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Abstract

Transformer-based approaches have achieved promising
performance in image restoration tasks, given their ability
to model long-range dependencies, which is crucial for re-
covering clear images. Though diverse efficient attention
mechanism designs have addressed the intensive compu-
tations associated with using transformers, they often in-
volve redundant information and noisy interactions from
irrelevant regions by considering all available tokens. In
this work, we propose an Adaptive Sparse Transformer
(AST) to mitigate the noisy interactions of irrelevant areas
and remove feature redundancy in both spatial and chan-
nel domains. AST comprises two core designs, i.e., an
Adaptive Sparse Self-Attention (ASSA) block and a Fea-
ture Refinement Feed-forward Network (FRFN). Specifi-
cally, ASSA is adaptively computed using a two-branch
paradigm, where the sparse branch is introduced to fil-
ter out the negative impacts of low query-key matching
scores for aggregating features, while the dense one ensures
sufficient information flow through the network for learn-
ing discriminative representations. Meanwhile, FRFN em-
ploys an enhance-and-ease scheme to eliminate feature re-
dundancy in channels, enhancing the restoration of clear
latent images. Experimental results on commonly used
benchmarks have demonstrated the versatility and compet-
itive performance of our method in several tasks, including
rain streak removal, real haze removal, and raindrop re-
moval. The code and pre-trained models are available at
https://github.com/joshyZhou/AST.

1. Introduction
Image restoration aims to restore clear images from de-
graded ones. Existing CNN-based methods [6, 55, 103]
achieve remarkable progress. However, their basic unit,
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Figure 1. Workflows comparisons. (a) The standard Transformer-
based method incorporates all available tokens into multihead
self-attention (MSA) calculation, and the feed-forward network
(FFN) to handle redundant features. (b) The proposed Adap-
tive Sparse Transformer (AST) includes an adaptive sparse self-
attention (ASSA) block to filter out noisy interactions from ir-
relevant tokens, and a feature refinement feed-forward network
(FRFN) to reduce the redundancy hidden in channels.

convolution, possesses a restricted receptive field and is less
effective when modeling long-range dependencies. While
recent Transformer-based [73] architecture addresses this
limitation by incorporating the self-attention mechanism to
explore global correlations, it suffers from high computa-
tional complexity in practical applications.

Despite attempts to design efficient attention mecha-
nisms [37, 82, 100] to tackle the computational challenge,
roadblocks persist for two reasons: 1) Standard Transform-
ers [37, 100] adopt dense attention relations to aggregate
features, which will inadvertently introduce noisy interac-
tions in irrelevant regions as shown in Fig. 1. 2) Redundant
information [77, 113] within densely aggregated feature
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maps can further impede the models from attending to infor-
mative features. Recently, efforts have been made to filter
out noisy interactions in irrelevant areas and remove the re-
dundant information within feature representations [8, 114].
These methods either employ a Top-K selection operation to
choose the most useful tokens [8], or project the feature map
into the superpixel space before performing self-attention
calculation [114]. As the parameter K can be sensitive to
specific restoration tasks, and the self-attention mechanism
conducted in superpixel space considers relations among all
tokens, they may still encounter challenges related to fea-
ture map redundancy.

In practice, designing an efficient mechanism that iden-
tifies the most valuable features within information flows
while exhibiting less sensitivity to specific restoration tasks.
Standard Transformers [82, 100] usually consider all query-
key pair attention relations to aggregate features. Unfor-
tunately, since not all query tokens are closely relevant to
corresponding ones in the keys, the utilization of all simi-
larities is ineffective for clear image reconstruction. Intu-
itively, developing a sparse Transformer to select the most
useful interactions among the tokens could enhance feature
aggregation. For achieving sparsity in attention, squared
ReLU-based activation [67] seems to be a feasible solution.
It removes the similarities with negative relevance without
considering specific parameter settings like [8]. However,
some specific designs [23, 85] are often demanded to relax
the sparsity for alleviating the information loss [66], which
contradicts the motivation of using sparse self-attention
over the standard dense one. Hence, we explore another
paradigm to ensure that noisy representation features are re-
duced, and informative ones are retained as far as possible.

In light of this, we propose an efficient Transformer-
based model named Adaptive Sparse Transformer (AST)
for image restoration. AST introduces two key modules: an
Adaptive Sparse Self-Attention block (ASSA) and a Fea-
ture Refinement Feed-forward Network (FRFN). In brief,
ASSA consists of two branches: a sparse self-attention
branch (SSA) and a dense self-attention counterpart (DSA).
Specifically, SSA is leveraged to filter out irrelevant inter-
actions among tokens, while the DSA is adopted to en-
sure necessary information flows through the whole net-
work. We assign weights to each branch in an adaptive
fashion, allowing the model to adapt to the influence of the
two branches. This design leads to a more effective feature
aggregation but limited computation burdens compared to
standard self-attention methods.

On the other hand, we develop a simple yet effective
alternative to the regular feed-forward network [11], i.e.,
FRFN, to enhance the feature representation for better la-
tent image restoration. In a nutshell, FRFN performs fea-
ture transformation with an enhance-and-ease scheme. It
enhances the informative part of the feature maps and then

reduces redundancy using a gate mechanism. Meanwhile,
FRFN complements ASSA in suppressing redundant infor-
mation along channel dimensions, whereas ASSA reduces
redundancy in the spatial domain. Thanks to the coopera-
tion of the two complementary components, AST captures
the most representative features, while simultaneously sup-
pressing less informative ones to some extent.

