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Abstract

Building accurate maps is a key building block to en-
able reliable localization, planning, and navigation of au-
tonomous vehicles. We propose a novel approach for build-
ing accurate maps of dynamic environments utilizing a se-
quence of LiDAR scans. To this end, we propose encoding
the 4D scene into a novel spatio-temporal implicit neural
map representation by fitting a time-dependent truncated
signed distance function to each point. Using our repre-
sentation, we extract the static map by filtering the dynamic
parts. Our neural representation is based on sparse feature
grids, a globally shared decoder, and time-dependent ba-
sis functions, which we jointly optimize in an unsupervised
fashion. To learn this representation from a sequence of Li-
DAR scans, we design a simple yet efficient loss function
to supervise the map optimization in a piecewise way. We
evaluate our approach 1 on various scenes containing mov-
ing objects in terms of the reconstruction quality of static
maps and the segmentation of dynamic point clouds. The
experimental results demonstrate that our method is capa-
ble of removing the dynamic part of the input point clouds
while reconstructing accurate and complete 3D maps, out-
performing several state-of-the-art methods.

1. Introduction
Mapping using range sensors, like LiDAR or RGB-D cam-
eras, is a fundamental task in computer vision and robotics.
Often, we want to obtain accurate maps to support down-
stream tasks such as localization, planning, or navigation.
For achieving an accurate reconstruction of an outdoor en-
vironment, we have to account for dynamics caused by
moving objects, such as vehicles or pedestrians. Further-
more, dynamic object removal plays an important role in au-
tonomous driving and robotics applications for creating dig-
ital twins for realistic simulation and high-definition map-
ping, where a static map is augmented with semantic and
task-relevant information.

1Code: https://github.com/PRBonn/4dNDF
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Figure 1. Given a sequence of point clouds, as shown in (a), we
optimize our 4D neural representation that can be queried at ar-
bitrary positions for a specific time. (b) Based on the estimated
time-dependent TSDF values, we can extract a mesh at a specific
point in time. Additionally, our 4D neural representation can be
also used for static mapping (c) and dynamic object removal (c).

Mapping and state estimation in dynamic environments
is a classical problem in robotics [5, 56, 57]. Approaches for
simultaneous localization and mapping (SLAM) can apply
different strategies to deal with dynamics. Common ways
are: (1) filtering dynamics from the input [1, 30, 47, 48, 51]
as a pre-processing step, which requires a semantic inter-
pretation of the scene; (2) modeling the occupancy in the
map representation [17, 34, 37, 49, 50, 64], where dynam-
ics can be implicitly removed by retrospectively removing
measurements in free space; (3) including it in the state es-
timation [4, 16, 55, 61, 67] to model which measurements
originated from the dynamic and static parts of the environ-
ment. Our proposed method falls into the last category and
allows us to model dynamics directly in the map represen-
tation leading to a spatio-temporal map representation.

Recently, implicit neural representations gained increas-
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ing interest in computer vision for novel view synthesis [35,
36] and 3D shape reconstruction [33, 40]. Due to their
compactness and continuity, several approaches [65, 70, 73]
investigate the use of neural representations in large-scale
3D LiDAR mapping leading to accurate maps while sig-
nificantly reducing memory consumption. However, these
approaches often do not address the problem of handling
dynamics during mapping. The recent progress on dynamic
NeRF [7, 13, 44, 52] and neural deformable object recon-
struction [6, 10] indicates that neural representations can be
also used to represent dynamic scenes, which inspires us
to tackle the problem of mapping in dynamic environments
from the perspective of 4D reconstruction.

In this paper, we propose a novel method to reconstruct
large 4D dynamic scenes by encoding every point’s time-
dependent truncated signed distance function (TSDF) into
an implicit neural scene representation. As illustrated in
Fig. 1, we take sequentially recorded LiDAR point clouds
collected in dynamic environments as input and generate a
TSDF for each time frame, which can be used to extract a
mesh using marching cubes [29]. The background TSDF,
which is unchanged during the whole sequence, can be ex-
tracted from the 4D signal easily. We regard it as a static
map that can be used to segment dynamic objects from the
original point cloud. Compared to the traditional voxel-
based mapping method, the continuous neural representa-
tion allows for the removal of dynamic objects while pre-
serving rich map details. In summary, the main contribu-
tions of this paper are:
• We propose a novel implicit neural representation to

jointly reconstruct a dynamic 3D environment and main-
tain a static map using sequential LiDAR scans as input.

