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Abstract

Deep neural networks have demonstrated susceptibility
to adversarial attacks. Adversarial defense techniques of-
ten focus on one-shot setting to maintain robustness against
attack. However, new attacks can emerge in sequences in
real-world deployment scenarios. As a result, it is crucial
for a defense model to constantly adapt to new attacks, but
the adaptation process can lead to catastrophic forgetting
of previously defended against attacks. In this paper, we
discuss for the first time the concept of continual adversar-
ial defense under a sequence of attacks, and propose a life-
long defense baseline called Anisotropic & Isotropic Replay
(AIR), which offers three advantages: (1) Isotropic replay
ensures model consistency in the neighborhood distribution
of new data, indirectly aligning the output preference be-
tween old and new tasks. (2) Anisotropic replay enables
the model to learn a compromise data manifold with fresh
mixed semantics for further replay constraints and potential
future attacks. (3) A straightforward regularizer mitigates
the ’plasticity-stability’ trade-off by aligning model output
between new and old tasks. Experiment results demonstrate
that AIR can approximate or even exceed the empirical per-
formance upper bounds achieved by Joint Training.

1. Introduction

Plenty of studies have demonstrated that high-performance
deep neural networks (DNNs) are vulnerable to adversarial
attacks [27, 31, 44], indicating that the addition of carefully
designed but human-imperceptible perturbations to the in-
puts of a DNN can easily deceive the network and lead to
incorrect predictions, a phenomenon known as adversarial
attack. The existence of such attacks presents a significant
threat to the deployment of the DNN-based systems. For in-
stance, the elaborate physical adversarial attacks [3, 6, 23]
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Figure 1. The difference between one-shot defense and continual
defense. The model diagram on the left presents the one-shot de-
fense studies an isolated Min-Max process and implicitly assumes
the potential attack is static. For a continual attack sequence, the
indispensable adaptation process introduces additional challenge
of catastrophic forgetting of previous attacks. Therefore, a deploy-
able adversarial defense should be a life-one learning task rather
than a one-shot task. We propose a self-distillation pseudo-replay
baseline to alleviate the catastrophic forgetting against attack se-
quence, indicated by the model diagram on the right.

may cause the DNNs-based auto-drive systems to make in-
correct judgments, potentially resulting in traffic accidents.

To ensure the reliability of DNNs in various scenarios,
many defense methods have been proposed to maintain the
robustness of DNN against adversarial attacks [16, 25, 34,
48, 54]. Existing defenses are always limited to the one-
shot assumption, which indicates that the model enters a
static process after a single defense training stage. However,
in real deployment scenarios, new attacks occurs continu-
ously [11, 13, 16, 22, 27] and even become a task sequence.
As a result, defense model needs to constantly adapt to new
attacks for adaptive robustness and turns into a life-long
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(e) FGSM to None (f) PGD to None (g) PGD to FGSM (h) PGD to FGSM to None
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Figure 2. Catastrophic forgetting verification of one-shot defense model in continual defense scenario. The horizontal axis can be consid-
ered as a timestamp, where time ’1’ represents the model adapting to TASK 1, and time ’2’ represents the sequential adaptation to all attack
tasks in the sequence. TASK 1 and TASK 2 depend on the specific sequence. For example, for the sub-first figure, TASK 1 and TASK 2 refer
to None Attack and FGSM Attack, respectively.

learning [12, 29] rather than a one-shot task. Consider-
ing that DNNs are easily suffer from catastrophic forget-
ting [12, 29, 30], adapting to new attacks is unavoidable to
result in suboptimal forgetting of previous one, which poses
a new threat to the reliability of DNNs. Figure 1 illustrates
the difference between one-shot and continual defense.

