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@ Oh, I can finally start driving.

@ Don't worry, they're all green light

(JP) 心配しないで、すべてが
青信号です

(EN) Forgot to remove glasses
while swimming.

(EN) An apple a day keep the
doctor away.

@ Haha this is a happy cat with his
mouth open ....

@ What?! Going to the pet hospital now
for a neutering surgery!?

(CN) 什么?! 现在要去宠物医院
做绝育手术!?

(CN) ①求婚者 ②被求婚者
③____

@ ①Proposer ②Proposee ③_____

(CN) 哈哈这是一只快乐的猫
咪，它张着嘴巴....

(CN) 牧师 @ Pastor

(CN) 翻译员@ Translator

@ ① I am so happy because I 
finally ________

@ find the cup

@ fixed the Bug

(JP) ① 大変嬉しい、つい
に____ました

?
?

?

?

(JP) コップを見つけ

(JP) Bugを修正し

@ Do you think writing a DL paper is exhausting?

(CN) 完成一篇论文其实很快乐
@ Completing a paper is actually very enjoyable.

(CN) 不辛苦，辛苦的是我的导师
@ Not for me, but it's hard for my supervisor.

(EN) What else can wake you up besides
coffee when you are coding?

(EN) Maybe you need to enlist the help of some
angry bees.

(EN) A cup of deadline.

(CN) 你觉得完成一篇深度学习论文辛苦吗？

(JP) ああ、やっと運転が始め
られるね

(JP) 一番絶望的だと思うことは何ですか？
@ What's the most desperate thing you've ever heard?

(JP) 月曜日だし、仕事に行く時間だね
@ It's Monday and time to go to work.

(JP) 犬が私のピザを食べました
@ The dog ate my pizza.

+ CLoT (Ours)

Figure 1. Comparison between (multimodal) large language model (LLM, red) and its CLoT-integrated version ( blue) for Oogiri-style
multimodal humor generation. According to the model input that can be image, text or both, there are three Oogiri tasks, “Image&Text to
Text (IT2T)”, “Image to Text (I2T)”, and “Text to Text (T2T)”, where text can be English (EN), Chinese (CN), and Japanese (JP). “@”
denotes translations. The baseline LLM is Qwen-VL [1]. While humor is subjective, these examples demonstrate CLoT’s leap-of-thought
capacity of using excellent creative thinking to produce high-quality humor responses. See more examples in Appendix.

Abstract
Chain-of-Thought (CoT) [2, 3] guides large language

models (LLMs) to reason step-by-step, and can motivate
their logical reasoning ability. While effective for logi-
cal tasks, CoT is not conducive to creative problem-solving
which often requires out-of-box thoughts and is crucial for
innovation advancements. In this paper, we explore the
Leap-of-Thought (LoT) abilities within LLMs — a non-

sequential, creative paradigm involving strong associations
and knowledge leaps. To this end, we study LLMs on the
popular Oogiri game which needs participants to have good
creativity and strong associative thinking for responding
unexpectedly and humorously to the given image, text, or
both, and thus is suitable for LoT study. Then to investi-
gate LLMs’ LoT ability in the Oogiri game, we first build a
multimodal and multilingual Oogiri-GO dataset which con-
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tains over 130,000 samples from the Oogiri game, and ob-
serve the insufficient LoT ability or failures of most exist-
ing LLMs on the Oogiri game. Accordingly, we introduce
a creative Leap-of-Thought (CLoT) paradigm to improve
LLM’s LoT ability. CLoT first formulates the Oogiri-GO
dataset into LoT-oriented instruction tuning data to train
pretrained LLM for achieving certain LoT humor genera-
tion and discrimination abilities. Then CLoT designs an ex-
plorative self-refinement that encourages the LLM to gener-
ate more creative LoT data via exploring parallels between
seemingly unrelated concepts and selects high-quality data
to train itself for self-refinement. CLoT not only excels in
humor generation in the Oogiri game as shown in Fig. 1
but also boosts creative abilities in various tasks like “cloud
guessing game” and “divergent association task”. These
findings advance our understanding and offer a pathway to
improve LLMs’ creative capacities for innovative applica-
tions across domains. The dataset, code, and models have
been released online: https:// zhongshsh.github.io/CLoT.

1. Introduction

Large language models (LLMs) [4–13] have catalyzed a
transformative era in problem-solving abilities, revolution-
izing various domains within artificial intelligence. The
advent of the Chain-of-Thought (CoT) paradigm [3] and
its further enhancements [2, 14–16] have equipped these
LLMs with a human-like step-by-step reasoning capacity.
This augmentation has enabled LLMs to excel in intricate
reasoning tasks spanning from language comprehension to
visual understanding. As shown in Fig. 2 (Left), CoT in-
stills LLMs with a sequential thinking process wherein each
subsequent thought builds upon the previous one. This
paradigm enhances the precision and rigor in logical pro-
cessing, making it exceedingly effective for problems that
demand closely linked logical reasoning.

