
Towards Learning a Generalist Model for Embodied Navigation

Duo Zheng1,2* Shijia Huang1* Lin Zhao3† Yiwu Zhong1 Liwei Wang1‡

1The Chinese University of Hong Kong 2Shanghai AI Laboratory
3Centre for Perceptual and Interactive Intelligence
{dzheng23, sjhuang, lwwang}@cse.cuhk.edu.hk

Abstract

Building a generalist agent that can interact with the
world is the intriguing target of AI systems, thus spurring
the research for embodied navigation, where an agent is
required to navigate according to instructions or respond
to queries. Despite the major progress attained, previous
works primarily focus on task-specific agents and lack gen-
eralizability to unseen scenarios. Recently, LLMs have pre-
sented remarkable capabilities across various fields, and
provided a promising opportunity for embodied navigation.
Drawing on this, we propose the first generalist model for
embodied navigation, NaviLLM. It adapts LLMs to em-
bodied navigation by introducing schema-based instruc-
tion. The schema-based instruction flexibly casts various
tasks into generation problems, thereby unifying a wide
range of tasks. This approach allows us to integrate di-
verse data sources from various datasets into the training,
equipping NaviLLM with a wide range of capabilities re-
quired by embodied navigation. We conduct extensive ex-
periments to evaluate the performance and generalizability
of our model. The experimental results demonstrate that
our unified model achieves state-of-the-art performance on
CVDN, SOON, and ScanQA. Specifically, it surpasses the
previous stats-of-the-art method by a significant margin
of 29% in goal progress on CVDN. Moreover, our model
also demonstrates strong generalizability and presents im-
pressive results on unseen tasks, e.g. embodied question
answering and 3D captioning. Our code is available at
https://github.com/LaVi-Lab/NaviLLM .

1. Introduction
The pursuit of artificial intelligence has long been driven by
the desire to construct agents that are capable of acquiring
knowledge through interacting with the physical world, akin
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Figure 1. Comparison between previous methods and ours. Previ-
ous methods learn task-specific navigation agents, suffer from a
low success rate for out-of-domain VLN, and fall short when facing
unseen tasks (e.g., QA and summarization). The different colors
are used to represent different examples. For instance, orange rep-
resents an example from In-domain VLN. Our NaviLLM not only
excels in diverse tasks required by embodied navigation, but also
demonstrates promising generalizability even on unseen tasks.

to the complex interaction processes exhibited by humans.
This has led to the emergence of embodied navigation [2, 33,
47], where an agent located in 3D environment is required
to navigate according to various forms of instructions and
provide textual responses based on user queries.

A wide spectrum of tasks have been introduced for em-
bodied navigation, ranging from vision-language naviga-
tion that follows step-by-step instructions [3, 34] or coarse-
grained directives [17, 43, 61], to the tasks guided by inter-
actions between humans and agents [19, 52], and even to
embodied question answering through proactive exploration
[18, 55]. To tackle these tasks, a myriad of methodologies
have been explored in the past, with some notable approaches
leveraging pre-training techniques [24, 25, 32, 40], data
augmentation [14, 22, 29], and memory structures [11, 27],
etc. These models, while demonstrating considerable profi-
ciency in their specific tasks, unfortunately lack generaliza-
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tion across diverse scenarios. This naturally raises a question:
Can we train a generalist model that is generalizable to many
embodied navigation tasks?

The advancement of Large Language Models (LLMs)
has provided a promising opportunity to construct a general-
ist model for embodied navigation. In recent years, LLMs
[9, 15, 53] have demonstrated human-like capability for text
understanding and text generation. Given such impressive
performance, numerous works [5, 16, 39, 59] have pioneered
adapting LLMs for vision-language tasks through fine-tuning
on a variety of data sources. Beyond the image domain,
LLMs have exhibited remarkable generalizability in other
domains, such as video understanding [36], 3D understand-
ing [28], and robotic manipulation [6, 7, 49]. However, the
potential of adapting LLMs to embodied navigation tasks
remains largely unexplored.

