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[Step] Walking around 
the office, exploring 
different areas and 
objects.

I want you to generate some 
human motion for me.
It is about someone 
exploring and preparing an 
office space for a meeting, 
while leaving a professional 
impression.

Sure! I’ll plan some tasks 
first, then I’ll generate detail 
action descriptions to 
execute each task, finally, I’ll
synthesize human motion
corresponding to these 
actions.

[Task] The person first walks around the office, then 
bends down to pick up items from the floor, stands 
upright while holding a white folder or folder, leans 
down to place a folder or folder on a table, and finally 
walks towards the office entrance to observe the 
whiteboard and other items.

[Step] Bending down to 
pick up items from the 
floor.

[Step] Leaning down to 
place a folder or folder 
on a table.

[Task] The person starts by walking around the office 
space with a suitcase, then holds it with one hand while 
walking and interacting with colleagues. They move 
around the office, observing people working and 
organizing papers and documents, and finally sit down on 
a couch at the end of the video, possibly taking off or 
adjusting their clothing.

[Step] Walking around 
the office space with a 
suitcase.

[Step] Moving around 
the office, observing 
people working and 
organizing papers and 
documents.

[Step] Possibly taking off 
or adjusting clothing at 
the end of the video.

[Motion] The final motion about someone 
exploring and preparing an office space for a 
meeting, while leaving a professional 
impression 

Task Planning

Task Decomposition

Motion Generation

Motion-in-Between

Figure 1. An example of long human motion generation based on high-level user instructions, powered by the traversal of a few key
modules within our proposed framework, including motion task planning, decomposition, generation, and motion in-between synthesis.

Abstract

Large Language Models(LLMs) have shown remarkable
emergent abilities in unifying almost all (if not every) NLP
tasks. In the human motion-related realm, however, re-
searchers still develop siloed models for each task. In-
spired by InstuctGPT[16], and the generalist concept be-
hind Gato [27], we introduce AvatarGPT, an All-in-One
framework for motion understanding, planning, genera-
tions as well as other tasks such as motion in-between
synthesis. AvatarGPT treats each task as one type of in-
struction fine-tuned on the shared LLM. All the tasks are
seamlessly interconnected with language as the univer-
sal interface, constituting a closed-loop within the frame-
work. To achieve this, human motion sequences are first
encoded as discrete tokens, which serve as the extended vo-
cabulary of LLM. Then, an unsupervised pipeline to gen-
erate natural language descriptions of human action se-
quences from in-the-wild videos is developed. Finally, all
tasks are jointly trained. Extensive experiments show that
AvatarGPT achieves SOTA on low-level tasks, and promis-
ing results on high-level tasks, demonstrating the effective-
ness of our proposed All-in-One framework. Moreover, for
the first time, AvatarGPT enables a principled approach by
iterative traversal of the tasks within the closed-loop for un-
limited long-motion synthesis.

1. Introduction

Text-based human motion generation has made significant
progress in recent years[2, 7, 21, 22, 31, 39, 42]. These var-
ied methods fundamentally aim to learn a direct mapping
from natural language descriptions to human motions. De-
spite their impressive generative performance, they exhibit
two limitations when viewed from an end-to-end perspec-
tive. Firstly, their efficacy predominantly lies in generat-
ing short motion sequences, and extending these methods
to longer durations presents substantial challenges. Sec-
ondly, the dependency on manually crafted, detailed tex-
tual inputs for each motion sequence constrains their util-
ity in real-world scenarios. Consider, for instance, the con-
text of video game environments where non-player charac-
ters (NPCs) are required to perform multifaceted, high-level
tasks, which need to be broken down into smaller, sequen-
tially ordered sub-tasks, each demanding specific textual
descriptions to guide the associated movements. Addition-
ally, the need for post-processing to ensure seamless transi-
tions between motions further complicates the application.
Therefore, there is a pressing need to develop a compre-
hensive end-to-end framework. This framework should not
only automate the process of motion planning but also pro-
ficiently handle task decomposition and motion generation,
all while understanding the contextual subtleties and con-
forming to broad user-defined instructions.
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Fortunately, we have witnessed significant advancement
of Large Language Models(LLMs) as well as their re-
markable emergent abilities in text-centric understanding[5,
16, 35], reasoning [9, 19, 29, 30, 36] and generations
[1, 4, 17, 24–26, 32, 33]. Works like InstructGPT [16] and
Gato[27] further push the paradigm-shifting to a new stage
where almost all tasks can be treated as different instruc-
tions fine-tuned on top of the shared foundation LLM. How-
ever, in the realm of human body motion, these tasks con-
tinue to be addressed in isolation. There has been limited
exploration in integrating these emergent LLM capabilities
to innovate and validate new approaches in this domain.