However, the sequential nature of CoT might fall short in
nurturing creativity and innovation, potentially limiting so-
lutions in creative problem-solving scenarios [17, 18]. For
instance, proving an algebraic inequality often follows a
step-by-step CoT process that progresses from one inequal-
ity to the next. Yet, an intuitive flash, e.g., a geometric in-
terpretation, can yield a more creative solution. This type of
insight, known as “Leap-of-Thought” (LoT) [19, 20], a.k.a.
mental leap [21–24]—the art of non-sequential thinking by
association, drawing parallels between seemingly unrelated
concepts, and facilitating a “leap” of knowledge transfer.
In contrast to CoT reasoning, LoT as depicted in Fig. 2
(Right), fosters associative reasoning and encourages think-
ing outside the box, which bridges disparate ideas and fa-
cilitates conceptual leaps. Embracing LLMs with a strong
LoT ability can unlock significant potential for innovation,
contributing to advancements in creative applications.

In this paper, we aim to initially explore and enhance the

Chain-of-Thought (CoT) Leap-of-Thought (LoT)

Think step by step Think outside the box

Figure 2. Comparison of CoT and LoT. “⃝” denotes the thought
and “→” represents the connection between two thoughts.

How many 
fingers do 

programmers 
usually use 

to write code？

Get out of my way!
My friend is badly hurt!

Would....Would you mind 
uncuffing me?

Two.
Ctrl+C / Ctrl+V

Image&Text to Text (IT2T) Image to Text (I2T) Text to Text (T2T)

Excuse me, Sir

What!?

Figure 3. Examples of the three types of LoT-based Oogiri games.
Players are required to make surprising and creative humorous re-
sponses (blue box) to the given multimodal information e.g., im-
ages, text, or both.

LoT ability of LLMs. However, thoroughly assessing LoT
is challenging due to the complexity of measuring creative
thinking [25–27] and the difficulty in gathering pertinent
data, since generating novel ideas is challenging, even for
humans [17]. Given these constraints, we propose studying
LoT in LLMs through the lens of Oogiri-style humor gen-
eration. Oogiri, a traditional Japanese creative game [28],
requires participants to provide unexpected and humorous
responses to prompts in the form of images, text, or a com-
bination of both, as shown in Fig. 3. This game challenges
LLMs to demonstrate a sudden burst of insight and strong
associative thinking, presenting a unique challenge for CoT-
based methods, making it an ideal testbed for assessing the
leap-of-thought abilities of LLMs. Moreover, the extensive
online presence of Oogiri guarantees a wealth of human-
generated creative content, ideal for compiling an expansive
leap-of-thought dataset.

To investigate the LoT ability of LLMs in the Oogiri
game, we present the multilingual and multimodal Oogiri-
GO dataset which comprises more than 130,000 high-
quality Oogiri samples in English, Chinese, and Japanese,
and curated to prompt textual humor in response to inputs
that can be images, text, or both. Through extensive ex-
periments, we discover that even the advanced LLMs and
reasoning frameworks [2, 4, 6, 29], such as GPT-4 and CoT,
despite their exceptional reasoning capabilities, possessing
a rich prior knowledge of diverse forms of humor [2], still
struggle to exhibit sufficient LoT ability for creative hu-
mor generation. Moreover, directly fine-tuning LLMs on
the Oogiri-GO is not easy to improve the LoT ability. The
more efficient utilization of humorous knowledge is needed
to help LLM elicit creative responses.

Motivated by the human mental leap exercise process
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of “remote association & self-refinement” [30], to enable
LLMs with strong LoT ability for creation, we propose the
Creative Leap-of-Thought (CLoT) paradigm which relies
on two LoT-boosting stages. The first one is the associa-
ble instruction tuning stage which designs an associable in-
struction template to formulate the Oogiri-GO dataset into
instruction data and trains an LLM to improve its LoT abil-
ity. The core here is the instruction template with a dual
purpose: it randomly provides LLM with clues to establish
connections between game inputs and creative responses,
while also introducing empty clues to encourage LLM for
unrestrained exploration and remote association thinking.

The second stage is explorative self-refinement which
encourages the LLM to generate more creative LoT data
via exploring parallels between seemingly unrelated con-
cepts under weakly-associated conditions, and selects high-
quality data to train itself for self-refinement. These
weakly-associated conditions can either be empty, or ran-
domly sampled from an object noun set collected from the
Oogiri-GO dataset. The former empty conditions to allow
LLM to operate freely, and the latter ones help the LLM to
link seemingly-unrelated and weakly-related concepts, and
encourage the LLM to explore knowledge outside of tradi-
tional cognitive limitations. This exploration strategy can
help generate diverse high-quality data for self-refinement.

Experimental results show that CLoT can greatly en-
hance the LoT ability of LLMs like Qwen [1] and
CogVLM [29] across several types of Oogiri games. Specif-
ically, CLoT can help LLMs to generate much better hu-
mors in Fig. 1. Moreover, CLoT-integrated LLMs achieve
higher quantitative performance than the corresponding
vanilla and CoT-integrated LLMs across the multiple-
choice and ranking questions in the Oogiri game. Also,
CLoT can boost creative abilities on other tasks like “cloud
guessing game” and “divergent association task” [31–33],
showing its remarkable generalization ability.