Overall, key contributions of this work are three folds:
• We present AST, an efficient Transformer-based model,

that facilitates the flow of the most useful information for-
ward, extracting more constructive features for the recov-
ery of clear images.

• AST incorporates an ASSA block, which includes a dense
self-attention branch and a sparse one, to adaptively cap-
ture informative interactions among tokens while preserv-
ing essential information. Moreover, we develop a new
feature refinement feed-forward network (FRFN) based
on a feature transformation scheme, i.e., enhancing the
valuable features while suppressing less informative ones.

• Comprehensive experiments are performed to remove
degradations of several types: rain-streaks, hazes, and
raindrops, showing the superiority of our AST design.
Furthermore, we provide extensive ablation studies to
highlight the design contributions.

2. Related Work
Image Restoration. High-quality images are crucial to
achieve satisfactory performance for downstream applica-
tions, such as recognition [28, 76, 101], segmentation [97,
108, 110], representation learning [42, 84, 112], and recon-
strucion [117, 118] in forms of image [45, 83, 115] and
video [107, 109, 111]. In the past decades, the research
community has witnessed a great paradigm shift from tra-
ditional prior-based models [20, 92, 103] to learning-based
approaches [40, 50, 95], for their impressive performance in
removing diverse degradations, such as rain streak [14, 39,
63], haze [18, 60, 116], raindrop [54, 71, 93], etc. The per-
formance boosts could be attributed to diverse architectural
structures [64] and advanced components [21, 25, 27] in-
spired by high-level vision tasks. For instance, U-shaped
network design and skip connection are widely applied
to get hierarchical multi-scale representations [9, 29, 98]
and learn residual signals [17, 44, 106]. Though CNN-
based networks achieve impressive results, they still suffer
from the limited receptive field issue of convolution opera-
tion. To address this limitation, recent works [10, 53, 68]
have explored the attention mechanism for better restora-
tion performance. For instance, SPANet [78] extends an
IRNN model to explicitly generate the attention map of rain
streaks. RCAN [105] designs a channel attention mecha-
nism to emphasize more informative features. More net-
work architecture designs are summarized in NTIRE chal-
lenge reports [49, 80] and recent reviews [31, 41, 104].
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Figure 2. Overview of our Adaptive Sparse Transformer (AST). It mainly consists of an Adaptive Sparse Self-Attention (ASSA), and a
Feature Refinement Feed-forward Network (FRFN). LN refers to layer normalization and Conv denotes convolution operation.

Vision Transformer. Since Transformer [73] has shown
remarkable performance in the natural language process-
ing field, Transformer-based architecture is introduced into
the computer vision community [74, 79, 90]. IPT [4] is
the pioneering Transformer-based work for image restora-
tion, which addresses the computational challenge by di-
viding input images into small patches and processing them
sequentially. Nevertheless, the quadratic complexity of
vanilla self-attention still hinders Transformers from ap-
plying to high-resolution images. To alleviate this prob-
lem, channel attention is developed in restormer [100],
which performs attention calculation along the channel di-
mension, reducing computational costs. Another potential
remedy is window-based attention [46], such as the ap-
proach adopted by Uformer [82], which designs a locally-
enhanced window-based Transformer to introduce locality
into the Transformer architecture. SwinIR [37] also uti-
lizes window-based attention and introduces a shift mech-
anism for more cross-window interactions. Furthermore,
GRL [35] combines window attention and channel attention
to form a powerful model.

Although these efficient attention varieties effectively
address the issue of intensive computation and perform well
in removing various degradations, better performance is still
profoundly hindered by the irrelevant representation or re-
dundancy within feature maps [8, 114]. To this end, DRS-
former [8] designs a top-k channel selection operator in the
attention mechanism to choose the most informative tokens
for calculation. Similarly, CODE [114] projects feature into
superpixel space to reduce redundancy in spatial and chan-
nel domains. However, the specific choice of the parame-
ter ‘k’ can be sensitive to different image restoration tasks.

Moreover, performing the attention mechanism in super-
pixel space still involves all available tokens, potentially in-
troducing unwanted interactions in irrelevant areas.

Overall, the main differences between our AST and ex-
isting approaches are twofold. On the one hand, we in-
troduce an adaptive sparse self-attention mechanism to re-
duce redundancy by selecting the most informative inter-
actions. The idea of replacing the softmax layer with
square ReLU activation is adopted to achieve sparse self-
attention. Instead of designing complex components, like
prior works [24, 36, 102], to relax sparsity, we explore a
straightforward yet effective two-branch architecture to ad-
dress the information loss issue. In this way, our model fully
exploits the spare score of SSA without struggling to learn a
satisfactory representation from limited information due to
the overly sparse nature of ReLU-based SSA. On the other
hand, we develop another critical component in AST, i.e.,
the feature refinement feed-forward network. To ease the
redundant information hidden in the feature map, it adopts
an enhance-and-ease scheme, i.e., enhancing the most use-
ful feature and relieving the less informative part along the
channel dimension.