Given the context, building on these paradigm shifts,
we present AvatarGPT, a groundbreaking unified frame-
work that harnesses the power of LLMs for seven distinct
motion-related tasks, including motion understanding, plan-
ning, decomposition, generation, motion in-between syn-
thesis, and scene estimation as well as task summarization.
Note that, motion planning is a high-level task that requires
a deep understanding of the context as well as certain com-
mon sense and reasoning abilities. The overview design is
illustrated in Fig.2. We represent continuous motion se-
quences as discrete tokens. To integrate motion modality
into LLMs, we treat the discrete motion tokens as an ex-
tended vocabulary, so it could be integrated into any LLMs
with little effort. AvatarGPT is structured around four high-
level sub-tasks: task planning, decomposition, summariza-
tion, and scene estimation, as well as three low-level sub-
tasks: text-driven motion generation, motion understand-
ing, and in-between motion generation. We employ spe-
cialized prompts for each sub-task and use an instruction-
tuning strategy for model training. Additionally, we have
developed an innovative method to construct a dataset from
real-world videos for high-level instruction tuning, which
notably eliminates the need for manual human intervention
in the process. To sum up, our contributions are as follows:
• We pioneer an All-in-One framework that integrates both

high-level and low-level motion-related tasks, fostering
a comprehensive optimization loop across understanding,
planning, and generation phases.

• We develop a novel pipeline to construct a dataset from
in-the-wild videos and also curate a dataset specifically
for fine-tuning high-level human action planning.

• Through extensive evaluation, we demonstrate that our
method sets new state-of-the-art benchmarks in low-level
tasks and shows promising results in high-level tasks.

• Our framework significantly extends the capability for
longer synthesis of human motions compared to prior
works, thus paving the way for new applications.

2. Related Work
Motion Generation The synthesis of realistic human mo-
tion from natural language descriptions is a longstanding

research area. Initial efforts like [6] and [20] generated mo-
tion based on pre-defined action categories rather than natu-
ral language, limiting the diversity and control of generated
motions. Recent advances [2, 7, 21, 22, 31, 38, 39, 42] have
addressed this by using natural language descriptions as di-
rect inputs for motion generation. These methods vary in
their technical approaches: (1) VAE-based methods, such as
[21] and [22], focus on learning an aligned space between
motion and language, utilizing a decoder for motion syn-
thesis. (2) Diffusion models, used in [2] and [31], learn to
guide diffusion processes for generating human motion dis-
tributions from Gaussian noise. Additional auxiliary con-
ditions can be applied for more detailed control [11, 37].
(3) Tokenization, a widespread technique in language mod-
els, has recently been applied to human motion generation
[7, 10, 38, 41, 42], treating the process as akin to predicting
the next motion token in language models. Despite show-
ing promise, these methods still rely on specific user inputs,
which can limit their broader applicability.

Motion Understanding Understanding the meaning of
human motion is also a long-term research topic. Describ-
ing human motion with pre-defined action labels [43][3] has
dominated this topic for a while. However, these methods
have obvious drawbacks, they are not appropriate to de-
scribe complex motion sequences. Recently, the learning of
the relationship between motion sequence and natural lan-
guage description has attracted increasing attention. For in-
stance, [23][7][10] learn the mutual mapping between hu-
man motion sequences and natural language descriptions.
These enable describing complex motion sequences with
accurate language descriptions.

Planning with LLMs Creating effective plans within
specific environments or scenarios remains a complex task.
However, with the rapid advancement of LLMs and the
evolving concept of agents, planning using natural language
descriptions is gaining traction. Works like [9, 14, 19, 29,
30] have shown the potential of using LLMs as task plan-
ners across various fields. These models, even without fine-
tuning, can perform diverse tasks when provided with well-
crafted prompts and instructions. Nonetheless, designing
these prompts and instructions requires careful thought, and
often, complex pipelines are needed to achieve the desired
outcomes from LLMs. While these approaches are promis-
ing for task planning, they generally do not encompass task
execution, necessitating additional modules for this pur-
pose. A recent development [36] introduced an LLM-based
framework that combines task planning with control, ad-
vancing the field of generalized human motion generation.
Yet, this method can only take high-level tasks as input and
produce corresponding movements, but not capable of re-
versing this process, limiting its utility and adaptability.
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LLM Task Planning

[Task]: The person starts walking around the room, 
exploring different areas and objects. They then 
proceed to walk in a circular motion around the 
room, interacting with the office space. After that, 
they walk around the room again, exploring 
different areas and objects. Finally, they continue to 
explore the room and its contents.

LLM Task Decomposition

[Steps]: 
1. Walking around the office space with a suitcase.
2. Holding the suitcase with one hand while walking and 
interacting with colleagues.
3. Moving around the office, observing people working 
and organizing papers and documents.
4. Sitting down on a couch at the end of the video.
5. Possibly taking off or adjusting clothing at the end of 
the video.

LLM Motion Generation LLM Motion-in-Between

LLM Task Planning

[Task]: The person starts by walking around the 
office space with a suitcase, then holds it with one 
hand while walking and interacting with colleagues. 
They move around the office, observing people 
working and organizing papers and documents, and 
finally sit down on a couch at the end of the video, 
possibly taking off or adjusting their clothing.

LLM Task Decomposition

[Steps]: 
1. Walking around the office space with a suitcase.
2. Holding the suitcase with one hand while walking and 
interacting with colleagues.
3. Moving around the office, observing people working 
and organizing papers and documents.
4. Sitting down on a couch at the end of the video.
5. Possibly taking off or adjusting clothing at the end of 
the video.