2. Related Works
(1) Oogiri game (大喜利) is a general term for a series
of traditional Japanese comedy games. In ancient times,
there were different types of Oogiri, such as actors perform-
ing sumo wrestling, telling ghost stories, etc. The modern
Oogiri game mainly refers to one specific type known as
Tonchi (頓智), typically presented in the format of game
shows or intellectual quiz programs [28]. Players are pro-
vided with various multimodal contents, which can be sim-
ple questions, random images, etc., and are then prompted
to come up with humorous, creative responses to achieve
surprising comedic effects, as the examples are shown in
Fig. 3. It is worth noting that the character “頓” in both
Japanese and Chinese denote “sudden”, while “智” means
“intelligence, insight or intuition”. This highlights the con-
nection between the Oogiri game and the requirement for

strong associative abilities in LoT, making Oogiri an ideal
platform for exploring LoT capabilities within LLMs.
(2) Multimodal LLMs and their creativity. Recently,
multimodal Language Models [1, 29, 34, 35] have garnered
significant attention, particularly due to their impressive
reasoning abilities [7–12, 36]. Moreover, there is a growing
focus on exploring the creativity [37–40] of LLMs for ap-
plications such as scientific discovery [18, 41–44], creative
writing [45–49], etc.
(3) Computational humor is a branch of computational
linguistics and artificial intelligence that uses computers in
humor research [50], which encompasses various tasks, in-
cluding humor detection [51–58], humor interpretation [58–
61], and humor generation [62–66], etc. With the advance-
ment of generative LLMs [1, 4, 29], humor generation has
become a popular focus while humor generation still faces
challenges such as insufficient punchlines [67] and limited
in multimodal contexts [68–70].
(4) Chain-of-Thought based Methods provide the models
with “chain of thoughts” [2, 3, 14–16], i.e., reasoning exem-
plars [3], or a simple prompt “Let’s think step by step” [2],
to encourage LLMs to engage in reasoning rather than sim-
ply providing answers directly [71].

Category English Chinese Japanese Total

I2T 17, 336 32, 130 40, 278 89, 744
T2T 6, 433 15, 797 11, 842 34, 072
IT2T — 912 9, 420 10, 332

Table 1. Data distribution of the Oogiri-GO dataset. For the IT2T
task, its English version is not available due to cultural preference.

3. Oogiri-GO Dataset

As introduced in Sec. 2, in the Oogiri game, the partici-
pants need to unexpectedly and humorously respond to the
given images, text, or both. See three types of examples in
Fig. 3. This game requests a sudden burst of insight and
strong associative thinking to the given context, and pro-
vides an ideal platform to assess the leap-of-thought (LoT)
ability of LLMs. Accordingly, we collect Oogiri game data
to build a large-scale Oogiri-GO dataset which serves as a
benchmark to evaluate and improve LoT ability.

Specifically, Oogiri-GO is a multimodal and multilingual
humor dataset, and contains more than 130,000 Oogiri sam-
ples in English, Chinese, and Japanese. Notably, in Oogiri-
GO, 77.95% of samples are annotated with human prefer-
ences, namely the number of likes, indicating the popularity
of a response. As illustrated in Fig. 3, Oogiri-GO contains
three types of Oogiri games according to the input that can
be images, text, or both, and are respectively called “Text
to Text” (T2T), “Image to Text” (I2T), and “Image & Text
to Text ” (IT2T) for brevity. See more examples in Fig. 1.
Table 1 summarizes the distribution of these game types.

13248



Stage 1: Associable Instruction Tuning

Stage 2: Explorative Self-refinement 

(1) Template Design 

Generate 
 

Select or Rank 

(2) Instruction Learning

 (1) Remote Association

Dataset 

Condition

(2) Self-refinement 

New LoT Data

Instruction LLM

Tuning

Tuning

Instruction LLM

Figure 4. The overview of proposed Creative Leap-of-Thought.

For training purposes, 95% of the samples are randomly se-
lected to construct the training dataset, while the remaining
5% form the test dataset for validation and analysis.

To create the Oogiri-GO dataset, there are three main
steps, including online data collection, machine filtering by
LLM, and manual screening. Firstly, to collect sufficient
data, we source Oogiri game data from the official Oogiri
game platform, Bokete, and other popular platforms, such
as Twitter and Weibo which also host some Oogiri-game-
alike data. Then, to guard against the inclusion of bias, vi-
olence, explicit content, offensive language, etc., we have
placed a strong emphasis on rigorous safety checks during
both machine and manual screening. We first use the multi-
modal LLM Qwen-VL [1] to do the initial screening of the
raw data by constructing safety-checking prompts. Then,
manual checking is performed on the remaining data. See
more details about the dataset creation in the Appendix.