In this work, we aim to learn a generalist model for em-
bodied navigation by adapting LLMs. The main challenge
lies in how to unify a wide range of tasks in a single model.
To address the challenge, our key idea is to cast all task learn-
ing into generative modeling, with the help of pretrained
LLMs. Specifically, we propose schema-based instruction
and design a series of schemas (e.g., descriptions of tasks,
visual observation, and navigation history), based on the char-
acteristics of embodied tasks. These schemas are flexible to
cast various vision-centric tasks into generation problems.
For example, we can effortlessly convert vision-language
navigation into the generation of movement direction, and
convert object localization into the generation of object IDs.
Benefitting from this design, we are able to train a unified
model on the data collected for diverse tasks, thereby en-
abling our model to address a wide spectrum of tasks, rang-
ing from vision-language navigation and object localization,
to 3D question answering, trajectory summarization, em-
bodied question answering. Therefore, our approach signifi-
cantly mitigates the problem of data scarcity and empowers
the model to understand instructions of varying formats and
granularities, thereby enabling a suite of capabilities to inter-
act with the 3D environment.

We train NaviLLM on a combined dataset covering di-
verse embodied tasks (CVDN, SOON, R2R, REVERIE,
ScanQA, LLaVA-23k, and augmented data for R2R and
REVERIE), and conduct extensive experiments to evaluate
the competencies and generalizability of NaviLLM. With
only a single model, NaviLLM has achieved new state-of-
the-art results simultaneously on multiple benchmarks, i.e.
CVDN [52], SOON [61], and ScanQA [4], and demonstrated
comparable performance to latest models on R2R [3] and
REVERIE [43]. Notably, our model achieves a relative im-
provement of 29% over the previous state-of-the-art on the
CVDN benchmark. Further, we evaluate the generalizability
of our method by excluding CVDN, SOON, and REVERIE
from the training data, respectively. Our method outperforms

baseline methods on all tasks, significantly improving the
Success Rate by 136% on SOON. Moreover, we observe
that our model presents an impressive capability for unseen
tasks, e.g. embodied question answering and 3D captioning.
Collectively, the results from these experiments not only
attest to the generalization capability of the model but also
highlight the significant potential of our approach in learning
a generalist model for embodied navigation.

Our contribution could be summarized as follows:
• We propose the first generalist model for embodied nav-

igation, namely NaviLLM, enabling a wide spectrum of
capabilities required for embodied navigation.

• We unify various tasks in a single model by adapting LLM
and introducing schema-based instruction. By doing this,
our model can harness data sources from diverse datasets.

• Our single model achieves SoTA results on CVDN, SOON,
and ScanQA, with a significant margin of 29% compared
to the previous SoTA on CVDN. Furthermore, it also ex-
hibits strong generalizability on unseen tasks.

2. Related Work

2.1. Vision-Language Navigation

Vision-language navigation has been extensively explored in
the last few years, including a variety of tasks that require
different aspects of embodied capabilities. R2R [3] requires
the agent to navigate the rooms step by step, following fine-
grained instructions, while Thomason et al. [52] introduce
Cooperative Vision-and-Dialog Navigation (CVDN) which
demands the agent to navigate based on a dialog history.
Beyond navigation, SOON [61] and REVERIE [43] addi-
tionally require the agent to localize the objects queried in
instructions. EQA [18, 55] emphasizes the ability to an-
swer questions in a 3D environment by actively explor-
ing the environment. To tackle these tasks, significant ef-
forts have been invested. However, previous approaches
[11, 12, 23, 25, 27, 31, 37] primarily focus on designing
specialist models for individual tasks, and these models of-
ten struggle to generalize and transfer to other tasks. Our
method, as an embodied generalist, addresses these tasks
simultaneously via a single model and demonstrates strong
generalization capabilities.

The work closely related to ours is MT-RCM [54], a
multi-task model, designed to alleviate overfitting to specific
datasets. On the other hand, our method primarily leverages
the LLMs to enhance generalizability, and LLMs have been
adapted to a broader range of tasks and datasets. Recently,
some work [20, 58] has also explored the generalization and
transferability of agents by utilizing off-the-shelf foundation
models. In contrast to their approach, our method focuses on
building a unified, end-to-end embodied learner, rather than
a pipeline chaining up multiple independent models.
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Figure 2. The overview of NaviLLM. The left figure presents the architecture and workflow of our model, while the right figure illustrates the
schema-based instruction and multi-task learning process in our method.