LLM Motion Generation LLM Motion-in-Between
LLM Task Planning

[Task]: The person starts by walking around the 
office space with a suitcase, then holds it with one 
hand while walking and interacting with colleagues. 
They move around the office, observing people 
working and organizing papers and documents, and 
finally sit down on a couch at the end of the video, 
possibly taking off or adjusting their clothing.

LLM Task Decomposition

[Steps]: 
1. Walking around the office space with a suitcase.
2. Holding the suitcase with one hand while walking and 
interacting with colleagues.
3. Moving around the office, observing people working 
and organizing papers and documents.
4. Sitting down on a couch at the end of the video.
5. Possibly taking off or adjusting clothing at the end of 
the video.

LLM Motion Generation LLM Motion-in-Between[Scene]: Exploring and preparing an 
office space for a meeting, while leaving 
a professional impression.

LLM Motion Understanding

[Steps]: 
1. A person walks to the right whilst holding his left arm 
out then brings it down.
2. A person walks forward, then turns around and walks 
forward quickly in a semi-circle, and then turns around 
and walks back..
3. A person steps back to the right and brings the arms 
upward to the sides.
4. A person stands and reaches with their left hand.
5. A person bends over and picks up two things.

LLM Task Summarization

[Task]: The person walks to the right while holding 
their left arm out, then brings it down. They walk 
forward, turn around, and walk quickly in a semi-
circle. After that, they step back to the right and 
bring their arms upward to the sides. Finally, they 
stand and reach with their left hand.

LLM Scene Estimation

Our All-in-One framework unifies 1) high-level tasks such as task 
planning and scene estimation, and 2) low-level tasks such as motion 
generation and understanding into one shared LLM model. Starting 
from any point in this graph, e.g., scene description or motion 
sequence, our method can conduct the planning, generation, 
understanding loop continuously without any additional condition.  

LLM Task Planning

[Task]: The person starts by walking around the 
office space with a suitcase, then holds it with one 
hand while walking and interacting with colleagues. 
They move around the office, observing people 
working and organizing papers and documents, and 
finally sit down on a couch at the end of the video, 
possibly taking off or adjusting their clothing.

LLM Task Decomposition

[Steps]: 
1. Walking around the office space with a suitcase.
2. Holding the suitcase with one hand while walking and 
interacting with colleagues.
3. Moving around the office, observing people working 
and organizing papers and documents.
4. Sitting down on a couch at the end of the video.
5. Possibly taking off or adjusting clothing at the end of 
the video.

LLM Motion Generation LLM Motion-in-Between

Figure 2. Overview of our All-in-One framework. Language serves as the interface to connect all these modulated tasks within the loop.

3. Method

The overview design of our All-in-One model is shown in
Fig. 2, and the technical illustration of the main components
is presented in Fig. 3. Our proposed method contains two
modules, 1) a Multimodal LLM that learns various relation-
ships between text descriptions and motion sequences, and
2) a novel automatic annotation pipeline that can annotate
the content of any in-the-wild videos in natural language
descriptions of various levels of detail. We describe their
details in the following.

3.1. Motion Tokenization

We first learn a motion tokenizer to quantize continuous
motion representations to discrete tokens. We follow [38] to
train the VQ-VAE using the objective Eq. 1. Where ∥x̃−x∥
is the reconstruction term, ∥sg[z] − zq∥ is the embedding
term, and ∥z − sg[zq]∥ is the commitment term.

LV Q = ∥x̃− x∥+ β1∥sg[z]− zq∥+ β2∥z − sg[zq]∥ (1)

3.2. Motion Vocabulary

To leverage an LLM, one needs to convert continuous mo-
tion sequences into discrete tokens. One straightforward
solution is using VQ-VAEs. Given a motion sequence
x ∈ RT×c, its tokenized representation is a set of in-
dices [t0, t1, ..., tk]. It is convenient to use part of the
default vocabulary of LLMs as motion tokens in training
LLMs[41]. Another solution is to extend the default vo-
cabulary of LLMs and use this extended part for motion
tokens[10]. However, these methods have shortcomings.
For instance, [41] re-uses partial default vocabulary, which
confuses the semantic meaning of associated embeddings
since these embeddings are shared by multiple modalities.
Although this problem is avoided in [10], new vocabulary

needs to be learned from scratch, which is inefficient es-
pecially when training on limited data. In our paper, we
propose a lightweight vocabulary adaptor. It, on one hand,
harnesses the semantic representation ability of discrete em-
beddings obtained by VQ-VAE, on the other hand, avoids
learning extended vocabulary from scratch. As shown in
Fig. 3 (a.2), we use vq-encoder and quantizer to transform
input motion sequence x ∈ RT×c to discrete embedding se-
quences zq ∈ RT q×d, where T q is the length of embedding
sequence, and d is the embedding dimension. Because the
latent space of zqi ∈ Rd and the hidden space hi ∈ RD of
LLMs do not align by default, we learn an adapter layer to
transform zqi to align with hi as:

fθa(z
q) : Rd → RD (2)

We show in experiments that this technique brings per-
formance gain while reducing the model size.