4. Creative Leap-of-Thought (CLoT)

To augment the Leap-of-Thought (LoT) ability in (multi-
modal) Large Language Models (LLMs) for creative gener-
ation, we propose a novel Creative LoT framework (CLoT).
As shown in Fig. 4, CLoT relies on two LoT-boosting
stages. The first one is associable instruction tuning that for-
mulates the Oogiri-GO dataset into instruction tuning data
for training an LLM to improve its LoT ability (Sec. 4.1).
The second one is explorative self-refinement that en-
courages the LLM to generate more creative LoT data
via exploring parallels between seemingly unrelated con-
cepts, and selects high-quality data to train itself for self-
refinement (Sec. 4.2). Finally, we present the CLoT infer-
ence to induce the LoT ability of the trained LLM (Sec. 4.3).

4.1. Associable Instruction Tuning

LoT ability mainly includes associable generation and dis-
crimination ability [30]. Given an input, associable gen-
eration draws its parallels with seemingly unrelated con-
cepts via remote association and then generates innovative
responses, e.g., the unexpected humor for the Oogiri input.
Associable discrimination is to judge the matchiness among

input and responses though they are seemingly unrelated,
and then to select the most creative response.

Unfortunately, both associable generation and discrim-
ination are not present in current LLMs, e.g., poor perfor-
mance of GPT4v [72] in the Oogiri game observed in Sec. 5.
Moreover, it is hard to improve these two LoT abilities via
popular CoT-like prompt techniques. Indeed, as shown in
Sec. 5, CoT even sometimes impairs the LoT performance
of the LLMs like Qwen-VL [1] in the Oogiri game.

To address this issue, we propose associable instruction
tuning which trains LoRA [73] for LLMs on the Oogiri-
GO dataset to achieve certain associable generation and dis-
crimination abilities. It has two steps, including instruction
generation and discrimination template design, and associa-
ble instruction learning.
(1) Instruction Generation & Discrimination Templates.
We design LoT-oriented instruction templates to transform
the Oogiri-GO dataset into instruction tuning data, and then
train LLM to achieve associable generation and discrimina-
tion abilities. Our templates primarily comprise two com-
ponents in Fig. 5: task-specific prompt and response. For
different abilities, the templates need some special design.

OPTIONs: <Image> <Condition>
ASSISTANT: Task-specific Responses

USER-INPUTs: Task-specific Prompt

Figure 5. The LoT-oriented instruction templates.

For associable generation, “USER-INPUTs” contains
“Task-specific Prompt” along with two optional conditions,
“Image” and “Condition”. For “Task-specific Prompt”, we
elaborately design several templates for different types of
Oogiri game. See the Appendix for details and there is an
image-2-text (I2T) Oogiri example in Fig. 6. For “Image”
condition, it relies on the type of Oogiri game, e.g., being
the image embeddings in I2T game and empty in T2T type.
For the “condition” option, it’s set to empty with a prob-
ability of ρc, and otherwise is randomly set as one noun
in “task-specific responses”. This design gives the LLM a
clue to connect the game input and the correct responses
while also encouraging LLM to explore and unleash its cre-
ative thinking with probability ρc. Finally, “Task-specific
Responses” are the ground truth responses of an Oogiri-GO
data, and need to be predicted by LLM during training. This
task enforces the LLM to draw parallels between seemingly
unrelated concepts in inputs and responses for giving inno-
vative responses, e.g., the humor for the Oogiri input. This
associable generation ability can assist the LLM to think
outside the box and learn remote association thinking.

Regarding associable discrimination, we aim to develop
fundamental LoT discrimination skills for LLM. Based on
the Oogiri-GO data, we design choice questions to enhance
LLM’s LoT discrimination ability, i.e., selection skill. Be-
sides, as 77.95% of the Oogiri-GO data have human pref-
erence annotations, i.e., the number of likes of several re-
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Associable discriminationAssociable Generation
Original Instruction(a)

Please read the
picture and write
a funny sentence.
Let's think outside
the box.

Is my shadow standing up? ∑(°A°ノ)ノ

Please read the
picture and write
a funny sentence.
Let's think outside
the box.

Is my shadow standing up? ∑(°A°ノ)ノ

(b) Instruction with Condition

Conditon: shadow

A.aa

Instruction for Selection(c)

Please select the
option that ......
:Let's think 
outside the box.
Options: 
A.aa  B.bb C.cc

(d)

Please rank the
option that ......
Let's think 
outside the box.
Options: 
A.aa  B.bb C.cc

Instruction for Ranking

Rank1:B  Rank2:A  Rank3:C

Figure 6. The details of LoT-oriented instructions templates. We take “Image to Text” as an example, see the Appendix for the details of
other categories’ instructions. (a) and (b) are the instruction templates with/without conditions for associable generation. (c) and (d) are
the two instructions about the selection and ranking of associable discrimination. All templates follow the formats in Fig. 5.

sponses (see Sec. 3), we design ranking questions to im-
prove another discrimination skill, i,e., ranking ability.