2.2. Multimodal Instruction Tuning

Large Language Models (LLMs) [9, 15, 53] have revolution-
ized text understanding and text generation. Recent advance-
ments [39, 56] further expanded their capabilities to digest
visual inputs. For example, multimodal instruction tuning
methods [5, 16, 36, 39, 59] have been widely proposed for
2D images [16] or videos [36]. One of the distinctions be-
tween our work and other multi-modal LLMs is that, our
work is designed for embodied AI, including navigation
and 3D understanding, which previous works don’t con-
sider. More recently, Hong et al. [28] introduced 3D-LLM
by adapting LLMs to 3D data. However, it does not address
the problem of calibrating LLMs for embodied navigation
that requires the ability of sequential decision-making.

2.3. Large Language Models as Embodied Agents

Two lines of work have emerged in the exploration of inte-
grating LLMs into embodied tasks. The first line focuses on
translating visual information into textual format, which is
then processed by the LLMs to generate plans [8, 30, 41, 58],
landmarks [48], or code [38]. These methods leverage the in-
herent knowledge within the pre-trained, frozen LLMs. The
second line [6, 7, 49], in contrast, directly fine-tunes LLMs
on datasets that comprise action sequences of robotic manip-
ulations. Similar to the second line of methods, our work also
fine-tunes LLMs, yet focuses on addressing various tasks in
embodied navigation, rather than robotic manipulations.

3. Method
3.1. Problem Formulation

In embodied navigation, an embodied agent situated in the
3D environment is required to complete tasks described in
natural language. The agent leverages past trajectories and

current observations to predict actions that enable task com-
pletion. The actions encompass navigation moves, bounding
boxes for objects, and textual responses.

3.2. NaviLLM

NaviLLM is an embodied model grounded in LLM, com-
prising two modules, i.e., a scene encoder and an LLM. As
depicted in Figure 2 (a), the scene encoder takes the current
visual observation as input, and transforms it into a series of
scene representations (§3.2.1). Utilizing these scene repre-
sentations, we construct various schemas for different tasks
and these schemas serve as input for LLM, to produce the
next action (§3.2.2).

3.2.1 Scene Encoding

The scene encoder extracts scene presentations given an
observation composed of a set of images {Ii}ni=1, with each
image representing a unique viewpoint. The visual encoder
initially extracts visual features for each individual image
via a Vision Transformer (ViT) [21]. These features from
different viewpoints are then integrated via a multi-view
fusion process, yielding scene representations {si}ni=1.
Visual Feature Extraction. A pre-trained ViT is utilized
to extract visual features from images. Specifically, given
an image Ii, it is first divided into a sequence of patches,
with a special [CLS] token appended at the beginning. The
sequence is then fed into the transformer network of the ViT.
Finally, the last hidden states of the [CLS] token serve as
visual features, which could be denoted as:

fi = ViT(Ii) for i = 1, 2, ..., n, (1)

where fi is the visual features of the i-th viewpoint.
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Multi-View Fusion. Upon acquiring the visual features,
multi-view fusion is performed to model complex interde-
pendencies among different viewpoints. The image features
{fi}ni=1 for all viewpoints are fed into a transformer en-
coder, to learn the spatial relationships between different
viewpoints, formulated as:

{si}ni=1 = Transformer-Encoder({fi}ni=1), (2)

where si is the scene representation for the i-th viewpoint.
To enhance the scene representations, we also incorporate
the angle and GPS information of each view into the scene
encoding. We omit these details for brevity.

3.2.2 Schema-Based Instruction

Schema-based instruction was proposed in the language mod-
els for multi-turn dialog [10, 35, 46], serving as an effective
way of generalizing to novel tasks. In the context of LLMs,
we extend schema-based instruction to multimodal modeling
so that it can digest multimodal information. Our schema is
designed to be a unified format that can adapt to different
data sources and enable flexibility for a wide range of tasks.
Task. It consists of a word sequence that the agent is expected
to execute, which could manifest in various forms, such as
a navigation instruction, an invisible object required to find,
or a question raised by a user.
Observation. This refers to the visual observation at the
current location of the agent. The observation schema con-
sists of the scene representations {si}ni=1. To distinguish
representations between different views, we prepend each
representation with an ID, denoted by