3.3. Separate Head for Motion Prediction

We propose to use a separate LLM head to map hidden
states of LLM to motion tokens while maintaining the shape
of its original head unchanged for text token prediction only.
This is shown in Fig. 3 (a.3). This is different from previ-
ous methods [10, 41]. In [41], they remain the shape of the
LLM head, but they re-use part of the LLM’s vocabulary
for motion tokens. In [10], they modify the shape of LLM’s
vocabulary because of the extended vocabulary. Using a
shared LLM head for tasks of different modalities brings
noticeable disadvantages. Because the vocabulary is not
fully shared by different modalities, it is possible to sample
tokens from the vocabulary that is out of the valid range of a
particular modality. Consequently, it is not guaranteed that
any sampled token can be decoded as expected. Our method
solves this problem. We denote the original vocabulary of
LLM as Vt = {vi}Ni=1, and the extended vocabulary for
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Action step 
descriptions

Video Clipping

Ask-Anything🦜
Detail description of the 

video clip content ChatGPT
Action step 
descriptions

Detail description of the 
video clip contentDetail description of the 

video clip content

Action step 
descriptions

ChatGPT

[Prompt] Please describe the content of the video in detail, 
especially the actions performed by the person in the video.

[Prompt] I will give you a long textual description, it 
describes a person is engaging some activity, it also 
describes the environment and the person's 
appearance.
The textual description is: “xxxxxx”
Now I need you to tell me what are the most 5 
dominant torso(body) movements step by step. Each 
step should be written no more than 10 words. 

[Prompt] I will give you list of textual description, they 
describes how a task could be conducted step-by-step 
following the descriptions.
The description list are: “xxxxxx”
Please write a short sentence no more than 50 words 
that describes a person executes these steps 
sequentially.

ChatGPT
Scene 

description

Action step 
descriptionsAction step 

descriptionsTask 
description

[Prompt] I will give you list of task descriptions, they 
describes same tasks conducted by a person 
sequentially.
The description list are: “xxxxxx”
Please write a short sentence with no more than 20 
words to describe an activity that matches these task 
descriptions.

(b.1) Preprocessing (b.2) Video Content Description Generation (b.3) Step Description Generation (b.4) Task Description Generation (b.5) Scene Description Generation

𝑬𝒎

𝑫𝒎
Adapter

𝑬𝒎

LLM

Extended 
Head

LLM Head

Hidden States

LLM Tokenizer𝑬𝒎

𝑫𝒎 LLM Tokenizer

LLM

[Instruction] “Generate a sequence of motion 
tokens matching the following natural 
language description.”
[Input] “A man is doing karate moves.”

[Response] “A person starts in a spot, walks 
counter-clockwise in a slight oval, then stops in 
the original spot.”

LLM vocab

Extended vocab

(a.1) Tokenization (a.2) Extended Vocabulary (a.3) Separate LLM Head (a.4) Learn Multimodal Relationship with LLM

Figure 3. Upper(a): Multimodal LLMs as well as its detailed components. Bottom(b): Unsupervised Annotation Pipeline.

motion is Vm = {v0}Mi=1, where M and N are vocabulary
sizes and M ̸= N . Given hidden states of LLM hi ∈ RD,
the original LLM head is fθt(h) : RD → RN , and the sep-
arate head for motion is fθm(h) : RD → RM . Therefore,
learning modality-specific heads guarantees we can always
sample tokens from the correct vocabulary. Hence, decod-
ing performs expectedly.

3.4. Instruction Tuning the LLMs

Fig. 3 (a.4) shows that an LLM could be used to learn
motion-related multimodal tasks tuned by different instruc-
tions. The fundamental concept of LLMs is to treat all in-
puts as discrete tokens and predict subsequent tokens based
on previous ones as pθ(xi|x<i). In our case, there are two
modalities, text and motion. We use LLM’s original vo-
cabulary for text modality. For motion sequences, we first
transform them to discrete embeddings as zq = Q(E(x)),
where E(·) is the vq-encoder, and Q(·) is the quantizer.
Then we map the motion embeddings to extended vocab-
ulary embeddings using Eq. 2. Through this process, we
can align two different modalities into a cohesive and LLM-
favorable representation, allowing us to harness the abil-
ity of LLMs to learn complex relationships between these
modalities. Hence, we can formulate motion-related multi-
modal tasks as conditioned language generation problems.

Let’s denote the condition as a sequence of tokens as
C = {ci}Kc

i=1, and the target as a sequence of tokens as
X = {xi}Kx

i=1, the condition and target could be either text
or human motion, and we can model the conditioned gen-

eration problem as pθ(xi|xi<i, C). We use a transformer
encoder to extract the context information from condition
C. At this stage, the full attention mechanism is adopted
because we found it is more favorable than using causal
attention in learning contextual information from the con-
dition. Then we use a transformer decoder with causal at-
tention to learn the relationship between target tokens and
conditions. We found T5’s[26] encoder-decoder architec-
ture is an appropriate choice. Because our model predicts
the probability distribution of target tokens at every step, we
use cross-entropy loss to supervise the fine-tuning. Since
we use separate heads for text and motion modalities, our
objectives for both modalities are as follows:

Lt = −ΣT
i=1x̂i log(pθ,θt(xi|x<i, C)) (3)

Lm = −ΣT
i=1x̂i log(pθ,θm(xi|x<i, C)) (4)

Where θ, θt, and θm are parameters of LLM, original
LLM head, and extended LLM head, respectively. We list
the prompts for instruction tuning in Appendix A.