For a choice question, as shown in Fig. 6 (c), the options
in “Task-specific Prompt” contain the random permutations
of ground truth response (GTR), image captions generated
by BLIP2 [74], GTR from other images, rewrites of GTR by
Qwen-14B [5]. See details in Appendix. For “task-specific
responses”, it is the GTR. This design is to train LLM to
improve its LoT selection ability. For a ranking question,
as shown in Fig. 6 (d), it is to enforce LLM to rank multi-
ple distinct responses of a given input to match their human
preferences. By training on the choice and ranking ques-
tions, LLM is encouraged to distinguish LoT responses and
align human creative preferences, improving its LoT dis-
criminative selection and ranking abilities.
(2) Associable Instruction Learning. By using the above
instruction templates, we augment the 130,000 samples in
the Oogiri-GO dataset to more than 500,000 instructions
whose formulation is in Fig. 5. During training, LLM is
required to predict the “task-specific responses” accord-
ing to the “USER-INPUTs” which include “Task-specific
Prompt” and two additional optional conditions like image
and text condition. To avoid over-fitting, we only train stan-
dard LoRA [73] for the LLM with the associable instruction
data. See more details in Appendix.

4.2. Explorative Self-Refinement

After associable instruction tuning, we aim to generate
more high-quality creative data by LLM which are then
used to train LLM for self-refinement. To this end, we intro-
duce an innovative stage called explorative self-refinement,
inspired by human LoT exercise process of “remote asso-
ciation & self-refinement”, also known as mental leap [21,
24, 30]. The remote association process refers to generat-
ing new ideas by associating remote concepts or thoughts,
and self-refinement uses the generated data to enhance one’s
own LoT ability. In the following, we design two similar
LoT exercise processes for LLM to improve its LoT ability.
(1) Explorative Remote Association. The core here is to
prompt the LLM to generate a diverse array of creative re-
sponses under weakly-associated conditions. To implement

this, we extract a set of object nouns, denoted as S, from
the text in the Oogiri-GO training data. See details in Ap-
pendix. Then, for each user-input I (see Fig. 5), we gen-
erate n weakly-associated conditions {Ci}ni=1. These con-
ditions can either be empty with a probability ρ ∈ (0, 1)
to give freedom to LLM, or uniformly randomly sampled
from the noun set S to enforce LLM to build connections
between different concepts. Next, we add the condition Ci

into user-input I , and feed I into the LLM to generate a
humor candidate Ri. Repeating this process with different
conditions Ci can generate a total of n candidates {Ri}ni=1.

Then the LLM ranks these candidates by its discrimina-
tive ranking ability learned in Sec. 4.1. Next, it mixes the
top-2 candidates with the ground truth responses (GTR),
and selects the top-1 as the final response. Finally, if the
selected top-1 response is the GTR, we discard this sample.
Here first filtering out low-quality responses can improve
the accuracy of subsequent top-1 selection, since (n + 1)-
choice problem is often more challenging than 3-choice
problem as shown in Sec. 5. By repeating this process, we
progressively gather sufficient new high-quality data.

The core of this approach is the weakly-associated con-
ditions {Ci}ni=1 which can encourage the LLM to engage
in remote associations. This is because the empty condi-
tions allow LLM to operate freely, while the object noun
conditions compel the LLM to draw connections between
seemingly unrelated concepts. This mechanism facilitates
the establishment of links between seemingly-unrelated and
weakly-related concepts, encouraging the LLM to explore
knowledge outside of traditional cognitive limitations. The
exploration ability distinguishes our CLoT from CoT which
primarily guides the LLM to exploit its inherent reasoning
ability without emphasizing knowledge exploration.
(2) Self-refinement. Here we combine the above gener-
ated instructions with vanilla instruction tuning samples in
Sec. 4.1 to form a dataset with more than 550,000 samples
to train our LLM again. Since the above generated data is of
high diversity because of its exploration strategy, they pre-
vent performance collapse [76, 77] during self-refinement
phase, and can improve the LoT performance across several
creative tasks as shown in Sec. 5. See the ablation study and
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Model Size
Image&Text to Text (IT2T) Image to Text (I2T) Text to Text (T2T)

3T1 4T1 5T2 Rank Avg. 3T1 4T1 5T2 Rank Avg. 3T1 4T1 5T2 Rank Avg.