[Emb(1), s1, ..., Emb(n), sn], (3)

where Emb(i) is the embedding of the ID for the i-th view.
History. It records the sequence of past visual observations
upon the t-th step. This schema provides a temporal context
that helps the agent understand its past trajectory within the
environment and the visual feedback associated with each
decision. Given history representations {hi}ti=1, we prepend
each representation with an ID to indicate the order of the
past observations. The History schema is constructed as

[Emb(1), h1, ..., Emb(t), ht], (4)

Emb(i) is the embedding of the ID for the i-th step.
Output Hint. The schema hints at the output information
that the agent is expected to produce, e.g., an identifier for a
desired viewpoint to move towards, an answer response to a
question, or a summarization for a previous trajectory. This
schema helps the model understand how to generate actions
that align with the task requirements.

3.3. Multi-task Learning

As illustrated in Figure 2 (b), we summarize the key tasks
for embodied navigation and transform these tasks into gen-
eration problems using schema-based instruction. Then we
can optimize our model on different tasks with a unified
cross-entropy objective. We detail each task as follows.

Vision-Language Navigation (VLN) requires the agent to
navigate in 3D environment to accomplish a given task. We
present the schemas for VLN as follows:
• Task: A navigation instruction with a brief task description.
• Observation: Scene representations of all reachable view-

points at the current location.
• Output Hint: e.g., select a direction from the observation.
The LLM takes the above schemas as input, to predict the ID
of a viewpoint to move towards, where the ID is a number.
As the agent moves, the history representations are updated
with the scene representation corresponding to the agent’s
most recently selected viewpoint.

Object Localization. It requires identifying the correct ob-
ject from a set of visible objects after the agent successfully
reaches the destination. In addition to History schema, it also
contains the following schemas:
• Task: An object localization command.
• Observation: Object representations of all visible objects

at the current position. The object representations are ex-
tracted from a pre-trained ViT and subsequently converted
into the same dimension as word embeddings.

• Output Hint: e.g., select an object from the observation.
With these schemas, the agent is required to generate the ID
of the selected object.

Trajectory Summarization. We follow [22] to include the
task of synthesizing instructions from given trajectories. For
this task, it shares the History and Observation schemas as
VLN, where the History schema is optional depending on
the dataset. Besides the two schemas, we also include:
• Task: A concise description of the style for summarizing,

e.g., fine-grained and coarse-grained.
• Output Hint: e.g., Summarize the above trajectory.

3D Question Answering (3D-QA) asks the agent to answer
a question in a 3D scene. Different from the previous tasks, in
this task, the History schema is not required. The following
schemas are provided for 3D-QA.
• Task: A question about an indoor scene.
• Observation: Scene representations of images from differ-

ent positions. We also utilize the previous scene encoding
to process the scene representations.

• Output Hint: e.g., Answer the question based on the scene.
The model demands to generate a textual answer based on
the above schemas.

Embodied Question Answering (EQA). The agent is asked
to first navigate to the location referred by a question, and
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then respond to the question accordingly. We utilize the
schemas of VLN and 3D-QA in two stages, respectively.

4. Experimental Setup

In this section, we first introduce the implementation details
(§4.1). Then we describe the evaluation datasets, metrics,
and baseline methods for VLN (§4.2), 3D-QA (§4.3) and
EQA (§4.4), respectively.

4.1. Implementation Details

Model Details. We fine-tune the multi-view fusion module
and LLM, where the former consists of a 2-layer transformer
encoder with a hidden size of 1024 and the LLM is built upon
Vicuna-7B-v0 [42]. The ViT in the scene encoder is EVA-
CLIP-02-Large (428M) [51] and is kept frozen during the
training phase. In addition, we leverage the object features
extracted from ViT-B16 by Chen et al. [14].
Training Details. We follow the previous works [12, 13, 23]
to employ a two-stage training strategy. Throughout both
stages, we utilize the Adam optimizer with a learning rate
of 3e-5. The model is trained for 10,000 steps in the pre-
training stage and 5,000 steps in the multi-task fine-tuning
stage with a batch size of 64. It takes approximately 80
hours with 8 Nvidia A100 GPUs. During the testing phase,
we employ a sampling strategy with a temperature of 0.01
for action generation in the SOON and REVERIE tasks, to
encourage more exploration. For other tasks, we opt for a
greedy strategy in generating actions.
Training Data. In the pre-training stage, we perform teacher-
forcing training on the combined dataset from CVDN,
SOON, R2R, REVERIE, ScanQA, and augmented data from
R2R and REVERIE. In the multi-task fine-tuning stage, we
alternate between teacher forcing and student forcing on the
combined dataset from CVDN, SOON, R2R, REVERIE,
ScanQA, and LLaVA-23k [39].