3.5. Automatic Annotation Pipeline

We present a novel yet efficient method to annotate textual
descriptions from in-the-wild videos of various levels of de-
tail. Our method is shown in Fig. 3 (b). We use this pipeline
to collect datasets to fine-tune our model on tasks such as
task planning, decomposition, scene estimation, etc. Given
any video, we first crop it into segments of fixed length,
then we use a Visual-LLM to describe its content as detail
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pretend to hold a ball in your right hand, toss 
the ball upward and kick it with your right 
foot as it falls toward your foot. take steps 
forward and keep going out of the area.

a person holds their arms out to their side and 
lifts their right leg off the floor to balance on 
their left leg.

T2M-GPT

MotionGPT

Ours

Real

the sim is walking with both hands on a hand 
rail, appearing to be walking trough a hallway 
grabbing both a rail with both hands again.

the person is preforming a swimming stroke 
know as the butterfly stroke  the arms swing 
from behind the head.

a person walks diagonally left to right five 
paces in a karate fighting like motion then 
they take one step backwards.

Figure 4. Comparison of Motion Generation. We compare the motion generation between ours and SOTA[10, 38]. We highlight the
keywords to ease the visualization.

a person walks forward to the left, 
picks something up and walks back 
and then shakes what is in the hand.

a person walks and picks something 
up, then walks back to the starting 
position and cleans an object.

the person is washing the front of 
some thing.

the man is walking slowly.

a person walks slowly forward while 
holding onto a railing with their 
arms.

a person is attempting to walk a 
straight line heel to toe like a 
tightrope or dui check point

a person pokes their right hand 
along the ground, like they might be 
planting seeds.

a person squats down, poking the 
floor with something in their right 
hand.

a person bends over and starts to 
move things around on the ground.

a man walks forward, then turns 
around and walks back before facing 
back and standing still.

a person walks in an anti clockwise 
circle from the bottom right of the 
screen to the top left.

the person is walking around.

a person walking forward swinging 
their right arm and then turns 
around.

a person walks diagonally to the 
right, and then turns around.

a person walks diagonal in a forward 
motion then turns on left foot to 
face backward then stops.

Ours

MotionGPT

Real

Figure 5. Comparison of Motion Understanding. We compare the motion understanding performance between ours and MotionGPT[10].
We highlight the keywords to show the alignment between motion and text.

Method Motion Generation Motion Understanding Motion-in-Between
R Top-1 ↑ R Top-2 ↑ R Top-3 ↑ FID ↓ Div → MM ↑ Blue-1 ↑ Blue-4 ↑ Rouge ↑ Cider ↑ BertScore ↑ FID ↓ Div → MM ↑

GT 0.511 0.703 0.797 0.002±0.000 9.503±0.065 - - - - - - 0.002 9.503 -
TM2T[7] 0.424±0.003 0.618±0.003 0.729±0.002 1.501±0.017 8.589±0.076 2.424±0.093 48.90 7.00 38.10 16.80 32.20 - - -
MDM[31] 0.320±0.005 0.498±0.004 0.611±0.007 0.544±0.044 9.559±0.086 2.799±0.072 - - - - - 2.698 8.42 -
MLD[2] 0.481±0.003 0.673±0.003 0.772±0.002 0.473±0.013 9.724±0.082 2.413±0.079 - - - - - - - -

T2M-GPT[38] 0.491±0.005 0.680±0.003 0.775±0.002 0.116±0.004 9.761±0.081 1.856±0.011 - - - - - - - -
MotionGPT[41] 0.411±0.000 0.594±0.000 0.696±0.000 0.542±0.000 9.311±0.000 - - - - - - - - -
MotionGPT[10] 0.492±0.003 0.681±0.003 0.778±0.002 0.232±0.008 9.528±0.071 3.096±0.008 48.20 12.47 37.40 29.20 32.40 0.214 9.56 -

HMD[28] - - - - - - - - - - - 1.48 8.90 -
Ours 0.510±0.005 0.702±0.005 0.796±0.003 0.168±0.0083 9.624±0.0545 - 49.28 12.70 40.44 32.65 53.58 1.655±0.020 9.015±0.095 7.417±0.662

Table 1. Results of Low-level Tasks. We compare our method with various SOTAs on low-level tasks such as 1) Motion Generation, 2)
Motion Understanding, and 3) Motion-in-Between. Indicate best results , indicates second best results .

Method CT2T ↑ CS2S ↑ CT2S ↑ CS2T ↑ T2C ↑ S2C ↑ T2S ↑ S2T ↑
GT 0.843 0.882 0.818 0.849 0.872 0.910 0.678 0.812

Ours(GPT2-Large) 0.751 0.786 0.705 0.784 0.873 0.895 0.956 0.955
Ours(T5-Large) 0.843 0.937 0.884 0.841 0.940 0.893 0.994 0.997

Table 2. Results of High-level Tasks. We evaluate the Logical Coherent Score(LCS) on 8 high-level tasks, and we compare the results of
our method by using T5 and GPT architecture.
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Ours

(1.1) Scene Level (1.2) Task Level (1.3) Step Level (2.1) Scene Level (2.2) Task Level (2.3) Step Level

Full Exploring and preparing 
an office space for a 
meeting, while leaving a 
professional impression.