GPT4v [72] - 19.3 14.9 3.2 56.7 23.5 29.1 15.1 3.9 60.4 27.1 27.1 16.8 6.8 53.5 26.1
LLaVA-1.5 [34] 13B 13.2 13.7 13.9 68.1 27.2 29.3 22.7 3.9 60.9 29.2 33.8 25.2 4.0 62.6 31.4
MiniGPT-v2 [35] 7B 6.1 3.4 4.0 60.7 18.6 5.3 4.0 3.8 60.5 18.4 10.8 7.3 3.5 59.4 20.3
mPLUG-OwlMultilingual [12] 7B 28.1 26.0 10.5 64.4 32.2 19.2 18.6 6.0 60.5 26.1 24.4 22.2 10.7 60.1 29.4
VisualGLM-6B [75] 6B 24.1 22.5 9.7 67.4 30.9 14.3 20.4 8.8 61.9 26.4 13.1 20.2 7.1 61.3 25.4

Qwen-VL [1] 7B 30.2 26.0 10.4 67.7 33.6 23.2 23.1 11.9 62.2 30.1 23.4 25.0 13.3 59.6 30.3
Qwen-VL+AIT (Ours) 7B 39.7 38.9 15.7 67.3 40.4+ 6.8 38.8 30.5 15.7 62.3 36.8+ 6.7 30.6 28.7 16.7 62.6 34.6+ 4.3

Qwen-VL+CLoT (Ours) 7B 41.8 38.7 21.6 68.5 42.7+ 9.1 39.8 35.1 22.7 64.4 40.5+10.4 38.8 29.4 21.0 64.7 38.5+ 8.2

Table 2. The accuracy (%) of choice questions and the NDCG (%) of ranking questions on mutilmodal multilingual models. mTn choice
question selects n correct answers from m options. “Avg.” is the average of all metrics. “AIT” denotes associable instruction tuning.

Algorithm 1 Inference Step of CLoT
Input: Input I , CLoT-trained LLM A, response number n
Output: Creative response R.

1: ▷ Creating the candidate responses
2: construct n weakly-associated conditions {Ci}ni=1

3: {Ri}ni=1 ← A([I, {Ci}ni=1])
4: ▷ Choosing most creative response
5: Top-2 R′

1,R
′
2 ← A([I, {Ri}ni=1]) with ranking ability

6: Best R← A([I,R′
1,R

′
2]) with selection ability

7: return Best response R.

more discussions in Sec. 5.5.

4.3. CLoT Inference

After the two LoT-boosting phases in Sec. 4.1 and 4.2, the
LLM acquires sufficient LoT ability. Now we introduce the
inference steps of LLM to release its LoT ability. Formally,
given an Oogiri user-input I of the formation in Fig. 5, LLM
first uses explorative remote association in Sec. 4.2 to con-
struct n weakly-associated conditions (these conditions can
be empty since the training paradigm in Section 4), and then
follows Sec. 4.2 to generate n responses {Ri}ni=1. Next,
LLM ranks these responses by using its learned ranking
skill and finally selects the top-1 one from the ranked top-2
response via its selection skill. The reason to first use rank-
ing before selection is that as shown by experimental results
in Sec. 5, directly choosing the best one from a large num-
ber of options has poor accuracy, and ranking can filter out
low-quality candidates to improve the selection accuracy.
See Algorithm 1 for an overview of CLoT inference steps.

5. Experiments
5.1. Evaluation Questions and Metrics

Inspired by the humor benchmarks in [81], we first develop
choice and ranking questions as introduced in Sec. 4.1 (see
examples in Fig. 6 (c-d)), and then quantitatively evaluate
the LoT ability of LLMs on the Oogiri-GO test dataset. For
the choice questions, mTn for short, they need LLMs to
choose n “leap-of-thought” humor responses from m op-
tions given the input. Here we build four types of mTn
questions, including 2T1, 3T1, 4T1, and 5T2. 2T1 means

two options, the ground-truth response (GTR) and an im-
age caption generated by BLIP2 [74]. 3T1 adds unrelated
answers, e.g., other image captions. 4T1 further adds the
GTR rewrite by Qwen-14B [5]. 5T2 has an extra GTR. For
these questions, their difficulty increases progressively, and
is diverse to ensure comprehensive evaluation. For choice
questions, we use accuracy as the evaluation metric. Addi-
tionally, for the questions in test set whose responses have
ground-truth human preference, e.g., the number of likes,
we develop the ranking questions that always rank five can-
didates. For evaluation, we adopt the top-1 accuracy and
the widely used ranking metric,i.e., Normalized Discounted
Cumulative Gain (NDCG) [82, 83]. We provide more ex-
perimental details in the Appendix.

5.2. Evaluation by Choice and Ranking Questions

Evaluation on Multimodal Multilingual LLMs. We
plug our associable instruction tuning (AIT) and our CLoT
into the SoTA open-source multimodal multilingual model
Qwen-VL [1] to obtain Qwen-VL+AIT and Qwen-VL+CLoT,
respectively. Table 2 shows that, on three tasks (IT2T, I2T
and T2T) which include English, Chinese and Japanese
questions, Qwen-VL achieves the best LoT performance
among all baselines in most cases. In comparison, Qwen-
VL+AIT achieves a noticeable improvement on the SoTA
Qwen with average accuracy enhancements of 6.8%, 6.7%,
and 4.3% on the three tasks, respectively. Importantly,
Qwen-VL+CLoT further enhances Qwen-VL, showing im-
provements of 9.1%, 10.4%, and 8.2% in accuracy across
these tasks. These results demonstrate the efficacy of the
two stages in CLoT, i.e., associable instruction tuning and
explorative self-refinement.
Evaluation on Multimodal Non-multilingual LLMs.
Here we integrate our CLoT with the SoTA multimodal
non-multilingual model, CogVLM-17B [29], and evalu-
ate it on the English I2T and T2T tasks. Table 3 shows
that CogVLM-17B+AIT achieves remarkable improvements
over the standard CogVLM-17B, and CogVLM-17B+CLoT
consistently demonstrates significantly superior perfor-
mance compared to CogVLM-17B.
Evaluation on Single-Modal LLMs. Now we test LLMs
that can handle only pure texts, using the English T2T task