For object localization, we utilize the corresponding an-
notations from REVERIE and SOON. For trajectory summa-
rization, we convert the instruction-trajectory pairs of VLN
datasets into trajectory-instruction pairs, where the trajectory
serves as input and the instruction as output. As for 3D-QA,
in addition to ScanQA, we also construct question-answer
pairs from the fine-grained annotations on R2R [26]. In con-
crete, the constructed questions ask the model to predict
the corresponding sub-instruction for a selected viewpoint.
Additionally, we held out the task of EQA to verify the
generalization capability on out-of-domain tasks.

4.2. Setup for VLN

Datasets. We adopt four datasets, each addressing distinct
challenges posed by VLN. These datasets are split into train,
val-seen, val-unseen, and test sets according to environments.

• CVDN [52] requires the agent to navigate towards the
target based on a dialog history, thereby requiring the
ability to comprehend the dialog and interpret it as actions.

• SOON [61] asks the agent to locate a thoroughly described
object, which necessitates intricate alignment between rich
semantic descriptions and the corresponding visual cues.

• R2R [3] demands the agent to navigate following a step-
by-step instruction. To make effective decisions, it requires
the agent to dynamically track the progress, demanding
fine-grained alignment between history and instructions.

• REVERIE [43] requires the agent to localize a distant
target object according to a concise high-level instruction.

Metrics. We follow [3] to evaluate our method on the follow-
ing metrics: 1) Sucess Rate (SR), whether the agent success-
fully reaches the target location within a predefined distance
threshold. 2) Success Rate Weighted by Path Length (SPL),
calculated as the SR weighted by the ratio of the ground truth
length and actual path length. 3) Oracle Success Rate (OSR),
SR given the oracle stop strategy. 4) Trajectory Length (TL),
the overall distance covered by the agent during navigation.
5) Goal Process (GP), the progress in meters towards the
goal. GP is adopted for the CVDN dataset, while SPL is em-
ployed as the primary evaluation metric for other datasets.
Baseline Methods. We compare our method with the latest
SoTA methods on the CVDN, SOON, R2R, and REVERIE
datasets. We do not consider methods with pre-exploration
(e.g., AuxRN [60], RREx-BoT [50]), and models augmented
by new environments (e.g., HM3D-AutoVLN [13]).

4.3. Setup for 3D-QA

Dataset. ScanQA dataset [4] is a widely used dataset for
3D-QA, which is divided into train, val, and test sets. Here,
we use val and ‘test w/ objects’ sets for comparison. For the
results on ‘test w/o objects’ set, please refer to the appendix.
Metrics. We follow [28] to evaluate our method with Exact
Match (EM), METEOR, ROUGE-L, CIDER, and BLEU-4.
Baseline Methods. We include some representative methods
for comparison, including VoteNet+MCAN [57], ScanRe-
fer+MCAN [57], and 3D-LLM [28]. 3D-LLM is the current
SoTA method on the ScanQA benchmark.

4.4. Setup for EQA

Dataset. We test the zero-shot inference capability on the
val split of the MP3D-EQA [55] dataset. Since MP3D-EQA
is generated from functional programs, there are some data
with inaccurate endpoints. Therefore, we manually check the
dataset and filter out those invalid data in our experiments.
Metrics. We report SR and SPL for the navigation phase,
and Accuracy (ACC) for the question-answering phase.
Baseline Methods. We compare our NaviLLM with the
fully-supervised VQA model [18] and zero-shot DUET mod-
els [12] separately trained on R2R, REVERIE, and SOON.
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CVDN SOON R2R REVERIE ScanQA
Val-U Test Val-U Test Val-U Test Val-U Test Val Test