The person first walks around the office, then 
bends down to pick up items from the floor, stands 
upright while holding a white folder or folder, 
leans down to place a folder or folder on a table, 
and finally walks towards the office entrance to 
observe the whiteboard and other items.

Walking around the office, 
exploring different areas and 
objects.

The person engages in a full-body 
workout routine, incorporating 
exercises such as squats, lunges, 
push-ups, and planks.

The person starts by lying on the mat, then 
proceeds to perform squats with the assistance 
of a resistance band. After that, they use a 
foam roller to stretch their legs and perform leg 
lifts. Finally, they use a weightlifting belt to 
stretch their arms and back.

Lying on the mat.

MotionGPT

Figure 6. Comparison of Motion Generation with Various Text Granularity. We compare the generation results conditioned on coarse-
grained(scene), middle-grained(task), and fine-grained(step) descriptions. Our method generates long motion with 2K+ frames from scene
description(1.1, 2.1) and 0.6K frames from task description(1.2, 2.2), while MotionGPT[10] only results 0.2K+ frames for both scenarios.

as possible. In our pipeline, we adopt [12] for its encour-
aging ability in multimodal understanding and text gener-
ation. We then leverage ChatGPT[15] to describe how the
person in the video moves step by step based on the very de-
tailed descriptions, and we define descriptions of this level
of detail: step description. This is the most fine-grained
description, and each video segment could contain multiple
steps. We also use ChatGPT to extract one summarized de-
scription for each video segment from the descriptions of
the steps as well, which is denoted as: task description. In
addition, we define the description that depicts the scene in-
formation of the entire video as: scene description, which
is the most coarse-grained among all. To obtain this de-
scription, we feed the task descriptions related to each video
segment to ChatGPT sequentially, and again ask ChatGPT
to summarize the scene description that matches these tasks
coherently. We describe the prompt structures used in this
pipeline in Appendix B.

4. Experiments

4.1. Datasets

We use HumanML3D[7] to train and evaluate our method
on three low-level tasks, including motion generation, mo-
tion understanding, and motion-in-between synthesis. The
data preprocessing follows [7]. Because there are no appro-
priate datasets for motion task planning, scene understand-
ing, task decomposition, etc, we collect a new dataset using
the pipeline proposed in Sec. 3.5. The detailed procedure
of dataset collection, the format, and the structure of the
dataset are described in Appendix B, F.

4.2. Evaluation Metrics

Metrics for Low-level Tasks We use R-Precision
score[7] to measure the alignment between textual descrip-
tion and generated motion sequence, Frechet Inception Dis-
tance(FID) and Diversity(Div) to measure the generation
quality, Multimodality(MM) to evaluate the diversity of
generation driven by the same control signal. FID, Div, and
MM are used for motion generation and motion-in-between
tasks as well. To assess the motion understanding perfor-
mance, we measure the linguistic similarity between an-
notated texts and generated texts using the following met-
rics: 1) BLUE[18], 2) BLUE[18], 3) ROUGE-L[13], 4)
CIDEr[34]. Refer to Appendix C for detailed descriptions.

Metrics for High-level Tasks We propose a novel met-
ric, Logical Coherence Score(LCS), to evaluate the perfor-
mance of high-level tasks, such as task planning, decompo-
sition, and scene estimation, because there are no proper
metrics for automatic assessment. Unlike motion under-
standing, where we can measure the semantic similarity be-
tween candidate and reference, there is no single correct an-
swer for these high-level tasks. Whether the planned task is
logically coherent with historical tasks or scenes is the pri-
mary concern. We therefore leverage the knowledge and
reasoning ability of ChatGPT to judge whether our gener-
ated tasks match the conditions logically. For every gener-
ated text, we ask ChatGPT to determine whether it is log-
ically coherent with conditions or not as 1(x̂i, xi) = 1 if
x̂i and xi are logically coherent, otherwise 1(x̂i, xi) = 0.
Therefore, the coherent score for every task is calculated as
LCS = 1

NΣN
i=1(1(x̂i, xi)). We present the workflow of
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Ours

MotionGPT

The person starts by walking on an unseen train, then 
proceeds to do a deep squat, followed by catching 
something with both hands. After that, they stretch 
and finally walk in a figure eight pattern.

a person walks forward, squats, stands up, walks forw
ards, squats and stands up again.

The person starts by performing a series of martial 
arts moves, then dances while keeping their feet on 
the ground, followed by kicking their legs and doing 
karate kicks, and finally ends by doing karate kicks 
again.

a person aggressively kneeing and kicking.

The person starts by bending their body while lying 
on the floor, then they perform bodyweight squats, 
followed by jumping in place twice. After that, they 
sit down, stand up, and put their arms out. Finally, 
they lift something above their head several times.

a person squats down, stretches out left leg, pulls it 
back in and then stands up.

The person holds their right hand with their left hand, 
looks at their hands, raises their hands to their chest, 
stands and shows descriptive hand motions with 
basketball, shows dancing moves, steps forward with 
hands clasped, steps back, picks something up with 
left hand, and walks forwards.

a person is stiff dancing with their arms and legs.