3. Proposed Method
3.1. Overall Pipeline

The overview of our AST pipeline is shown in Fig. 2,
given a image I ∈ RH×W×3, AST first employs a con-
volution layer to produce a low-level feature representation
F0 ∈ RH×W×C , where H × W, C are the image reso-
lution and the number of channels, respectively. Next, the
low-level representation F0 passes through a N1-stage sym-
metric encoder-decoder network and is embedded into deep
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feature Fd ∈ RH×W×C . Specifically, each stage within
the encoder consists of N2 basic blocks and a single con-
volution layer for down-sampling. The basic block in the
encoder comprises an FRFN. The features in the encoder
part are fused with those in the decoder via the identity con-
nection. Here, we omit the attention mechanism within the
standard transformer block in the encoder, due to the fact
that its low-pass filter nature [56] can hinder learning de-
sired local patterns, especially in the early stages [89]. On
the decoder side, each stage is composed of N2 basic blocks
and a single convolution layer for up-sampling. The basic
block in the decoder includes an ASSA and an FRFN. Ad-
ditionally, inspired by [82], a bottleneck stage is introduced
before the decoder that shares the same Transformer block
with the decoder to capture longer dependencies. Finally,
AST employs a convolution layer to produce the residual
image R ∈ RH×W×3 from Fd. The restored image is ob-
tained by the sum of the degraded image and the residual
one, i.e., Î = I +R. The Charbonnier loss [3] is adopted
to train AST:

ℓ(I′, Î) =

√
∥I′ − Î∥2 + ϵ2, (1)

where I′ refers to the ground-truth image and we experi-
mentally set ϵ to 10−3.

3.2. AST Block Design

Adaptive Sparse Self-Attention. As the vanilla Trans-
formers [11, 73, 82] consider all tokens inside the feature
map, it may involve many of irrelevant regions in the cal-
culation. In this way, it not only computes uninformative
areas, but also introduces redundant and irrelevant features
that degrade the model performance. To cope with this is-
sue, we introduce squared ReLU-based self-attention for fil-
tering out features with negative impacts of low query-key
matching scores, which also ensures the sparse property of
the attention mechanism [102] (SSA). Meanwhile, consid-
ering the oversparsity of ReLU-based self-attention [66],
we introduce another dense self-attention branch (DSA),
which employs the softmax layer, to aid in retaining crucial
information. The key challenge of using this two-branch
scheme is how to reduce the noisy features and redundant
information, while properly retaining the informative one
as far as possible. To this end, ASSA fuses two-branch
in an adaptive fashion, i.e., adaptively takes features from
branches and propagates them through the network.

Given a normalized feature map X ∈ RH×W×C , we
begin by partitioning it into non-overlapping windows of
size M × M , resulting in a flattened representation Xi ∈
RM2×C from the i-th window. Then we generate matrices
of queriesQ, keys K and values V from X:

Q = XWQ,K = XWK ,V = XWV , (2)

where the linear projection matrices of the queries WQ,
keys WK , and values WV ∈ RC×d that are shared among
all windows. The attention computation can be defined as:

A = f(QKT /
√
d+B)V , (3)

where A denotes the estimated attention; B refers to the
learnable relative positional bias, and f(·) is a scoring func-
tion. It is worth noting that, following [46, 82], we con-
duct the weight calculation for different ‘heads’ in parallel,
which are concatenated and then fused via linear projection.

We then revisit the standard dense self-attention mech-
anism (DSA), adopted in most existing works. It employs
the softmax layer, considering all query-key pairs to obtain
attention scores:

DSA = SoftMax(QKT /
√
d+B). (4)

Since not all query tokens are closely relevant to corre-
sponding ones in keys, the utilization of all similarities is in-
effective for clear image reconstruction. Intuitively, devel-
oping a sparse self-attention (SSA) mechanism to pick the
useful interactions among the tokens could enhance feature
aggregation. For achieving sparsity in attention, a squared
ReLU-based layer seems to be a plausible solution. It re-
moves the similarities with negative scores, and propagates
the most useful information flow forward:

SSA = ReLU2(QKT /
√
d+B). (5)

Note that ReLU-based SSA triggers information loss, ad-
ditional techniques are often demanded to relax sparsity,
which defies the motivation of using SSA over DSA.

Simply applying ReLU-based SSA will impose over-
sparsity on the pipeline, i.e., the learned feature representa-
tion contains insufficient information for the following pro-
cess. Conversely, using softmax-based DSA will inadver-
tently introduce noisy interactions in irrelevant regions, pos-
ing a challenge in recovering high-quality images. There-
fore, rather than preferring one paradigm over the other, we
propose a two-branch self-attention mechanism as a funda-
mental component with adaptive attention scores for taking
advantages of both two paradigms. The attention matrix in
Eq. (3) can be further updated to:

A = (w1 ∗ SSA+ w2 ∗DSA)V , (6)

where w1, w2 ∈ R1 are two normalized weights for adap-
tively modulating two-branch, and ∗ denotes the multiply
operation. More specifically, it can be computed by:

wn =
ean∑N
i=1 e

ai

, n = {1, 2} (7)

where {a1, a2} are learnable parameters that are initialed
with 1 of the two branches. This design ensures a better
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Table 1. Quantitative comparison on
SPAD [78] for rain streak removal.

SPAD [78]
Method PSNR ↑ SSIM ↑

DDN [13] 36.16 0.9463
RESCAN [33] 38.11 0.9797
PReNet [63] 40.16 0.9816
RCDNet [75] 43.36 0.9831
SPDNet [94] 43.55 0.9875
SPAIR [57] 44.10 0.9872
DualGCN [14] 44.18 0.9902
SEIDNet [39] 44.96 0.9911
MPRNet [99] 45.00 0.9897
Fu et al. [15] 45.03 0.9907
Restormer [100] 46.25 0.9911
SCD-Former [19] 46.89 0.9941
IDT [88] 47.34 0.9929
Uformer [82] 47.84 0.9925
DRSformer [8] 48.53 0.9924

AST-B (Ours) 49.51 0.9942
AST-B+ (Ours) 49.72 0.9944

Table 2. Model efficiency analysis on
AGAN-Data [58] for raindrop removal.