Separate Model For Each Task
PREVALENT [25] 3.15 2.44 - - 53 51 - - - -
HOP [44] 4.41 3.24 - 57 59 26.11 24.34 - -
HAMT [11] 5.13 5.58 - - 61 60 30.20 26.67 - -
VLN-BERT [27] - - - - 57 57 24.90 23.99 - -
GBE [61] - - 13.34 9.23 - - - - - -
DUET [12] - - 22.58 21.42 60 58 33.73 36.06 - -
Meta-Explore [31] - - - 25.80 62 61 34.03 - - -
AZHP [23] - - - - 61 60 36.63 35.85 - -
VLN-SIG [32] 5.52 5.83 - - 62 60 - - - -
VLN-PETL [45] 5.69 6.13 - - 60 58 27.67 26.73 - -
BEV-BERT [1] 64 60 36.37 36.41 - -
3D-LLM [28] - - - - - - - - 20.5 19.1

Unified Model For All Tasks
MT-RCM+Env [54] 4.65 3.91 - - 49 40 - - - -
NaviLLM 6.16 7.90 29.24 26.26 59 60 35.68 32.33 23.0 26.3

Table 1. Overall comparison with state-of-the-art methods on all tasks. ‘Val-U’ denotes val-unseen split. We report SPL for CVDN, SOON,
R2R, and REVERIE, and report Accuracy for ScanQA.

ScanQA-Val ScanQA-Test
EM ROUGE-L METEOR CIDER BLEU-4 EM ROUGE-L METEOR CIDER BLEU-4

VoteNet+MCAN [57] 17.3 29.8 11.4 54.7 6.2 19.7 30.9 12.0 58.2 6.0
ScanRefer+MCAN [57] 18.6 30 11.5 55.4 7.9 20.6 30.7 11.9 57.4 7.5
ScanQA [4] 21.0 33.3 13.1 64.9 10.1 23.5 34.3 13.5 67.3 12.0
3D-LLM (flamingo) [28] 20.4 32.3 12.2 59.2 7.2 23.2 34.8 13.5 65.6 8.4
3D-LLM (BLIP2-flant5) [28] 20.5 35.7 14.5 69.4 12.0 19.1 35.3 14.9 69.6 11.6
NaviLLM (Ours) 23.0 38.4 15.4 75.9 12.5 26.3 40.2 16.6 80.8 13.9

Table 2. Detail comparison with state-of-the-art methods on ScanQA.

5. Experimental Results

We conduct a series of experiments to answer three critical
questions about NaviLLM: (1) Can NaviLLM, when trained
with diverse tasks, demonstrate superior performance com-
pared to existing SoTA methods (§5.1)? (2) How well does
NaviLLM generalize to unseen tasks, compared to previous
task-specific models (§5.2)? (3) What is the impact of each
component in our method (§5.3)? Lastly, we also provide vi-
sualization for NaviLLM on unseen scenes and tasks (§5.4).

5.1. Comparision with SoTA Methods

Delivering SoTA Results with a Single Model. We present
the comparison across all tasks in Table 1. Our single model
achieves SoTA performance on the test sets of the CVDN,
SOON, and ScanQA datasets, and demonstrates comparable
results to the latest SoTA methods on R2R and REVERIE.
Significant Improvement on CVDN Can Be Credited to
Our Innovative Design. Compared to the 6.13 GP of VLN-
PETL [45], our method shows a significant increase in the

GP at 7.90, winning the first place on the leaderboard of
CVDN. Compared to other datasets, the improvement on
CVDN is the most pronounced. We attribute this signifi-
cant improvement primarily to two factors: 1) The dialog
structure in CVDN is relatively complex, and the knowledge
inherited from LLM in our model can better help compre-
hend the dialog. 2) Given that the size of the CVDN dataset
is smaller compared to other datasets, the unification of these
datasets effectively mitigates the issue of data scarcity.

Our Method Also Excels in 3D Tasks. As shown in Table 2,
our method achieves SoTA results on the val and test sets in
all metrics. It obtains a 26.3% EM, with a 7.2% improvement
over 3D-LLM, which is specially designed for 3D tasks.