To demonstrate this challenge, we first explore the con-
tinual challenge of DNNs’ adversarial robustness under
continual attack sequences. We validate the catastrophic
forgetting of standard adversarial training [27] on the attack
sequences consisting of two and three attacks, as shown in
Figure 2. The experiment is conducted on the CIFAR10
dataset with the backbone being Wide-ResNet-34 [51]. The
validation experiment includes two settings: ’from easy
to difficult’ (i.e., FGSM to PGD) and ’from difficult to
easy’ (i.e., PGD to FGSM). For more validation experi-
ments under different attack principles, varying attack in-
tensities, and transferring between black and white box at-
tacks), please refer to Section 1 of the supplementary ma-
terials. Obviously, adversarial training suffers from signifi-
cant catastrophic forgetting under all attack sequences, and
the forgetting becomes more severe under the ’difficult to
easy’ attack sequence. These results confirm our concern
about DNNs’ forgetting robustness to previous attacks as
they constantly adapt to new ones, highlighting the need for
defense with continual adversarial robustness.

To achieve robustness against continual adversarial, a
potential solution is to employ Joint Training with all se-
quential attacks or fine-tune a pre-trained robust model with
new attacks. However, the Joint Training strategy have chal-
lenges as the previous attack data of pre-trained models may

not access due to privacy protection and legal restrictions,
making Joint Training difficult. Additionally, since new at-
tacks are constantly emerging, the training cost linearly in-
creases as the increase of attack sequence, making it inef-
ficient to train all the data every time. For the fine-tuning
strategy, poor plasticity can lead to forgetting or insufficient
learning. Therefore, defense in the source-free continual
paradigm [12, 29] is necessary under the scenario of data
privacy, adversarial robustness and life-long learning.

In this paper, we propose Anisotropic & Isotropic Re-
play (AIR) as a baseline for continual adversarial defense.
AIR combines isotropy and anisotropy data augmentation
to alleviate catastrophic forgetting in continual adversarial
defense scenarios within a self-distillation pseudo replay
paradigm. The isotropic stochastic augmentation is bene-
ficial for breaking specific adversarial patterns, and an iso-
lated learning objectives is obtained for pseudo-replay data
to prevent pattern collapse and self-contradiction, implicitly
constraining the consistency between the new model and
the previous model in the neighbor distribution of new at-
tacks. This alignment indirectly aligns the model’s output
of new and previous attacks, considering that all adversarial
data can be regarded as neighborhood samples of the raw
data. The anisotropic mix-up augmentation provides the
model with richer fusion semantics and connects the man-
ifolds of previous and new attacks, originally spaced more
apart. To further optimize the trade-off between plasticity
and stability, we introduce an intuitive regularizer to opti-
mize the model’s generalization by constraining the hidden-
layer feature of new attacks and pseudo-replay attacks to be
mapped to the same feature cluster.
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Our contribution can be summarized as:
• We first discuss, validate, and analyze the catastrophic

forgetting challenge of adversarial robustness under contin-
ual attack sequences threat.

• We tackle the twin challenge of adversarial robust-
ness and continual learnability by proposing AIR as an
efficient self-training reply baseline. Through the pseudo
self-distillation, parameters with similar activation for new
and previous attacks are found and retained. AIR can also
achieve an implicit chain consistency.

• We evaluate the performance of several classic and
plug-and-play continual learning methods for continual ad-
versarial attacks by combining them with adversarial train-
ing. Qualitative and quantitative experiments verify the fea-
sibility and superiority of our AIR.