• We employ a piecewise training data sampling strat-
egy and design a simple, yet effective loss function that
maintains the consistency of the static point supervision
through gradient constraints.

• We evaluate the mapping results by the accuracy of the
dynamic object segmentation as well as the quality of the
reconstructed static map showing superior performance
compared to several baselines. We provide our code and
the data used for experiments.

2. Related Work
Mapping and SLAM in dynamic environments is a classi-
cal topic in robotics [5, 56, 57] with a large body of work,
which tackles the problem by pre-processing the sensor
data [1, 30, 47, 48, 51], occupancy estimation to filter dy-
namics by removing measurements in free space [17, 34,
37, 39, 49, 50, 64], or state estimation techniques [4, 16,
55, 61, 67]. Below, we focus on closely related approaches
using neural representations but also static map building ap-
proaches for scenes containing dynamics.

Dynamic NeRF. Dynamic NeRFs aim to solve the prob-

lem of novel view synthesis in dynamic environments.
Some approaches [41–43, 58, 63] address this challenge by
modeling the deformation of each point with respect to a
canonical frame. However, these methods cannot represent
newly appearing objects. This can render them unsuited for
complicated real-life scenarios. In contrast, NSFF [24] and
DynIBaR [26] get rid of the canonical frame by computing
the motion field of the whole scene. While these methods
can deliver satisfactory results, the training time is usually
in the order of hours or even days.

Another type of method leverages the compactness of
the neural representation to model the 4D spatio-temporal
information directly. Several works [7, 13, 52] project the
4D input into multiple voxelized lower-dimensional fea-
ture spaces to avoid large memory consumption, which im-
proves the efficiency of the optimization. Song et al. [54]
propose a time-dependent sliding window strategy for accu-
mulating the voxel features. Instead of only targeting novel
view synthesis, several approaches [26, 68, 71] decompose
the scene into dynamic objects and static background in
a self-supervised way, which inspired our work. Other
approaches [22, 23, 53] accomplish neural representation-
based reconstruction for larger scenes by adding additional
supervision such as object masks or optical flow.

Neural representations for LiDAR scans. Recently,
many approaches aim to enhance scene reconstruction us-
ing LiDAR data through neural representations. The early
work URF [46] leverages LiDAR data as depth supervision
to improve the optimization of a neural radiance field. With
only LiDAR data as input, Huang et al. [20] achieve novel
view synthesis for LiDAR scans with differentiable render-
ing. Similar to our work, Shine-mapping [73] and EIN-
RUL [70] utilize sparse hierarchical feature voxel structures
to achieve large-scale 3D mapping. Additionally, the data-
driven approach NKSR [18] based on learned kernel re-
gression demonstrates accurate surface reconstruction with
noisy LiDAR point cloud as input. Although these ap-
proaches perform well in improving reconstruction accu-
racy and reducing memory consumption, none of them con-
sider the problem of dynamic object interference in real-
world environments.

Static map building and motion detection. In addi-
tion to removing moving objects from the voxel map with
ray tracing, numerous works [8, 19, 31, 32] try to segment
dynamic points from raw LiDAR point clouds. However,
these methods require a significant amount of labeled data,
which makes it challenging to generalize them to various
scenarios or sensors with different scan patterns. In con-
trast, geometry-based, more heuristic approaches have also
produced promising results. Kim et al. [21] solve this prob-
lem using the visibility of range images, but their results
are still highly affected by the resolution. Lim et al. pro-
posed Erasor [27], which leverages ground fitting as prior
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to achieve better segmentation for dynamic points. More
recent approaches [9, 28] extend it to instance level to im-
prove results. However, these methods rely on an accurate
ground fitting method, which is mainly designed for au-
tonomous driving scenarios, which cannot be guaranteed in
complex unstructured real environments.

