, ↓)
of different methods when reaching the RE bound of 0.01. The
result is the average value of 5 independent experiments and “–”
indicates “out of memory”.

Method
6th-order 8th-order 10th-order

CR Time CR Time CR Time

TRALS [38] 1.35% 0.006 0.064% 0.034 – –
FCTNALS [41] 2.13% 0.002 – – – –
TNGreedy [12] 0.88% 0.167 0.016% 2.625 0.0008% 45.39

TNGA [15] 0.94% 3.825 0.024% 51.40 – –
TNLS [17] 1.11% 0.673 0.038% 59.83 – –

TNALE [18] 1.65% 0.201 0.047% 19.96 – –
SVDinsTN 1.13% 0.002 0.016% 0.017 0.0007% 0.608

4.3. Experiments for Validating Claim C

We conduct experiments to validate Claim C. We employ
the proposed SVDinsTN to a fundamental application, i.e.,
tensor completion (TC), and compare it with the state-of-
the-art tensor decomposition-based TC methods. Given an
incomplete observation tensor F ∈ RI1×I2×···×IN of X ∈
RI1×I2×···×IN , the proposed TC method first updates G and
S by Algorithm 1, and then updates the target tensor X as
follows: X = PΩc((STN(G,S) + ρX̂ )/(1 + ρ)) +PΩ(F),
where Ω is the index set of the known elements, PΩ(X )
is a projection operator that projects the elements in Ω to
themselves and all others to zeros, X̂ is the result at the
previous iteration, and the initial X is F .

Experiment setting. We test four color videos5, named
Bunny, News, Salesman, and Silent, which are fourth-order
tensors of size 144× 176× 3× 50 (spatial height×spatial
width×color channel×frame). We employ six methods for
comparison, named FBCP [37], TMac [29], TMacTT [3],
TRLRF [33], TW [28], and TNLS6 [17], respectively. We
set the missing ratio (MR) to 90%, which is defined as the
ratio of the number of missing elements to the total number
of elements. We evaluate the reconstructed quality by the
mean peak signal-to-noise ratio (MPSNR) computed across
all frames. In all tests, the parameter γ is set to 0.0003.

Result analysis. Table 5 reports MPSNR and run time
obtained by different TC methods. As observed, the pro-
posed SVDinsTN consistently achieves the highest MPSNR
values among all utilized TC methods across all test color
videos. In Figure 3, we present the reconstructed images
and their corresponding residual images at the 25th frame
of News. We observe that the proposed SVDinsTN outper-
forms the baseline methods in terms of visual quality, par-
ticularly with respect to background cleanliness and local
details (e.g. “dancer”) recovery.

5http://trace.eas.asu.edu/yuv/
6TNLS excels in the compression task; therefore, we use it as a repre-

sentative TN-SS method for comparison.
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Table 5. Comparison of MPSNR (↑) and run time (in seconds, ↓) of different TC methods on color videos.

Video
FBCP [37] TMac [29] TMacTT [3] TRLRF [33] TW [28] TNLS [17] SVDinsTN

MPSNR Time MPSNR Time MPSNR Time MPSNR Time MPSNR Time MPSNR Time MPSNR Time

Bunny 28.402 1731.2 28.211 1203.5 29.523 453.76 29.163 486.76 30.729 1497.4 28.787 99438 32.401 691.33
News 28.234 1720.4 27.882 340.46 28.714 535.97 28.857 978.12 30.027 1426.3 29.761 37675 31.643 932.42

Salesman 29.077 1783.2 28.469 353.63 29.534 656.45 28.288 689.35 30.621 1148.7 30.685 76053 31.684 769.54
Silent 30.126 1453.9 30.599 316.21 30.647 1305.6 31.081 453.24 31.731 1232.0 28.830 98502 32.706 532.31

FBCP [37] TMac [29] TMacTT [3] TRLRF [33] TW [28] TNLS [17] SVDinsTN Ground truth

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.40.3 0.70.5 0.80.2 0.60.1 10.9

Figure 3. Reconstructed images and residual images obtained by different methods on the 25th frame of News. Here the residual image is
the average absolute difference between the reconstructed image and the ground truth over R, G, and B channels.
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Figure 4. Relative change curves with respect to the iteration num-
ber on test color videos Bunny and Silent. Here the relative change
is defined as ∥X − X̂∥F /∥X̂ ∥F , and X and X̂ are the results of
the current iteration and its previous iteration.

Numerical convergence. In Theorem 1, we provide a
theoretical convergence guarantee for the proposed method.
Here, we select color videos Bunny and Silent as examples
to numerically verify the convergence. Figure 4 presents the
relative change in the reconstructed color videos at each it-
eration compared to their respective previous iterations. We
observe that the values of the relative change achieved by
the proposed method decrease and gradually tend to zero as
the number of iterations increases. This justifies the numer-
ical convergence of the proposed method.

5. Conclusion
We propose a novel TN paradigm, called SVDinsTN, which
enables us to solve the challenging TN-SS problem from a
regularized modeling perspective. This perspective renders

our model highly amenable to easy solutions, allowing us to
leverage well-established optimization algorithms to solve
the regularized model. As a result, the proposed method
achieves about 100∼ 1000 times acceleration compared to
the state-of-the-art TN-SS methods with a comparable rep-
resentation ability. Besides, SVDinsTN demonstrates its ef-
fectiveness as a valuable tool in practical applications.

Limitations. In existing research on TN-SS, two chal-
lenging issues remain open. One is the computationally
consuming issue, and the other is the theoretical guaran-
tee of the optimal TN structure. SVDinsTN addresses the
computationally consuming issue. But the theoretical guar-
antee of the optimal TN structure is still an open problem.
Solving this issue will be the direction of our future work.
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