2. Related Work

2.1. Adversarial Attack & Defense

Adversarial Attack. Attacks on DNN models can be catr-
gorized into white box and black box attacks based on
whether the attacker can access the target model or not.
In the white box attack, the adversary can fully query
and access various aspects of the target model, such as
the model parameters, structure, and gradients. Main-
stream white box attacks include gradient-based techniques
(e.g., FGSM [16], BIM [22], MIM [13], PGD [27], and
AA [11]), conditional optimization-based techniques (e.g.,
CW [8], OnePixel [43]), and classifier perturbations-based
techniques (e.g., DeepFool [31]). On the other hand, black
box attack occurs when the attacker has limited knowledge
about the target model. This category can be further di-
vided into score-based, decision-based, and transfer-based
attacks. In score-based black box attack, the attacker can
access to the probabilities (e.g., zoo [10]). Decision-based
black box attacks operate under the constraint that the at-
tacker can only obtain the one-hot prediction (e.g., Bound-
ary attacks [5]). Transfer-based attack [13, 14, 26] typically
involve crafting adversarial attacks using a substitute model,
commonly employed to evaluate the adversarial robustness
of DNNs.
Adversarial Defense. To maintain adversarial robustness
under attacks, early adversarial defense are often heuristic,
including input transformation [48], model ensemble [4],
adversarial denoiser [40]. However, most of these models
have been proven to benefit from unreliable obfuscated gra-
dients [2]. Recently, adversarial training (AT) [16, 18, 27]
and defensive distillation [15, 46, 46, 55] have become
mainstream defense due to their essential robustness, and
the latest research primarily focus on exploring their po-
tential. In adversarial training, Jia et al. [18] proposed
a learnable strategy, Mustafa et al. [32] enhanced adver-
sarial robustness by perturbing feature representations, and

Pang et al. [33] fully utilized tricks to maximize the poten-
tial of AT. For defensive distillation, Wang et al. [45] intro-
duced a bidirectional metric learning framework guided by
an attention mechanism, and Zi et al. [56] proposed to fully
exploit soft labels generated by a robust teacher model. The
aforementioned defenses are limited to the one-shot settings
and cannot adapt to new attack, resulting in insufficient ro-
bustness for the potential attack sequences. Some latest at-
tempts to address this adaptive challenge include Test Time
Adaptation Defense (TTAD) [41, 50], which considers con-
tinual adaptation to new attacks. However, TTAD only fo-
cuses on adaptation to unlabeled attacks on test data based
on the current model, and ignores to alleviate the catas-
trophic forgetting of previous attacks. In this study, we
propose a novel continual defense task where the defender
considers both new and previous attacks.

2.2. Continual & Incremental Learning

DNNs tend to suffer from catastrophic forgetting, where
adaptation to new tasks leads to a drop of performance
for previous tasks. Continual learning [29], also known
as incremental learning [12] and life-long learning [35],
is considered a potential solution to atastrophic forget-
ting. In continual learning, tasks are roughly divided
into ’Incremental task learning’, ’Incremental class learn-
ing’, and ’Incremental domain learning’ based on the dif-
ferences between new and previous tasks. For contin-
ual learning models, methods can be roughly categorized
into replay-based [9, 38], parameter-isolation-based [1, 49],
and regularization-based [21, 24, 36] methods, depending
on how the task-specific information is stored and used
throughout the sequential learning process. Replay-based
methods can be further be divided into explicit replay [9]
and pseudo replay [37]. Regularization-based methods can
further be divided into data-focused [24] and prior-focused
methods [21]. Parameter-isolation-based methods can be
further divided into module allocation [1]) and additional
modules [20]. Despite several attempts on basic tasks, con-
tinuous learning scenarios have not yet been deeply ex-
plored in adversarial defense. With the increasing variety
of attacks, reliable DNN models necessitate adaptable life-
long defense against attack sequences.

3. Methodology
3.1. Overview

Continual adversarial defense resembles ’incremental do-
main learning’ more than ’incremental task learning’ or ’in-
cremental class learning’ [29]. On one hand, the output
space of the attack sequence is fixed for one dataset, allow-
ing the defense model for each attack to share a common
classifier. On the other hand, even though the distribution
at the feature level may shift, the low-level semantics of
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Figure 3. Framework of our AIR. The upper module (in yellow block) consists of the anisotropic replay module and isotropic replay
module, aiming to maintain the memory of old tasks. The lower module (in red block) is the vanilla adversarial training with R-Drop for
new attacks. The three main loss functions are highlighted in the gray circular box.

adversarial samples remain invariant, which means that the
adversarial samples of cats are always visually the same as
cats (constrained by the definition of adversarial samples)
and can be considered as the neighbor of the raw data. As
a result, complex prior knowledge and large memory may
not be necessary to obtain replay data.