In contrast to the approaches discussed above, we fol-
low recent developments in neural reconstruction and pro-
pose a novel scene representation that allows us to capture
the spatio-temporal progression of a scene. We represent
the time-varying SDF of a scene in an unsupervised fash-
ion, which we exploit to remove dynamic objects and re-
construct accurate meshes of the static scene.

3. Our Approach
The input of our approach is given by a sequence of point
clouds, S1:N = (S1, . . . ,SN ), and their corresponding
global poses Tt ∈ R4×4, t ∈ [1, N ], estimated via scan
matching, LiDAR odometry, or SLAM methods [2, 11, 12,
60]. Each scan’s point cloud St = {s1t , . . . , s

Mt
t } is a set of

points, sit ∈ R3, collected at time t. Given such a sequence
of scans S1:N , our approach aims to reconstruct a 4D TSDF
of the traversed scene and maintain a static 3D map at the
same time.

In the next sections, we first introduce our spatio-
temporal representation and then explain how to optimize
it to represent the dynamic and static parts of a point cloud
sequence S1:N .

3.1. Map Representation

The key component of our approach is an implicit neural
scene representation that allows us to represent a 4D TSDF
of the scene, as well as facilitates the extraction of a static
map representation. Our proposed spatio-temporal scene
representation is optimized for the given point cloud se-
quence S1:N such that we can retrieve for an arbitrary point
p ∈ R3 and time t ∈ [1, N ] the corresponding time-varying
signed distances value at that location.

Temporal representation. We utilize an TSDF to rep-
resent the scene, i.e., a function that provides the signed
distance to the nearest surface for any given point p ∈ R3.
The sign of the distance is positive when the point is in free
space or in front of the measured surface and is negative
when the point is inside the occupied space or behind the
measured surface.

In a dynamic 3D scene, measuring the signed distance of
any coordinate at each moment produces a time-dependent
function that captures the signed distance changes over
time, see Fig. 2 for an illustration. Additionally, if a co-
ordinate is static throughout the period, the signed dis-
tance should remain constant. The key idea of our spatio-
temporal scene representation is to fit the time-varying SDF
at each point with several basis functions. Inspired by Li

Figure 2. Principle of our 4D TSDF representation: The left figure
shows a moving object and a query point p. The one on the right
depicts the corresponding signed distance at p over time. At t0,
p’s signed distance is a positive truncated value. When the moving
object reaches p at time t1, p is inside the object and its signed
distance is negative accordingly. At t2, the moving object moved
past p, the signed distance of p gets positive again.

et al. [26]’s representation of moving point trajectories, we
exploit K globally shared basis functions φk : R 7→ R. Us-
ing these basis functions φk(t), we model the time-varying
TSDF F (p, t) that maps a location p ∈ R3 at time t to a
signed distance as follows:

F (p, t) =

K∑
k=1

wk
pφk(t), (1)

where wk
p ∈ R are optimizable location-dependent coeffi-

cients. In line with previous works [26, 62], we initialize the
basis functions with discrete cosine transform (DCT) basis
functions:

φk(t) = cos
( π

2N
(2t+ 1)(k − 1)

)
. (2)

The first basis function for k = 1 is time-independent
as φ1(t) = 1. During the training process, we fix φ1(t) and
determine the other basis functions by backpropagation. We
consider φ1(t)’s corresponding weight w1

p as the static SDF
value of the point p. Hence, F (p, t) consists of its static
background value, i.e., w1

pφ1(t) = w1
p, and the weighted

sum of dynamic basis functions φ2(t), . . . , φK(t).
As the basis functions φ1(t), . . . , φK(t) are shared be-

tween all points in the scene, we need to optimize the
location-dependent weights that are implicitly represented
in our spatial representation.

Spatial representation. To achieve accurate scene re-
construction while maintaining memory efficiency, we em-
ploy a multi-resolution sparse voxel grid to store spatial ge-
ometric information.