Better Performance on Tasks with Complex Instructions.
We count the average length of instructions across different
datasets, with CVDN averaging 81.6 words per instruction,
SOON averaging 38.6 words, R2R averaging 29 words, and
REVERIE averaging 18 words. This reflects the complex-
ity of the instructions to some extent. We notice that our
method exhibits superior performance on datasets with com-
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CVDN SOON REVERIE
TL GP↑ TL OSR↑ SR↑ SPL↑ TL OSR↑ SR↑ SPL↑

DUET (R2R) 21.12 3.38 26.83 7.64 4.66 2.84 7.88 29.11 24.91 20.00
DUET (REVERIE) 76.13 3.30 33.72 20.86 10.24 6.06 - - - -
DUET (SOON) 48.61 2.40 - - - - 38.10 43.45 10.91 3.64
NaviLLM 26.37 4.46 28.66 33.11 19.81 14.29 18.96 51.47 28.10 21.04

Table 3. Held-out results on val-unseen splits of CVDN, SOON and REVERIE. We only perform the multi-task fine-tuning for held-out
experiments. Trajectory Length (TL) serves as a statistical indicator rather than an evaluation metric.

# GT Path Navigation QA
TL SR↑ SPL↑ ACC↑

1 DUET (R2R) [12] 16.47 47.00 30.51 -
2 DUET (REVERIE) [12] 12.59 39.22 11.47 -
3 DUET (SOON) [12] 47.01 17.43 3.91 -
4 NaviLLM (Ours) 14.15 47.78 35.60 44.5
5 EQA (habitat-lab)† [18] ✓ - - - 46.0
6 NaviLLM (Ours) ✓ - - - 47.4

Table 4. Zero-shot inference results on MP3D-EQA. ‘GT Path’
means using the ground truth trajectory for question answering. †
indicates the method is finetuned on the training set of MP3D-EQA.
Trajectory Length (TL) serves as a statistical indicator rather than
an evaluation metric.

plex instructions, such as CVDN, SOON, and R2R, achiev-
ing performance better than or comparable to SoTA methods.
However, there is still a slight gap with DUET on datasets
with relatively simple instructions, such as REVERIE. This
may indicate that our method possesses excellent instruc-
tion comprehension capabilities, which helps improve the
performance on tasks with complex instructions.
NaviLLM Demonstrates An Excellent Object Localiza-
tion Capability. In the object localization task of REVERIE,
our method achieves 19.83% RGS and 16.04% RGSPL, and
outperforms the 14.88% and 13.08% achieved by HAMT
[11], demonstrating an excellent object localization capabil-
ity. Given that existing methods typically integrate object
features with image features, we believe that our method
could be further enhanced by combining these features.

5.2. Generalization Ability on Unseen Tasks

We evaluate the zero-shot inference performance of our
method on unseen tasks, and compare it with zero-shot
DUET models (DUET (R2R), DUET (REVERIE), and
DUET (SOON)), with each model being separately trained
on its corresponding dataset.
Generalize to Out-of-Domain VLN Tasks. We conduct
held-out experiments to verify the generalization ability to
out-of-domain VLN tasks. Specifically, we individually ex-
clude CVDN, SOON, and REVERIE from the training set,
train three separate models, and then test their zero-shot
performance on the respective excluded datasets. DUET spe-
cially designs different hyper-parameters and pre-training

schemes for each VLN task, giving the model strong in-
domain navigation capabilities. However, such learned task-
specific agents lack out-of-domain generation abilities. As
illustrated in Table 3, our method significantly outperforms
DUET on CVDN and SOON, improving 32% of GP on
CVDN and 136% SPL on SOON, respectively. Since instruc-
tions in REVERIE are relatively simpler and similar to R2R,
DUET (R2R) delivers an SR of 24.91% on REVERIE, but
we still achieve a better SR of 28.10%. This demonstrates
that our schema-based instruction and multi-task learning
empower the out-of-domain generation abilities.
Skill Combination for EQA. We perform a zero-shot evalu-
ation on MP3D-EQA to show that NaviLLM can combine
the learned navigation and question-answering ability to
solve more complex tasks. We ask our agent to first exe-
cute the navigation process and then answer the question
after reaching the goal. As illustrated in Table 4, our model
achieves 47.78% SR and 35.60% SPL, surpassing DUET
(R2R) by 5.1% in SPL (row 1 vs. 4). At the same time, it can
also answer questions at a decent accuracy of 44.5%, while
the DUET models are incapable of performing question an-
swering. Moreover, when the ground truth trajectories are
provided, our zero-shot model presents superior performance
over the fully-supervised EQA model (rows 5 vs. 6).