1. The person starts by walking on an unseen train, 
then proceeds to do a deep squat, followed by 
catching something with both hands. After that, 
they stretch and finally walk in a figure eight 
pattern.

2. The person walks to the right while holding their 
left arm out, then brings it down. They walk 
forward, turn around, and walk quickly in a semi-
circle. After that, they step back to the right and 
bring their arms upward to the sides. Finally, they 
stand and reach with their left hand.

1. The person starts by performing a series of 
martial arts moves, then dances while keeping 
their feet on the ground, followed by kicking 
their legs and doing karate kicks, and finally 
ends by doing karate kicks again.

2. The person starts by performing martial arts 
kicks, then jumps rope, followed by crawling 
forward, standing up, and finally sitting down 
with arms and legs splayed out to the sides.

1. The person starts by bending their body while 
lying on the floor, then they perform bodyweight 
squats, followed by jumping in place twice. After 
that, they sit down, stand up, and put their arms 
out. Finally, they lift something above their head 
several times.

2. The person starts by doing a workout routine, 
then moves on to standing on their tiptoes, 
followed by dancing steps. After that, they 
perform the downward facing dog pose and 
finally, they turn around and do the same thing 
with their legs.

1. The person holds their right hand with their left 
hand, looks at their hands, raises their hands to 
their chest, stands and shows descriptive hand 
motions with basketball, shows dancing moves, 
steps forward with hands clasped, steps back, 
picks something up with left hand, and walks 
forwards.

2. The person walks in a semi circle to the left, sits 
down still, walks forward while holding their left 
arm with their right hand, turns counterclockwise, 
steps forward and makes hand gestures, takes a 
drink with their left hand and steps forward.

Coarse-grained

Ours

Fine-grained

Figure 7. Comparison of Motion Understanding of Various Level of Detail. We compare the long motion understanding in various
levels of detail with MotionGPT[10]. The motions have around 2K+ frames in length. Our method is able to describe the motion at both
coarse- and fine-grained levels of detail.

Method Motion Understanding Task Sumarization
Blue-1 ↑ Blue-4 ↑ Rouge ↑ Cider ↑ BertScore ↑ Blue-4 ↑ Rouge ↑ Cider ↑ BertScore ↑

Ours(GPT2-Large) 33.83 1.39 20.71 1.49 39.41 34.82 2.19 16.76 2.11 26.39
Ours(T5-Large) 30.14 1.22 17.85 1.40 41.05 40.11 7.45 24.82 3.03 32.28

Table 3. Results of Full Pipeline Planning and Generation. We assess our method’s performance on a full pipeline based on the concept
of cycle consistency. We adopt linguistic similarity metrics to evaluate the task-level and step-level consistency.

Method LCS Ling. Consis. T2M Consis ↑.CT2T ↑ T2S ↑ Step ↑ Task ↑
Ours(GPT2-Large) 88.50 92.32 55.56 65.00 2.8

Ours(T5-Large) 90.67 97.87 56.68 92.86 4.02

Table 4. Results of User Study. We assess our method’s per-
formance in terms of task planning, decomposition, motion gen-
eration, understanding, and task summarization. ‘LCS’, ‘Ling.
Consis.’, and ‘T2M Consis.’ respectively denote logical coherent
score, linguistic consistency, and text-to-motion consistency.

evaluation, as well as the specific prompts for each task in
Appendix D.

Metrics for Full Pipeline We define the full pipeline as:
given a scene description, it conducts multiple rounds of
task planning, decomposes each task to up to 5 steps de-
scriptions, then synthesizes motions out of these steps, and
finally blends these motions to one long sequence. Since
there is no ground truth data, it is difficult to evaluate di-
rectly, we propose to evaluate the full pipeline based on
the concept of cycle consistency. Concretely, we generate
a long motion sequence from multiple tasks xf

t and corre-
sponding step descriptions xf

s . Then we conduct a motion
understanding task to describe the motion in various text

granularity, resulting task- and step-level descriptions as xr
t ,

xr
s respectively. Ideally, xf

t and xr
t should describe the same

action, and so do xf
s and xr

s. We use BertScore, BLUE,
ROUGE-L, and CIDEr to evaluate their linguistic similar-
ity. We also conducted a user study to measure logical co-
herence, linguistic consistency, and motion-to-text consis-
tency. Please refer to Appendix E for more details.

4.3. Results

Results of Low-level Tasks HumanML3D[7] is used to
jointly train three low-level tasks. For testing, we gen-
erate 10 samples from every condition signal and report
their mean and 95% confidence interval. We compare our
method with various SOTAs and present the quantitative re-
sults in Tab. 1. The comparison shows that our method
largely outperforms all previous approaches on motion un-
derstanding tasks. Our method also ranks first in terms
of R-Precision metrics on the motion generation task and
achieves competitive results on other metrics. We also com-
pare our method on the motion-in-between task with differ-
ent SOTAs and observe competitive performance.