First, we accumulate the input point clouds, S1, . . . ,SN
based on their poses T1, . . . ,TN computed from LiDAR
odometry and generate a hierarchy of voxel grids around
points to ensure complete coverage in 3D. We use a spatial
hash table for fast retrieval of the resulting voxels that are
only initialized if points fall into a voxel.
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Figure 3. Overview of querying a TSDF value in our 4D map representation. For querying a point p at ti and ti+1, we first retrieve each
corner’s feature in F l of the voxel that p is located in and obtain the fused feature fp by trilinear interpolation. Then, we feed fp into the
decoder Dmlp and take the output as the weights of different basis functions φ1(t), . . . , φK(t). Finally, we calculate the weighted sum of
basis functions’ values at ti and ti+1 to get their respective SDF results. For simplicity, we only illustrate one level of hashed feature grids.

Similar to Instant-NGP [36], we save a feature vector
f ∈ RD at each corner vertex of the voxel grid in each res-
olution level, where we denote as F l the level-wise corner
features. We compute the feature vector fp ∈ RD for given
query point p ∈ R3 inside the hierarchical grid as follows:

fp =

L∑
l=1

interpolate(p,F l), (3)

where interpolate is the trilinear interpolation for a given
point p using the corner features F l at level l.

Then, we decode the interpolated feature vector fp into
the desired weights wp =

(
w1

p, . . . , w
K
p

)
∈ RK by a glob-

ally shared multi-layer perceptron (MLP) Dmlp:

wp = Dmlp(fp). (4)

As every step is differentiable, we can optimize the
multi-resolution feature grids F l, the MLP decoder Dmlp,
and the values of the basis functions jointly by gradient de-
scent once we have training data and corresponding target
values. The SDF querying process is illustrated in Fig. 3.

3.2. Objective Function

We take samples along the rays from the input scans St
to collect training data. Each scan frame St corresponds
to a moment t in time, so we gather four-dimensional data
points (q, t) via sampling along the ray from the scan origin
ot ∈ R3 to a point sit ∈ St. We can represent the sampled
points qis along the ray as qis = ot +λ(sit−ot). By setting
a truncation threshold τ , we split the ray into two regions,
at the surface and in the free-space:

T i
surf =

{
qis | λ ∈ (1− τ̄ , 1 + τ̄)

}
(5)

T i
free =

{
qis | λ ∈ (0, 1− τ̄)

}
, (6)

where τ̄ = τ (‖sit − ot‖)−1. Thus, T i
surf represents the re-

gion close to the endpoint sit ∈ St, and T i
free is the region

in the free space. We uniformly sample Ms and Mf points
from T i

surf and T i
free separately. We obtain two sets Dsurf and

Dfree of samples by sampling over all scans. Unlike prior
work [20, 46] that use differentiable rendering to calculate
the depth by integration along the ray, we design different
losses forDsurf andDfree to supervise the 4D TSDF directly.

Near Surface Loss. Since the output of our 4D map is
the signed distance value d̂ = F (p, t) at an arbitrary posi-
tion p ∈ R3 in time t ∈ [1, N ], we expect that the predicted
value d̂ does not change over time for static points. How-
ever, this cannot be guaranteed if we use the projective dis-
tance dsurf to the surface along the ray direction directly as
the target value, since the projective distance would change
over time due to the change of view direction by the moving
sensor, even in a static scene. Thus, for the sampled data
in Dsurf, i.e., the sampled points near the surface, we can
only obtain reliable information about the sign of the TSDF
value of these points, which should be positive if the point
is before the endpoint and negative if the point is behind.
In addition, for a sampled point in front of the endpoint, its
projective signed distance dsurf should be the upper bound
of its actual signed distance value. And for sampled points
behind the endpoint, dsurf should be the lower bound.

We design a piecewise lossLsurf to supervise the sampled
points near the surface:

Lsurf(d̂, dsurf) =

 | d̂ | if d̂ dsurf < 0

| d̂− dsurf | if d̂ dsurf > d2surf
0 otherwise

, (7)

where d̂ = F (q, t) is the predicted value from our map
for a sample point q ∈ Dsurf and dsurf is its corresponding
projective signed distance for that sampled point in the cor-
responding scan St. This loss punishes only a prediction
when the sign is wrong or its absolute value is larger than
the absolute value of dsurf. For a query point exactly on the
surface, i.e., dsurf = 0, Lsurf is simply the L1 loss.
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To calculate an accurate signed distance value and main-
tain the consistency of constraints for static points from dif-
ferent observations, we use the natural property of signed
distance function to constraint the length of the gradient
vector for samples inside Dsurf, which is called Eikonal reg-
ularization [15, 38]:

Leikonal(p, t) =

(∥∥∥∥∂F (p, t)

∂p

∥∥∥∥− 1

)2

, (8)

Inspired by Neuralangelo [25], we manually add pertur-
bations to compute more robust gradient vectors instead of
using automatic differentiation, which means we compute
numerical gradients:

∇xF (p, t) =
F (p+ εx, t)− F (p− εx, t)

2ε
, (9)

where ∇xF (p, t) is the component of the gradient ∂F (p,t)
∂p

on the x axis, and εx = (ε, 0, 0)> is the added perturbation.
We apply the same operation on y and z axes to calculate
the numerical gradient. Furthermore, in order to get faster
convergence at the beginning and ultimately recover the rich
geometric details, we first set a large ε and gradually reduce
it during the training process.

Free Space Loss. As we tackle the problem of map-
ping in dynamic environments, we cannot simply accumu-
late point clouds and then calculate accurate supervision of
signed distance value via nearest neighbor search. There-
fore, we use a L1 loss Lfree to constrain the signed distance
prediction d̂ of the free space points, i.e., p ∈ Dfree:

Lfree(d̂) = |d̂− τ |, (10)

where τ is the truncation threshold we used in Sec. 3.2.
Thanks to our spatio-temporal representation, a single

query point can get both, static and dynamic TSDF values.
Thus, for some regions that are determined to be free space,
we can directly add constraints to their static TSDF values.

We divide the free space points Dfree into dense and
sparse subset Ddense and Dsparse based on a threshold rdense
for the distance from the free space point sampled at time
t to the scan origin ot. For each point p ∈ Ddense, we find
the nearest neighbor np in the corresponding scan St, i.e.,
np = arg minq∈St‖p − q‖2. Let Dcertain = {p ∈ Ddense |
||p − np|| > τ} be the points that we consider in the cer-
tain free space. Then, we supervise p ∈ Dcertain by its static
signed distance value directly:

Lcertain(p) = |w1
p − τ |, (11)

where w1
p is the first weight of the decoder’s output.

(a) (b)

(c) (d)

Figure 4. Reconstructed TSDF for KITTI dataset [14]: Subfigures
(a) and (b) are the input neighboring frames. Correspondingly, (c)
and (d) are horizontal TSDF slices queried from our 4D map. Note
that we only display the TSDF values that are less than 0.3m.

In summary, the final loss Ltotal is given by:

Ltotal =
1

|Dsurf|
∑

(p,t)∈Dsurf

Lsurf(d̂, dsurf) + λeLeikonal(p, t)

+
λf
|Dfree|

∑
(p,t)∈Dfree

Lfree(d̂)

+
λc

|Dcertain|
∑

(p,t)∈Dcertain

Lcertain(p), (12)

where d̂ = F (p, t) is the predicted signed distance at the
sample position p at time t and dsurf is the projective signed
distance of sample p. With the above loss function and data
sampling strategy, we train our map offline until conver-
gence. In Fig. 4, we show TSDF slices obtained using our
optimized 4D map at different times.

One application of our 4D map representation is dy-
namic object segmentation. For a point p in the input scans
S1:N , its static signed distance value w1

p can be obtained
by a simple query. If p belongs to the static background, it
should have w1

p = 0. Therefore, we simply set a threshold
dstatic and regard a point as dynamic if w1

p > dstatic.

3.3. Implementation Details

As hyperparameters of our approach, we use the values
listed in Tab. 1 in all LiDAR experiments. Additional pa-
rameters are determined by the characteristics of the sensor
and the dimensions of the scene. For instance, in the recon-
struction of autonomous driving scenes, like KITTI, we set
the highest resolution for the feature voxels to 0.3 m. The
truncation distance is set to τ = 0.5 m, and the dense area
split threshold rdense = 15 m. Regarding training time, it
takes 12 minutes to train 140 frames from the KITTI dataset
using a single Nvidia Quadro RTX 5000.
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4. Experiments
In this section, we show the effectiveness of our proposed
approach with respect to two aspects: (1) Static mapping
quality: The static TSDF built by our method allows us
to extract a surface mesh using marching cubes [29]. We
compare this extracted mesh with the ground truth mesh to
evaluate the reconstruction. (2) Dynamic object segmenta-
tion: As mentioned above, our method can segment out the
dynamic objects in the input scans. We use point-wise dy-
namic object segmentation accuracy to evaluate the results.