13251



Model Size
Image to Text (I2T) Text to Text (T2T)

2T1 3T1 4T1 5T2 Rank Avg. 2T1 3T1 4T1 5T2 Rank Avg.

InstructionBLIP [78] 13B 19.8 13.7 15.5 1.1 65.5 23.1 22.3 16.0 17.0 0.7 59.5 23.1
mPLUG-OwlLLaMA2 [12] 7B 22.3 12.7 15.0 4.2 59.9 22.8 24.2 13.7 12.6 3.1 59.2 22.6
Otter [79] 7B 15.8 9.9 8.5 7.1 61.3 20.5 3.8 3.3 4.8 5.4 58.5 15.1

CogVLM-17B [29] 7B 37.6 26.4 18.3 2.5 64.6 29.9 35.1 27.8 24.8 7.5 64.1 31.9
CogVLM-17B+AIT (Ours) 7B 57.4 37.4 33.5 21.8 64.6 42.9+13.1 55.4 46.5 26.4 18.2 64.4 42.2+10.3

CogVLM-17B+CLoT (Ours) 7B 66.9 47.6 43.4 30.7 69.4 51.6+21.7 64.8 52.9 33.6 21.8 68.6 48.3+16.4

Table 3. The accuracy (%) of choice questions and the NDCG (%) of ranking questions on various mutilmodal non-multilingual models
(English). See notations in Table 2. We only consider I2T and T2T since English IT2T is not available due to cultural preference.

Model Size 3T1 4T1 5T2 Rank Avg.

GPT-3.5 [72] - 45.3 30.4 6.7 61.6 36.0
GPT-4 [72] - 49.2 20.4 3.6 54.7 32.0

LLAMA2 [4]
7B 18.9 13.5 1.1 60.4 23.5

13B 15.6 20.0 1.8 60.5 24.5
70B 27.8 16.1 3.8 62.0 27.4

Baichuan2 [80]
7B 28.3 22.6 11.6 64.6 31.8

13B 21.7 18.3 8.9 61.5 27.6

Qwen [5]
7B 23.1 20.4 8.0 61.4 28.2

14B 27.4 22.2 12.3 59.5 30.3

ChatGLM3 [75] 6B 15.6 17.0 5.4 59.4 24.3

Vicuna-v1.5 [6]
7B 32.6 23.5 0.0 63.0 29.8

13B 30.2 23.0 2.7 62.2 29.5

Qwen-VL+CLoT (Ours) 7B 51.7 32.3 24.8 65.0 43.4
CogVLM-17B+CLoT (Ours) 7B 52.9 33.6 21.8 68.6 44.2

Table 4. The accuracy (%) of choice questions and the NDCG (%)
of ranking questions on various large language models. Here we
use English T2T task for test. See notations in Table 2.

for evaluation. Table 4 also indicates the insufficient LoT
ability within existing LLMs, ranging from small to large
models. Fortunately, our CLoT significantly improves the
LoT ability of these LLMs, as demonstrated by the notable
improvement in accuracy.
Comparison with CoT-alike Reasoning Frameworks.
We also find that existing reasoning frameworks are not as
effective as CLoT in enhancing LoT ability. Fig. 8 com-
pares CLoT with CoT [2, 3], CoT-SC [84], and prompted-
based LoT (PLoT) with the prompt “let’s think outside the
box”. The results reveal that CoT-alike frameworks do not
enhance LoT performance of LLMs, while CLoT demon-
strates the ability to consistently enhance LLMs.

Our experiments and analysis reveal that, unlike CoT-
based methods, LoT cannot be directly achieved by prompt-
ing alone. This is because the inherent reasoning capabil-
ities and extensive knowledge of LLMs are not sufficient
to enable LoT ability. However, when trained with our
proposed CLoT method, LLMs can effectively engage in
a range of creative tasks. Additionally, the use of specific
prompting techniques can enhance the LoT ability of CLoT-
trained LLMs. These findings suggest that LoT could po-
tentially be considered an additional general reasoning abil-
ity for LLMs that is not contained in current LLMs.

Avg.

IT2T

T2T
I2T

User Study with Voting (%)

8.08.9 9.7 16.4 15.0 42.0

9.512.1 8.2 13.9 12.4 43.9

5.66.3 7.6 17.1 11.7 51.7

8.98.4 13.2 18.2 21.0 30.3

Qwen-VL+CoT MiniGPTv2 Qwen-VL
GPT4v Qwen-VL+AIT (Ours) Qwen-VL+CLoT (Ours)

Figure 7. User study with voting (%) for Oogiri-style creative re-
sponses by different models and improved methods.