AGAN-Data [58]
Method PSNR ↑ SSIM ↑

Eigen’s [12] 21.31 0.757
Pix2pix [26] 27.20 0.836
Uformer [82] 29.42 0.906
WeatherDiff128 [54] 29.66 0.923
TransWeather [72] 30.17 0.916
WeatherDiff64 [54] 30.71 0.931
TKL&MR [7] 30.99 0.927
All-in-One [32] 31.12 0.927
DuRN [44] 31.24 0.926
CCN [61] 31.34 0.929
Quan’s [62] 31.37 0.918
AttenGAN [58] 31.59 0.917
IDT [88] 31.87 0.931
MAXIM-2S [71] 31.87 0.935
AWRCP [93] 31.93 0.931

AST-B (Ours) 32.32 0.935
AST-B+ (Ours) 32.45 0.937

Table 3. Quantitative comparison on Dense-
Haze [1] for real haze removal.

Dense-Haze [1]
Method PSNR ↑ SSIM ↑

RIDCP[87] 8.09 0.42
DCP [20] 10.06 0.39
SGID [2] 13.09 0.52
D4[91] 13.12 0.53
AOD-Net [30] 13.14 0.41
GridDehazeNet [43] 13.31 0.37
DA-Dehaze [65] 13.98 0.37
FFA-Net [59] 14.39 0.45
Uformer [82] 15.22 0.43
Restormer[100] 15.78 0.55
AECR-Net [86] 15.80 0.47
Fourmer[116] 15.95 0.49
DehazeFormer-S [69] 16.29 0.51
DeHamer [18] 16.62 0.56
MB-TaylorFormer-B [60] 16.66 0.56

AST-B (Ours) 17.12 0.55
AST-B+ (Ours) 17.27 0.57

trade-off between noisy interactions of irrelevant areas that
can be filtered out, and enough informative features can be
leveraged. In other words, this model is enabled to control
the sparse degree of input tokens regarding the specific task.
Feature Refinement Feed-forward Network. The regu-
lar FFN [73] processes the information at each pixel loca-
tion individually, which serves as a crucial role in improv-
ing the feature representation by the self-attention mecha-
nism. Therefore, designing an effective FFN for enhancing
features that boost the latent high-quality image restoration
is vital. When ASSA is adopted as a fundamental com-
ponent to remove redundant information in the spatial do-
main, there remains redundancy in channels. To overcome
this, we develop the FRFN to perform the feature transfor-
mation in an enhance-and-ease paradigm. Specifically, we
construct FRFN by introducing a PConv operation [5] to re-
inforce the informative elements within features, and a gate
mechanism to reduce the processing burden of the redun-
dant information. The FRFN can be represented as:

X̂′ = GELU(W1PConv(X̂)), [X̂′
1, X̂

′
2] = X̂′,

X̂′
r = X̂′

1 ⊗ F (DWConv(R(X̂′
2))),

X̂′
out = GELU(W2X̂′

r),

(8)

where W1 and W2 denote the linear projections; [, ] refers
to channel-wise slice operation; R(·) and F (·) illustrate Re-
shape and Flatten operations that convert the sequence in-
put to a 2D feature map and in reverse, which is crucial to
introduce locality into the architecture [34]; PConv(·) and
DWConv(·) refer to the partial convolution [5] and depth-
wise convolution [22] operation, respectively; ⊗ represents
matrix multiplication.

Overall, FRFN is capable of enhancing feature represen-
tations by extracting those representative features from the

information flow while simplifying the redundant ones. It
also provides the chance for the model to clear uninforma-
tive features along the channel dimension.

4. Experiments

In this section, we evaluate the performance of AST on var-
ious image restoration tasks, such as rain streak, haze, and
raindrop removal. Ablation studies are also performed to
demonstrate the effectiveness of the proposed modules.

4.1. Experiment Settings

Implementation Details. In the default setting, AST con-
tains N1=4 stages for both the encoder and decoder part,
and develops one stage in the bottleneck. We build two
variants of our vanilla model, called AST-T and AST-B,
by varying the embedding dimensions C and Transformer
blocks (the encoder and decoder share the same N2 blocks,
while the bottleneck includes N3 blocks). For AST-T, we
set C as 16, N2 and N3 as [2,2,2,2] and 2, while for AST-B,
we set C as 32, N2 and N3 as [1,2,8,8] and 2. The de-
fault split window size is 8, and they share same dimension
of each head in the Transformer block, following the ap-
proach in [82]. We adopt the AdamW optimizer [47] with
the default settings to train our model. The learning rate is
initially set as 0.0002 and gradually decreases to 0.000001
using the cosine decay strategy [48]. We randomly use the
rotation and flipping operation strategies for augmentation.
The progressive learning strategy is used to save time, sim-
ilar to [70, 100].
Evaluation Metrics. To evaluate the restoration perfor-
mance, we adopt PSNR and SSIM metrics [81]. Ad-
ditionally, NIQE [52] is used as a non-reference metric.
Notably, for deraining, following existing works [75, 82],
PSNR/SSIM scores are calculated on the Y channel in the
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Reference Rainy SPDNet [94] Restormer [100] DRSformer [14] Ours

Figure 3. Qualitative comparisons on SPAD [78] for real rain removal.

YCbCr space. We denote the method with the ’+’ symbol
when geometric self-ensemble strategy [38] is used. The
best and second-best scores in the tables are highlighted
and underlined.