Results of High-level Tasks We define 8 subtasks as
high-level tasks. Denote ‘C’ as scene(context) description,
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Method Motion Generation Motion Understanding Motion-in-Between
R Top-1 ↑ R Top-1 ↑ R Top-3 ↑ FID ↓ Div → Bleu-1 ↑ Bleu-4 ↑ Rouge ↑ Cider ↑ BertScore ↑ FID ↓ Div →

Llama-13B 0.389 0.539 0.623 0.567 9.489 49.01 12.42 39.01 27.73 51.31 - -
GTP2-Large 0.454 0.635 0.728 0.316 10.021 51.92 13.29 40.93 33.69 51.73 0.911 9.007

T5-Base 0.468 0.654 0.751 0.284 9.967 48.29 11.51 38.51 28.11 51.59 4.042 8.982
T5-Large 0.510 0.702 0.796 0.168 9.624 49.28 12.70 40.44 32.65 53.58 1.655 9.015

w/o adapter 0.497 0.688 0.784 0.215 9.842 50.42 11.75 37.29 27.23 49.34 2.356 8.880
w/ adapter 0.510 0.702 0.796 0.168 9.624 49.28 12.70 40.44 32.65 53.58 1.655 9.015

Table 5. Ablation Study. We investigate the effectiveness of model architecture, sizes, and ways of introducing extended vocabulary.

‘T’ as task description, and ‘S’ as step description, task
‘CT2T’ stands for given scene(T) and one historical task(T)
description, conduct one round of planning to predict the
next possible task(T). Following this notation, we define the
following 8 subtasks as CT2T, CS2S, CT2S, CS2T, T2C,
S2C, T2S, and S2T. Because there are no similar methods
designed for these tasks, we present a novel benchmark(Tab.
2) in this paper for two purposes: 1) we measure the Logi-
cal Coherent Score(LCS) on our collected dataset and the
generation results of our method to justify the effective-
ness of our method, and 2) we provide this benchmark and
dataset for future research. We use T5-Large and GPT2-
Large as our LLM and report the quantitative metrics on
these 8 subtasks respectively, and the results suggest that
using T5-Large outperforms GPT2-Large on 7 of 8 tasks.

Results of Full Pipeline Our model supports 1) gener-
ating very long motion sequences from a single scenario
description and 2) describing the long motion at various
text granularities. The depiction of motion should match
the planned task/step description semantically. Therefore,
we evaluate the consistency using [13, 18, 34, 40] on task
summarization(task-level) and motion understanding(step-
level) cycle consistency. We compare two variants of LLM
architecture and report the results in Tab. 3. The results sug-
gests that using T5-Large as LLM outperforms GPT2-Large
significantly on task summarization, and achieves competi-
tive results on motion understanding tasks.

User Study We conduct user study to investigate the per-
formance of our method. Given a scene description, we
run task planning, decomposition, motion synthesis, and
motion-in-between, resulting in descriptions in various de-
tail granularities and a long motion sequence. We then per-
form motion understanding and task summarization to de-
scribe the motion at fine- and coarse-grained. We evaluate
the 1) LCS on planning and decomposition, and 2) linguis-
tic consistency on motion understanding and summariza-
tion tasks. Participants are expected to score ’1’ to cor-
rect(coherent and consistent) answers, while ’0’ to the in-
correct. In addition, human evaluation on the consistency
between generated long motion and descriptions is also per-
formed, with a rating scale of 1-5 as a metric. The results
are reported in Tab. 4. The results suggest using T5-Large

as LLM has stronger ability in planning, decomposition,
synthesis, understanding, summarization, and in-between
tasks than GPT2-Large. The conclusions of manual and au-
tomated evaluation demonstrate high degree of consistency,
supporting the effectiveness of our method.

4.4. Ablation Study

We conduct various ablation studies to investigate the effec-
tiveness of 1) LLM model architecture, 2) LLM model size,
and 3) extended vocabulary with an adapter.

LLM Model Architecture We investigate the effective-
ness of various LLM model architectures. We adopt Llama-
13B[32], GPT2-Large[25], and T5-Large[26] and conduct
multitask fine-tuning. LoRA[8] is adopted for Llama-13B
to save memory usage. The results on low-level tasks are
shown in Tab. 5, and those of high-level tasks are reported
in Tab. 2 as well. We found that Llama-13B has poor per-
formance on generation and understanding, this is because
LoRA actually finetunes < 1% parameters to connect mo-
tion modality with text, which fails to fully use the capacity
of Llama. Although GTP2-Large has slightly better per-
formance on motion understanding, T5-Large outperforms
on all other tasks, suggesting the superiority of T5-Large
against GPT2-Large as LLM architecture for our scenario.

LLM Model Sizes We also compare the performance dis-
crepancy in terms of model sizes. Tab. 5 shows that a larger
model size(T5-Large) brings noticeable performance gain.

Extended Vocab. w/ or w/o Adapter We investigate
the effectiveness of different approaches to introducing ex-
tended vocabulary. 1) Extend the LLM vocabulary and
learn the weights from scratch. 2) Align the quantized em-
beddings to the LLM vocabulary embedding space through
the adapter layer. Tab. 5 demonstrates that our proposed ap-
proach achieves remarkable improvements on various tasks.

5. Conclusion
We show the synergy of unifying seven motion-related tasks
through our newly introduced All-in-One framework. For
the first time, we demonstrate that our method can enable
long-motion synthesis thanks to its iterative planning, un-
derstanding, generation, etc, within the integral framework.
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