4.1. Static Mapping Quality

Datasets. We select two datasets collected in dynamic en-
vironments for quantitative evaluation. One is the synthetic
dataset ToyCar3 from Co-Fusion [47], which provides ac-
curate depth images and accurate masks of dynamic objects
rendered using Blender, but also depth images with added
noise. For this experiment, we select 150 frames from the
whole sequence, mask out all dynamic objects in the accu-
rate depth images, and accumulate background static points
as the ground-truth static map. The original noisy depth im-
ages are used as the input for all methods.

Furthermore, we use the Newer College [45] dataset as
the real-world dataset, which is collected using a 64-beam
LiDAR. Compared with synthetic datasets, it contains more
uncertainty from measurements and pose estimates. We se-
lect 1,300 frames from the courtyard part for testing and this
data includes a few pedestrians as dynamic objects. This
dataset offers point clouds obtained by a high-precision ter-
restrial laser scanner that can be directly utilized as ground
truth to evaluate the mapping quality.

Metric and Baselines. We report the reconstruction ac-
curacy, completeness, the Chamfer distance, and the F1-
score. Further details on the computation of the metrics can
be found in the supplement.

We compare our method with several different types of
state-of-the-art methods: (i) the traditional TSDF-fusion
method, VDBfusion [59], which uses space carving to
eliminate the effects of dynamic objects, (ii) the data-
driven-based method, neural kernel surface reconstruc-
tion (NKSR) [18], and (iii) the neural representation based
3D mapping approach, SHINE-mapping [73].

For NKSR [18], we use the default parameters provided
by Huang et al. with their official implementation. To en-
sure a fair comparison with SHINE-mapping, we adopt an
equal number of free space samples (15 samples), aligning
with our method for consistency.

For the ToyCar3 dataset, we set VDB-Fusion’s resolu-
tion to 1 cm. To have all methods with a similar memory
consumption, we set the resolution of SHINE-mapping’s
leaf feature voxel to 2 cm, and our method’s highest resolu-
tion accordingly to 2 cm. For the Newer College dataset, we
set the resolution to 10 cm, 30 cm, and 30 cm respectively.

Table 1. Hyperparameters of our approach.

Parameter Value Description

L 2 number of feature voxels level
D 8 The length of feature vectors
K 32 The number of basis functions
Dmlp 2× 64 layer and size of the MLP decoder

Ms 5 The number of surface area samples
Mf 15 The number of free space samples

λe 0.02 weight for Eikonal loss
λf 0.25 weight for free space loss
λc 0.2 weight for certain free loss

Table 2. Quantitative results of the reconstruction quality on Toy-
Car3. We report the distance error metrics, namely completion,
accuracy and Chamfer-L1 in cm. Additionally, we show the F-
score in % with a 1 cm error threshold.

Method Comp. ↓ Acc. ↓ C-L1 ↓ F-score ↑

VDB-fusion [59] 0.574 0.481 0.528 97.95
NKSR [18] 0.526 2.809 1.667 89.54
SHINE-mapping [73] 0.583 0.626 0.605 98.01

Ours 0.438 0.468 0.452 98.35

Results. The quantitative results for synthetic dataset
ToyCar3 and real-world dataset Newer College are pre-
sented in Tab. 2 and Tab. 3, respectively. We also show
the extracted meshes from all methods in Fig. 5 and Fig. 6.