4.2. Rain Streak Removal

We perform the deraining experiments on SPAD bench-
mark [78] and compare the performance of AST with fif-
teen state-of-the-art algorithms, including DDN [13], RES-
CAN [33], PReNet [63], RCDNet [75], SPDNet [94],
SPAIR [57], DualGCN [14], SEIDNet [39], MPRNet [99],
Fu et al. [15], Restormer [100], SCD-Former [19],
IDT [88], Uformer [82] and DRSformer [8]. In Tab. 1,
AST-B achieves a gain of 4.48 dB in terms of PSNR metric
against the previous best CNN-based method Fu et al. [15]
and 0.98 dB against the previous best Transformer-based
model DRSformer [8]. We present visual comparisons in
Fig. 3, where AST-B can remove the real rain streak more
successfully while preserving the structural content.

4.3. RainDrop Removal

We conduct raindrop removal experiments on AGAN-
Data [58] benchmark, and compare our AST with
a wide range of state-of-the-art deraindrop ap-
proaches, including Eigen’s [12], Pix2pix [26],
Uformer [82], WeatherDiff128 [54], TransWeather [72],
WeatherDiff64 [54], TKL&MR [7], All-in-One [32],
DuRN [44], CCN [61], Quan’s [62], AttenGAN [58],
IDT [88], MAXIM-2S [71] and AWRCP [93]. In Tab. 2,
AST-B outperforms the previous best method AWRCP [93]
by a substantial 0.39 dB and surpasses the concurrent
diffusion-based method WeatherDiff128 [54] by 2.66 dB in
terms of PSNR.

4.4. Real Haze Removal

We conduct evaluation on Dense-Haze benchmark [1]
for real haze removal, and compare AST with fifteen
state-of-the-art dehazing works, including RIDCP[87],
DCP [20], SGID [2], D4[91], AOD-Net [30], Grid-
DehazeNet [43], DA-Dehaze [65], FFA-Net [59],
Uformer [82], Restormer [100], AECR-Net [86],
Fourmer[116], DehazeFormer-S [69], DeHamer [18]
and MB-TaylorForm [60]. In Tab. 3, AST-B obtains
the best values in PSNR metric among the considered

Table 4. Ablation study for different self-attention mechanisms.

Models Swin SA Top-k SA Condensed SA ASSA
[37] [8] [114] Ours

Params 6.65 6.67 6.07 6.65
FLOPs 13.32 13.59 11.46 13.35
PSNR 44.47 44.67 44.94 45.43

Table 5. Comparison with standard self-attention mechanisms and
corresponding sparse version.

Method PSNR

(1) Standard Local Self-Attention [82] 45.09
Sparse Local Self-Attention 44.58

(2) Standard Channel Self-Attention [100] 44.91
Sparse Channel Self-Attention 44.45

state-of-the-art methods. Compared to the previous best
CNN-based method ARCT-Net [86], the PSNR gain of
our AST-B is 1.37 dB. In addition, our AST-B achieves
at least 0.46 dB improvement when compared to recent
Transformer-based methods [60, 69, 116].

4.5. Analysis and Discussion

Exploring the most useful information and reducing the re-
dundancy within Transformer architecture provides favor-
able results on diverse image restoration tasks. Here, we
present a deeper analysis of AST and illustrate the effec-
tiveness of the proposed modules. For ablation studies, we
train the deraining models AST-T on the SPAD [78] dataset.
For a fair comparison, all models are trained on 128 × 128
image patches for 10 epochs, and we calculate FLOPs with
the input size of 256× 256.
Effectiveness of ASSA. To investigate the effectiveness of
the ASSA component, we replace it with existing effec-
tive attention mechanisms: (1) Swin Self-Attention (Swin
SA) [37], (2) Top-k Self-Attention (Top-k SA) [8], and (3)
Condensed Self-Attention (Condensed SA) [114]. We show
the quantitative results in Tab. 4. ASSA provides favorable
gains of 0.96 dB in PSNR, with slightly increased complex-
ity (0.03G Flops) when compared to the Swin SA. In ad-
dition, compared to the closely related methods that pro-
posed to clear noisy interaction among tokens and redun-
dancy information, our ASSA design obtains a performance
improvement of 0.76 dB over Top-k SA [8], and 0.49 dB
over Condensed SA [114].
Effectiveness of adaptive architecture design. The
proposed adaptive architecture design is used to reduce
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Figure 4. Learned weights for sparse and dense branches.

the noisy representative features and redundant information
while properly retaining the informative one. To investigate
whether models for image restoration equipped with ReLU-
based sparse attention will encounter similar performance
degradation phenomena in the NLP field, we first construct
two versions of sparse self-attention mechanisms based on
two mainstream paradigms: (1) Local Self-Attention [82]
and (2) Channel Self-Attention [100]. As shown in Tab. 5,
directly replacing the standard softmax-based dense self-
attention with the ReLU-based sparse one leads to signif-
icant performance drops of 0.51 dB and 0.46 dB for Local
Self-Attention and Channel Self-Attention, respectively.

To further investigate whether the performance drop is
triggered by information loss due to the overly sparse issue
of ReLU-based sparse self-attention (SSA), we calculate the
entropy of the attention layer, similar to [16], to measure
attention concentration. Specifically, the attention entropy
is defined as:

EnctropyAtt = − 1

H

∑
h

1

L

∑
ij

Atth,lij ∗ logAtth,l
ij , (9)

where Atth,lij represents the attention score for the query to-
ken i to the key token j of head h ∈ H at layer l ∈ L.
Lower entropy means that on average the attention tends
to be concentrated, while higher one indicates the attention
is more distributed. As displayed in Tab. 6, softmax-based
dense self-attention (DSA) achieves the highest score while
SSA obtains the lowest one. In other words, DSA extracts
features from source tokens more uniformly, which may in-
troduce noisy interaction of irrelevant regions. SSA concen-
trates on a few tokens that are too sparse to cover necessary
relations. On the contrary, our method arrived at a com-
promise that the informative context can be fully explored
while the redundant features will be neglected, resulting in
a clear performance boost.