5.3. Human Evaluation

We conduct a user preference study to test creativity of
LLMs. Here we select six LLMs to generate responses for
a total of eighteen questions across three tasks (IT2T, I2T
and T2T). We use choice questions, and ask users to choose
the most creative and humorous responses. Fig. 7 sum-
marizes the statistical analysis of 154 valid surveys. The
results show that users have a strong inclination towards se-
lecting the results of CLoT across three tasks, highlighting
the high-quality creative content generated by CLoT. See
more user study details in Appendix.

5.4. Evaluation on Other Creative Tasks

To evaluate the generalization ability of CLoT, we test
CLoT on another two creative tasks, including Cloud
Guessing Game (CGG) and Divergent Association Task
(DAT). In CGG, the LLM is to identify the shape of white
clouds, and then to select the corresponding shapes from
given options. For instance, the white clouds in Fig. 9 (c)
has a shape of a cat, and the one in Fig. 9 (d) is similar
to a human. These white cloud images are generated by a
control diffusion model [31, 32, 85, 86], guided by masks
shown in Fig. 9 (b). We use top-1 accuracy as metric. See
more details in Appendix. For DAT, it is a classic creativ-
ity test [33, 87] which needs participants to choose words
with larger semantic distances among 10 unrelated nouns.
Here for test easily, we transfer the DAT benchmark [33]
to a series of choice questions and take the standard aver-
age semantic distance (ASD) as a metric. These questions
can challenge the LLM to select the one word from nine
options that differs from the given word most. See more de-
tails in Appendix. CGG and DAT can test the LoT ability of
LLMs, specifically their remote association thinking ability,
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Figure 8. The accuracy (%) of choice questions and the NDCG (%) of ranking questions on our CLoT and various reasoning frameworks.
The baseline is Qwen-VL on multilingual I2T task. For mTn choice questions, one needs to select n correct answers from m options.
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Figure 9. Evaluation of CLoT on the creative CGG (e) and DAT (f)
tasks. (c-d): examples of cloud guessing games. (b): conditional
masks of image (a) for generating cloud images.

and provide quite different evaluation platforms. As shown
in Fig. 9 (e-f), CLoT can also significantly enhance the per-
formance of the SoTA Qwen-VL on both CGG and DAT
tasks. Specifically, CLoT-integrated Qwen-VL improves
the vanilla Qwen-VL by about 8% on the CGG task and
5% on the DAT task. These results well demonstrate the
good generalization and transferability of CLoT.

5.5. Ablation Study

Weakly-associated Conditions. By default, to encourage
remote association, we use weakly-associated conditions
randomly sampled from the noun set on the whole dataset
in Sec. 4.2. To verify the effectiveness of weakly-associated
conditions, now we resort to strongly-associated conditions
sampled from the noun set of the current image caption.
Results in Fig. 10 (Left) show that using weakly-associated
conditions is superior and more conducive to fostering the
creativity of LLMs. The weakly-associated conditions en-
able the LLM to generate more diverse LoT responses,
while the strong clue from the strongly-associated condi-
tions limit the diversity of LoT generations.
Round of Self-refinement. By default, we run one-round
self-refinement for the Oogiri game. Here we explore
whether more rounds of the self-refinement can further im-
prove the LoT ability. Fig. 10 (Right) shows that a single
round of self-refinement already yields promising perfor-
mance, whereas additional rounds do not yield significant
further improvements. As shown in Fig. 10 (Left), the diver-
sity of the condition set S is crucial to self-refinement, since

Metrics Metrics
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3T14T15T2 3T14T15T2

30

40
40
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20

10

Weak (Ours)
Strong

Baseline

1 Round (Ours)
2 Rounds

Figure 10. The ablation study of CLoT. We use CogVLM as base-
line on the English I2T task. Left: weakly-associated condition
v.s. strongly-associated condition during explorative remote asso-
ciation. Right: The effect of rounds of self-refinement.

it decides whether the associable remote stage can generate
high quality and diverse data. However, the condition set
S is not expanded during the second-round self-refinement,
which consequently limits further improvements in perfor-
mance. Effectively increasing the scale of the condition set
is an effective way for further improvement. See more dis-
cussion in Appendix. But its exploration falls outside the
scope of this work and is left for our future research.

6. Conclusion
In this paper, we propose a Creative Leap-of-Thought
(CLoT) paradigm to improve LLM’s leap-of-thought (LoT)
ability. CLoT first collects a multimodal Oogiri-GO dataset,
and formulates it into instruction tuning data to train LLM
to improve its LoT ability. Then CLoT designs an ex-
plorative self-refinement that lets LLM generate more cre-
ative LoT data via exploring parallels among different con-
cepts and selects high-quality data to train itself for self-
refinement. Experimental results show the effectiveness and
generalization ability of CLoT across several creative tasks.
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