5.3. Ablation

Multi-task Learning Enhances the Performance On All
Tasks. Table 5 illustrates that multi-task learning improves
performance on all tasks (row 1 vs. 3). This demonstrates that
expanding the volume and diversity of training data is crucial
for learning a generalist model for embodied navigation.
LLM plays a Key Role in Our Method. Comparing rows 2
and 3, we can observe a significant performance drop when
the LLM is randomly initialized, underscoring the substantial
role that the LLM plays.
Limited Benefits of Pre-Training on Augmented Data.
Previous works [12, 23] have consistently shown notable
improvements after pre-training on augmented data from
R2R and REVERIE. However, comparing rows 3 and 4, we
find only a slight enhancement on R2R, CVDN, and SOON
after pre-training. We speculate that the quality of the data
may play a more crucial role than its quantity for our method.
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# LLM Multi-Task Pretrain CVDN SOON R2R REVERIE ScanQA
GP SR SPL SR SPL SR SPL EM ROUGE-L

1 ✓ 5.54 28.37 21.37 64 57 30.95 24.10 21.8 37.0
2 ✓ 3.64 20.73 17.39 49 40 31.49 26.87 12.4 22.8
3 ✓ ✓ 5.91 35.44 28.09 67 58 44.56 36.63 23.3 38.2
4 ✓ ✓ ✓ 6.16 38.33 29.24 67 59 42.15 35.68 22.1 37.6

Table 5. Ablation study of NaviLLM across all tasks. ‘LLM’, ‘Multi-Task’, and ‘Pretrain’ denote the utilization of pretrained LLM weights
for initialization, the execution of multi-task learning, and the performance of pre-training, respectively. The results reported are from the
val-unseen splits for VLN tasks and the val split for ScanQA.

（a）Trajectory Summarization

Output: Walk past the dining room table and chairs and turn left. 
Walk past the stairs and turn right. Stop in front of the bathroom.

Task: Generate step-by-step based on the given trajectory.

(c) Embodied Question Answering

Output: White

Task: Navigate to the object in ‘what color is the stove?’. 
Answer the question.

1. Go up to the family room

2. Find the kitchen
Walk to the kitchen

3. Locate the stove
Answer the question

(d) 3D Captioning

Output: The kitchen is located in the middle of the house and 
has a dining table in it

Task: Can you describe the main features of this scene? 

Unseen Task

Unseen Scene （b）Object Navigation

Task: Go to third level family room and wipe the sofa chair

Output: The living room features a large flat screen TV mounted on the wall 
opposite a wooden cabinet. There is a couch and two armchairs in the room, 
and a dining table with two chairs is situated near the entrance.

Task: Describe the visual content of the scene in great detail.

TV
wooden cabinet 

couch

dining table

dining table
stove

623

4

5

1

7 89

Output: object 2

1. The agent is at bathroom
Walk out of the bathroom

2. Locate the sofa chair

Figure 3. The visualization for our method on unseen scenes and unseen tasks. In Figure (a), lines and text of the same color represent
sub-trajectories and their corresponding sub-instructions. In Figures (b) and (c), the text in gray is the description of the actions of the agent
during navigation, while the red arrow indicates the direction that the agent moves towards.

5.4. Visualization

Figure 3 (a) and (b) are examples of trajectory summarization
and object navigation on unseen scenes, respectively. The
first example illustrates that our model can generate accurate
step-by-step instructions given trajectories, which could be
further used for data augmentation. Figure 3 (c) and (d)
respectively present examples of EQA and 3D captioning,
which are not encountered in training data, demonstrating
the generalizability of NaviLLM. Specifically, as shown in
Figure 3 (d), our model is capable of producing captions of
varying granularity according to the instructions.

6. Conclusion

In this paper, we present the first generalist model for embod-
ied navigation, NaviLLM, which adapts LLMs to a variety
of tasks by introducing schema-based instruction. Benefiting
from this design, we unify diverse tasks into a generation

problem, allowing our model to utilize data sources from var-
ious datasets. Our experiments show that our single model
can achieve SoTA results on CVDN, SOON, and ScanQA,
and comparable performance to the latest models on R2R
and REVERIE. Moreover, it also demonstrates strong gener-
alizability and presents promising results on unseen tasks.
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