We then show the necessity and superiority of using
the proposed adaptive two-branch architecture design, i.e.,
standard dense self-attention and the corresponding sparse
version, to alleviate the challenge by conducting experi-
ments on training model variants in Tab. 7. Directly ap-
plying SSA suffers unsatisfactory performance, compared
to the model equipped with DSA. Particularly, when com-
paring to the adaptive activation, e.g., ACON and Meta-

Table 6. Entropy analysis of different self-attention mechanisms.

Structure DSA SSA ASSA (Ours)

Entropy 3.733 1.543 3.134

PSNR 45.09 44.58 45.43

Table 7. Ablation study on various activation choices in the self-
attention mechanism.

Type Dense Sparse Adaptive

Variety softmax ReLU2 StarReLu [96] ACON [51] Meta-ACON [51] ASSA(Ours)

PSNR 45.09 44.58 45.30 43.23 43.67 45.43

∆ -0.34 -0.85 -0.13 -2.20 -1.76 -

Table 8. Ablation study on alternatives to feature refinement feed-
forward network.

Models FFN DFN GDFN LeFF FRFN
[11] [34] [100] [82] Ours

Params 7.77 7.92 6.49 7.92 6.65
FLOPs 15.25 16.20 13.19 16.30 13.35
PSNR 44.13 43.46 44.66 44.77 45.43

ACON [51], our ASSA can still achieve the largest perfor-
mance gain (45.43 dB).

We finally visualize the learned weights for each SSA
and DSA branch in Fig. 4. As expected, the model treats
two branches equally at first to ensure sufficient informa-
tion, and pays more attention to the sparse branch as layers
go deeper for better aggregating features. We note that the
learned weights act as a soft selection, thus allowing the
model to adapt to the influence of the two branches.
Effectiveness of FRFN. Feature maps often have high
channel dimensions, especially in deep layers, and not all
feature channels contain the key information for recovering
clear images. Simply applying the same feature transfor-
mations to all channels can result in an excess of redun-
dant information. In practice, it is daunting to enhance the
informative channels for further advances in feature repre-
sentation learning. To demonstrate the effect of our FRFN,
we first compare it with four variants, including (1) vanilla
Feed-Forward Network (FFN) [11], (2) Depth-wise con-
volution equipped Feed-forward Network (DFN) [34], (3)
Gated-Dconv Feed-forward Network (GDFN) [100], and
(4) Locally-enhanced Feed-Forward network (LeFF). The
quantitative comparisons are listed in Tab. 8. Our FRFN
achieves the best PSNR value, with slightly more param-
eters and FLOPs. In other words, FRFN could select the
more useful information and ease the redundant features,
thus better cooperating with our proposed ASSA design
than other considered ones. Although GDFN [100] lever-
ages a gating mechanism like ours to control the informa-
tion flows, FRFN performs a delicate enhance-and-ease fea-
ture transformation to help select the most informative fea-
tures. As a result, FRFN achieves a PSNR gain of 0.77 dB
over GDFN.

We also perform ablation studies in Tab. 9 to investigate
the impact of FRFN. Compared to the baseline model (a)
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(a) Input (b) DRSformer [14] (c) IDT [88] (d) Restormer [100] (e) Uformer [82] (f) AST-B

Figure 5. Qualitative comparisons on Internet-Data [78] for real rain removal.

Table 9. Ablation study of FRFN on SPAD for image deraining.
Enhance Ease DWConv Params FLOPs PSNR Lantency

(a)
√

8.06 17.16 45.02 15.55
(b)

√ √
8.26 17.55 45.16 17.03

(c)
√ √

6.45 12.96 45.30 19.01
(d)

√ √ √
6.65 13.35 45.43 19.75

Table 10. Results of no-reference assessment metric NIQE for
deraining task under the real-world scenario.

Methods Input Uformer Restormer IDT DRSformer AST-B
[82] [100] [88] [8] Ours

NIQE ↓ 6.274 5.749 6.162 6.079 5.994 5.493

that introduces locality with a depth-wise convolution layer,
following existing works [82], our FRFN (d) provides per-
formance benefits (0.41 dB) by designing an enhance-and-
ease scheme. Specifically, enhancing the valuable informa-
tion using the PConv operator [5] and easing the redundancy
hidden in the feature map with a gating mechanism yield
0.28 dB and 0.14 dB improvements, respectively. PConv
convolves only part of the channels, which can be viewed as
a sparse operation to select useful channels. In this way, it
guides the network to concentrate on important features and
enhances the ability to extract informative features. These
results prove our design contributions of FRFN with the
enhance-and-ease scheme.
Perceptual quality assessment. Following [8], we ran-
domly chose 20 real-world rainy images from the Internet-
Data [78] benchmark to conduct the assessment. As dis-
played in Tab. 10, AST-B achieves the lowest NIQE value,
implying better perceptual quality over considered methods
under real-world settings. Moreover, as the qualitative com-
parison shown in Fig. 5, AST-B clears rain-streak degrada-
tions and generates a visually faithful result, which indicates
its capability to handle unseen real degradation.