Our method outperforms the baselines in terms of Com-
pleteness and Chamfer distance for both datasets (cf . Fig. 5
and Fig. 6). Regarding the accuracy, SHINE-mapping and
VDB-Fusion can filter part of high-frequency noise by fu-
sion of multiple frames, resulting in better performance on
noisy Newer College dataset. In comparison, our method
considers every scan as accurate to store 4D information,
which makes it more sensitive to measurement noise. On
the ToyCar3 dataset, both our method and VDB-Fusion suc-
cessfully eliminate all moving objects. However, on the
Newer College dataset, VDB-Fusion incorrectly eliminates
the static tree and parts of the ground, resulting in poor com-
pleteness shown in Tab. 3. SHINE-mapping eliminates dy-
namic pedestrians on the Newer College dataset but retains a
portion of the dynamic point cloud on the ToyCar3 dataset,
which has a larger proportion of dynamic objects, leading
to poorer accuracy in Tab. 2. NKSR performs the worst ac-
curacy because it is unable to eliminate dynamic objects,
which means it’s not suitable to apply NKSR in dynamic
real-world scenes directly.

4.2. Dynamic Object Segmentation

Datasets. For dynamic object segmentation, we use the
KTH-Dynamic-Benchmark [72] for evaluation, which in-
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(a) Merged input scans (b) Ours (c) VDB-Fusion [59] (d) NKSR [18] (e) SHINE-mapping [73]

Figure 5. A comparison of the static mapping results of different methods on the ToyCar3 dataset. There are two dynamic toy cars moving
through the scene. Our method can reconstruct the static scene with fine details and eliminate the dynamic car.

(a) Merged input scans (b) Ours (c) VDB-Fusion [59] (d) NKSR [18] (e) SHINE-mapping [73]

Figure 6. A comparison of the static mapping results of different methods on the Newer College dataset. Several pedestrians are moving
through the scene during the data collection. Our method can reconstruct the static scene completely and eliminate the moving pedestrians.
Although VDB-Fusion manages to eliminate the pedestrians, it incorrectly removes the tree highlighted in the orange box.

Table 3. Quantitative results of the reconstruction quality on
Newer College. We report the distance error metrics, namely com-
pletion, accuracy and Chamfer-L1 in cm. Additionally, we show
the F-score in % with a 20 cm error threshold.

Method Comp. ↓ Acc. ↓ C-L1 ↓ F-score ↑

VDB-fusion [59] 7.32 5.99 6.65 96.68
NKSR [18] 6.87 9.28 8.08 95.65
SHINE-mapping [73] 6.80 5.86 6.33 97.67

Ours 5.85 6.49 6.17 97.50

cludes four sequences in total: sequence 00 (frame 4,390
– 4,530 ) and sequence 05 (frame 2,350 – 2,670) from the
KITTI dataset [3, 14], which are captured by a 64-beam Li-
DAR, one sequence from the Argoverse2 dataset [66] con-
sisting of 575 frames captured by two 32-beam LiDARs,
and a semi-indoor sequence captured by a sparser 16-beam
LiDAR. All sequences come with corresponding pose files
and point-wise dynamic or static labels as the ground truth.
It is worth noting that the poses for KITTI 00 and 05 were
obtained from SuMa [2] and the pose files for the Semi-
indoor sequence come from NDT-SLAM [50].

Metric and Baselines. The KTH-Dynamic-Benchmark
evaluates the performance of the method by measuring the
classification accuracy of dynamic points (DA%), static
points (SA%) and also their associated accuracy (AA%)
where AA =

√
DA · SA. The benchmark provides various

baselines such as the state-of-the-art LiDAR dynamic object
removal methods – Erasor [27] and Removert [21], as well
as the traditional 3D mapping method, Octomap [17, 69],
and its modified versions, Octomap with ground fitting and
outlier filtering. As SHINE-mapping demonstrates the abil-
ity to remove dynamic objects in our static mapping exper-
iments, we also report its result in this benchmark. Addi-
tionally, we report the performance of the state-of-the-art
online moving object segmentation methods, 4DMOS [31]
and its extension MapMOS [32]. As these two methods uti-
lize KITTI sequences 00 and 05 for training, we only show
the results of the remaining two sequences. For the parame-
ter setting, we set our method’s leaf resolution to 0.3 m, and
the threshold for segmentation as dstatic = 0.16 m. We set
the leaf resolution for Octomap to 0.1 m.