5. Conclusions

The goal of this work was to recover clear images from the
degraded version by adaptively learning the most informa-
tive representations and easing the noisy information within
features. While we introduce the ReLU-based sparse self-
attention (SSA) from NLP for removing noisy interactions
among irrelevant tokens, instead of directly employing it

(a) Input (b) AST-B
Figure 6. Examples of erroneous restorations. Typical failure of
AST can be found in real-world scenarios with heavy degradation.

as a fundamental component, our target is to first prevent
the information loss due to the small entropy of the ReLU-
based SSA. For this to be achieved effectively, we explore
an adaptive architecture design, which ensures necessary
information flows forward with the aid of another dense
branch. Moreover, we propose an FRFN to perform the
feature transformation with an enhance-and-ease scheme,
where discriminative feature representation can be learned
to boost high-quality image reconstruction. Our AST out-
performs the relevant baselines that adopt a selection op-
eration (e.g., Top-K selection and Sparse Channel SA) or
project features into superpixel space (e.g., Condensed SA)
for easing redundancy, while ultimately, it achieves favor-
able results on several degradation removal tasks.

Limitations. Future work could focus on current limita-
tions (e.g., developing a uniform model for low-quality im-
ages with various degradations), as well as opportunities
that this task-specific model provides (e.g., injecting pri-
ors, like dark channels prior for image dehazing and retinex
model prior for removing low-light conditions). A failure
case is illustrated in Fig. 6, where AST struggles to deal
with scenes with heavy degradations.

Acknowledgements.This work was supported by
Natural Science Foundation of Tianjin, China (NO.
20JCJQJC00020), the National Natural Science Foun-
dation of China (Nos. U22B2049, 62302240), Funda-
mental Research Funds for the Central Universities, and
Supercomputing Center of Nankai University (NKSC).

2959



References
[1] Codruta O Ancuti, Cosmin Ancuti, Mateu Sbert, and Radu

Timofte. Dense-haze: A benchmark for image dehazing
with dense-haze and haze-free images. In ICIP, 2019. 5, 6

[2] Haoran Bai, Jinshan Pan, Xinguang Xiang, and Jinhui Tang.
Self-guided image dehazing using progressive feature fu-
sion. TIP, 31:1217–1229, 2022. 5, 6

[3] Pierre Charbonnier, Laure Blanc-Feraud, Gilles Aubert,
and Michel Barlaud. Two deterministic half-quadratic regu-
larization algorithms for computed imaging. In ICIP, 1994.
4

[4] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yip-
ing Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu,
and Wen Gao. Pre-trained image processing transformer. In
CVPR, 2021. 3

[5] Jierun Chen, Shiu-hong Kao, Hao He, Weipeng Zhuo, Song
Wen, Chul-Ho Lee, and S-H Gary Chan. Run, don’t walk:
Chasing higher flops for faster neural networks. In CVPR,
2023. 5, 8

[6] Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun.
Simple baselines for image restoration. In ECCV, 2022. 1

[7] Wei-Ting Chen, Zhi-Kai Huang, Cheng-Che Tsai, Hao-
Hsiang Yang, Jian-Jiun Ding, and Sy-Yen Kuo. Learning
multiple adverse weather removal via two-stage knowledge
learning and multi-contrastive regularization: Toward a uni-
fied model. In CVPR, 2022. 5, 6

[8] Xiang Chen, Hao Li, Mingqiang Li, and Jinshan Pan.
Learning a sparse transformer network for effective image
deraining. In CVPR, 2023. 2, 3, 5, 6, 8

[9] Sung-Jin Cho, Seo-Won Ji, Jun-Pyo Hong, Seung-Won
Jung, and Sung-Jea Ko. Rethinking coarse-to-fine approach
in single image deblurring. In ICCV, 2021. 2

[10] Xin Deng and Pier Luigi Dragotti. Deep convolutional neu-
ral network for multi-modal image restoration and fusion.
TPAMI, 43(10):3333–3348, 2021. 2

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An im-
age is worth 16x16 words: Transformers for image recog-
nition at scale. In ICLR, 2021. 2, 4, 7

[12] David Eigen, Dilip Krishnan, and Rob Fergus. Restoring
an image taken through a window covered with dirt or rain.
In ICCV, 2013. 5, 6

[13] Xueyang Fu, Jiabin Huang, Delu Zeng, Yue Huang, Xing-
hao Ding, and John Paisley. Removing rain from single
images via a deep detail network. In CVPR, 2017. 5, 6

[14] Xueyang Fu, Qi Qi, Zheng-Jun Zha, Yurui Zhu, and Xing-
hao Ding. Rain streak removal via dual graph convolutional
network. In AAAI, 2021. 2, 5, 6, 8

[15] Xueyang Fu, Jie Xiao, Yurui Zhu, Aiping Liu, Feng Wu,
and Zheng-Jun Zha. Continual image deraining with hyper-
graph convolutional networks. TPAMI, 45(8):9534–9551,
2023. 5, 6

[16] Hamidreza Ghader and Christof Monz. What does atten-
tion in neural machine translation pay attention to? arXiv
preprint arXiv:1710.03348, 2017. 7

[17] Shuhang Gu, Yawei Li, Luc Van Gool, and Radu Timofte.
Self-guided network for fast image denoising. In ICCV,
2019. 2

[18] Chun-Le Guo, Qixin Yan, Saeed Anwar, Runmin Cong,
Wenqi Ren, and Chongyi Li. Image dehazing transformer
with transmission-aware 3d position embedding. In CVPR,
2022. 2, 5, 6

[19] Yun Guo, Xueyao Xiao, Yi Chang, Shumin Deng, and
Luxin Yan. From sky to the ground: A large-scale bench-
mark and simple baseline towards real rain removal. In
ICCV, 2023. 5, 6

[20] Kaiming He, Jian Sun, and Xiaoou Tang. Single image haze
removal using dark channel prior. TPAMI, 33(12):2341–
2353, 2010. 2, 5, 6

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2

[22] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 5

[23] Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Ro-
man Novak. Infinite attention: Nngp and ntk for deep at-
tention networks. In ICML, 2020. 2

[24] Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le.
Transformer quality in linear time. In ICML, 2022. 3

[25] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In CVPR, 2017. 2

[26] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In CVPR, 2017. 5, 6

[27] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato,
and Yann LeCun. What is the best multi-stage architecture
for object recognition? In ICCV, 2009. 2

[28] Guoli Jia and Jufeng Yang. S 2-ver: Semi-supervised visual
emotion recognition. In ECCV, 2022. 2

[29] Orest Kupyn, Tetiana Martyniuk, Junru Wu, and
Zhangyang Wang. Deblurgan-v2: Deblurring (orders-of-
magnitude) faster and better. In ICCV, 2019. 2

[30] Boyi Li, Xiulian Peng, Zhangyang Wang, Jizheng Xu, and
Dan Feng. Aod-net: All-in-one dehazing network. In ICCV,
2017. 5, 6

[31] Chongyi Li, Chunle Guo, Linghao Han, Jun Jiang, Ming-
Ming Cheng, Jinwei Gu, and Chen Change Loy. Low-light
image and video enhancement using deep learning: A sur-
vey. TPAMI, 44(12):9396–9416, 2022. 2

[32] Ruoteng Li, Robby T. Tan, and Loong-Fah Cheong. All
in one bad weather removal using architectural search. In
CVPR, 2020. 5, 6

[33] Xia Li, Jianlong Wu, Zhouchen Lin, Hong Liu, and Hong-
bin Zha. Recurrent squeeze-and-excitation context aggre-
gation net for single image deraining. In ECCV, 2018. 5,
6

[34] Yawei Li, Kai Zhang, Jiezhang Cao, Radu Timofte, and Luc
Van Gool. Localvit: Bringing locality to vision transform-
ers. arXiv preprint arXiv:2104.05707, 2021. 5, 7

2960



[35] Yawei Li, Yuchen Fan, Xiaoyu Xiang, Denis Demandolx,
Rakesh Ranjan, Radu Timofte, and Van Luc Gool. Effi-
cient and explicit modelling of image hierarchies for image
restoration. In CVPR, 2023. 3

[36] Zhiyuan Li, Srinadh Bhojanapalli, Manzil Zaheer, Sashank
Reddi, and Sanjiv Kumar. Robust training of neural net-
works using scale invariant architectures. In ICML, 2022.
3

[37] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration
using swin transformer. In ICCV Workshops, 2021. 1, 3, 6

[38] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for sin-
gle image super-resolution. In CVPR Workshops, 2017. 6

[39] Di Lin, Xin Wang, Jia Shen, Renjie Zhang, Ruonan Liu,
Miaohui Wang, Wuyuan Xie, Qing Guo, and Ping Li. Gen-
erative status estimation and information decoupling for im-
age rain removal. In NeurIPS, 2022. 2, 5, 6

[40] Ding Liu, Bihan Wen, Yuchen Fan, Chen Change Loy, and
Thomas S Huang. Non-local recurrent network for image
restoration. In NeurIPS, 2018. 2

[41] Na Liu, Wei Li, Yinjian Wang, Ran Tao, Qian Du, and Jo-
celyn Chanussot. A survey on hyperspectral image restora-
tion: From the view of low-rank tensor approximation.
SCIS, 66(4):140302, 2023. 2

[42] Xin Liu and Jufeng Yang. Progressive neighbor consistency
mining for correspondence pruning. In CVPR, 2023. 2

[43] Xiaohong Liu, Yongrui Ma, Zhihao Shi, and Jun Chen.
GridDehazeNet: Attention-based multi-scale network for
image dehazing. In ICCV, 2019. 5, 6

[44] Xing Liu, Masanori Suganuma, Zhun Sun, and Takayuki
Okatani. Dual residual networks leveraging the potential of
paired operations for image restoration. In CVPR, 2019. 2,
5, 6

[45] Xin Liu, Guobao Xiao, Riqing Chen, and Jiayi Ma. Pgfnet:
Preference-guided filtering network for two-view corre-
spondence learning. TIP, 32:1367–1378, 2023. 2

[46] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 3, 4

[47] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 5

[48] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. In ICLR, 2017. 5

[49] Andreas Lugmayr, Martin Danelljan, Radu Timofte, Kang-
wook Kim, Younggeun Kim, Jae-young Lee, Zechao Li,
Jinshan Pan, Dongseok Shim, Ki-Ung Song, Jinhui Tang,
Cong Wang, and Zhihao Zhao. Ntire 2022 challenge on
learning the super-resolution space. In CVPR Workshops,
2022. 2

[50] Fangzhou Luo, Xiaolin Wu, and Yanhui Guo. Functional
neural networks for parametric image restoration problems.
In NeurIPS, 2021. 2

[51] Ningning Ma, Xiangyu Zhang, Ming Liu, and Jian Sun. Ac-
tivate or not: Learning customized activation. In CVPR,
2021. 7

[52] Anish Mittal, Rajiv Soundararajan, and Alan C Bovik.
Making a “completely blind” image quality analyzer. SPL,
20(3):209–212, 2012. 5

[53] Ben Niu, Weilei Wen, Wenqi Ren, Xiangde Zhang, Lian-
ping Yang, Shuzhen Wang, Kaihao Zhang, Xiaochun Cao,
and Haifeng Shen. Single image super-resolution via a
holistic attention network. In ECCV, 2020. 2
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