Results. The quantitative results of the dynamic object
segmentation are shown in Tab. 4. And we depict the ac-
cumulated static points generated by different methods in
Fig. 7. We can see that our method achieves the best associ-
ated accuracy (AA) in three autonomous driving sequences
(KITTI 00, KITTI 05, Argoverse2) and vastly outperforms
baselines. The supervised learning-based methods 4DMOS
and MapMOS do not obtain good dynamic accuracy (DA)
due to limited generalizability. Erasor and Octomap tend
to over-segment dynamic objects, resulting in poor static
accuracy (SA). Removert and SHINE-mapping are too con-
servative and cannot detect all dynamic objects. Benefiting
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Table 4. Quantitative results of the dynamic object removal quality on the KTH-Dynamic-Benchmark. We report the static accuracy SA,
dynamic static DA and the associated accuracy AA. Octomap* refers to the modified Octomap implementation by Zhang et al. [72].

KITTI Seq. 00 KITTI Seq. 05 Argoverse2 Semi-Indoor

Method SA DA AA SA DA AA SA DA AA SA DA AA

Octomap [17] 68.05 99.69 82.37 66.28 99.24 81.10 65.91 96.70 79.84 88.97 82.18 85.51
Octomap* [72] 93.06 98.67 95.83 93.54 92.48 93.01 82.66 82.44 82.55 96.79 73.50 84.34
Removert [21] 99.44 41.53 64.26 99.42 22.28 47.06 98.97 31.16 55.53 99.96 12.15 34.85
Erasor [27] 66.70 98.54 81.07 69.40 99.06 82.92 77.51 99.18 87.68 94.90 66.26 79.30
SHINE [73] 98.99 92.37 95.63 98.91 53.27 72.58 97.66 72.62 84.21 98.88 59.19 76.51
4DMOS [31] - - - - - - 99.94 69.33 83.24 99.99 10.60 32.55
MapMOS [32] - - - - - - 99.96 85.88 92.65 99.99 4.75 21.80

Ours 99.46 98.47 98.97 99.54 98.36 98.95 99.17 95.91 97.53 94.17 72.79 82.79

(a) Ground truth (b) Ours (c) Erasor [27] (d) Removert [21] (e) Octomap* [72]

(f) Ground truth (g) Ours (h) Erasor [27] (i) Removert [21] (j) Octomap* [72]

Figure 7. Comparison of dynamic object removal results produced by our proposed method and three baseline methods on the Argoverse2
data sequence of the KTH-benchmark. We show the bird’s eye view on the first row and the zoomed view from the blue frustum shown in
(a) on the second row. For the ground truth results in (a), the dynamic objects are shown in red. We only show the static points of ground
truth for clearer comparison in zoomed view (f). We highlight the over-segmented parking car and sign by Erasor and the undetected
moving vehicle by Removert.

from the continuity and large capacity of the 4D neural rep-
resentation, we strike a better balance between preserving
static background points and removing dynamic objects.

It is worth mentioning again that our method does not
rely on any pre-processing or post-processing algorithm
such as ground fitting, outlier filtering, and clustering, but
also does not require labels for training.

5. Conclusion

In this paper, we propose a 4D implicit neural map repre-
sentation for dynamic scenes that allows us to represent the
TSDF of static and dynamic parts of a scene. For this pur-
pose, we use a hierarchical voxel-based feature representa-
tion that is then decoded into weights for basis functions to
represent a time-varying TSDF that can be queried at arbi-
trary locations. For learning the representation from a se-

quence of LiDAR scans, we design an effective data sam-
pling strategy and loss functions. Equipped with our pro-
posed representation, we experimentally show that we are
able to tackle the challenging problems of static mapping
and dynamic object segmentation. More specifically, our
experiments show that our method has the ability to accu-
rately reconstruct 3D maps of the static parts of a scene and
can completely remove moving objects at the same time.

Limitations. While our method achieves compelling re-
sults, we have to acknowledge that we currently rely on esti-
mated poses by a separate SLAM approach, but also cannot
apply our approach in an online fashion. However, we see
this as an avenue for future research into joint incremental
mapping and pose estimation.

Acknowledgements. We thank Benedikt Mersch for the
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