However, directly utilizing new attack data as pseudo re-
play data may be insufficient. On the one hand, new data
needs to be mapped to real labels. Simultaneously aligning
the output of the new data with the output of the teacher
model and the real label may lead the model to be trapped
in a self-contradiction dilemma. On the other hand, the new
data are still adversarial, making it challenging to for the
defense model to fit them without forgetting. Hence, we
propose a composite data augmentation scheme to establish
an efficient self-distillation pseudo replay paradigm.

3.2. Task Definition.

We first provide a definition of continual adversarial de-
fense. In continual adversarial defense, the model learns
an attack sequence A = {A1, ...At, ...AN} one by one,
and the attack ID is available during both training and test-
ing stages. We assume that each attack At has a manu-
ally labeled training set and test set, denoted as Atrain

t =
{(xi

t, y
i
t), i = 1, ..., ntrain

t }, where yit is the real label, and
ntrain
t is the number of the training data. The test set can

be defined as Atest
t in the similar way. A reliable defense

model should learn a new attack At without forgetting the
previous attacks {A1, ...At−1}.

3.3. Self-distillation Pseudo Replay

By aligning the outputs of the current and previous models
on pseudo replay data, the current model can learn the map-

ping preferences of the previous model, indirectly main-
taining the mapping relationship between the previous data-
label pair. Generally, assuming we have a model fwt

param-
eterized by wt at time t, the self distillation pseudo replay
can be formalized as:

L = Lvanilla + Ldis, (1)

where Lvanilla is the classification loss of the current model
for new data, commonly known as the cross entropy loss. In
continual adversarial defense, Lvanilla refers to the vanilla
adversarial training loss for a new attack [27] and we repre-
sent it as LAT in the following text.

The Ldis represents the self-distillation loss from the
previous model to the current model on pseudo replay data,
and can be formalized as:

Ldis = D(fwt−1(X
′
t), fwt(X

′
t)), (2)

where D is the diversity measure, commonly known as the
KL Divergence, fwt−1

is the optimal previous model at time
t− 1, and X ′

t is the pseudo data at time t.

3.4. Isotropic Pseudo Replay

To align the outputs of the new and old models, we create
independent data for pseudo replay based on the current ad-
versarial samples. Assume that we already have a certain
batch of data Xt, the neighborhood samples of new data
can be obtained by:

XIR
t = T (Xt + λ · r), (3)

where λ is a hyper-parameter, r is a stochastic perturbation
sampled from the Gaussian distribution, and T is a random
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augmentation operator that includes random rotation, crop-
ping, flipping, and erasing. In this ’perturbation on attack’
way, specific distributions (e.g., pixel or texture [17, 28]) in
the adversarial perturbation are somehow broken, wakening
the attack ability. Simultaneously, independent pseudo re-
play data unrealted to the current attack is obtained. The
augmented pseudo replay data does not deviate from the
raw semantics, and its potential label is also fixed. Hence
it is called isotropic replay (IR), and the IR loss can be for-
malized as:

LIR = KL Div(fwt
(XIR

t ), fwt−1
(XIR

t )). (4)

3.5. Anisotropic Pseudo Replay

To further obtain a compact and uniform manifold of the
replay data and ensure a nontrivial solution, we introduce
an anisotropic data augmentation scheme: mix − distill,
which evolves from mixup [52]. We randomly shuffle
the current batch data Xt to obtain a new batch of data
Xshuffle

t :

XAR
t = α ·Xt + (1− α) · xshuffle

t , (5)

where α is a stochastic mixing weight sampled from
U [0.3, 0.7]. The label for the replay is also required. The
pseudo label for the mixed data is obtained in the same way
as in the vanilla mixup. However, real labels are agnostic
in pseudo replay framework and we attempt to obtain the
mixed labels in two ways:
Mixed query labels. Referring to the standard mixup,
we collect the output logits of the teacher model (previous
model) for the two components of the mixed data, and mix
them with the same weight as the data:

ydis = α · fwt−1(Xt) + (1− α) · fwt−1(X
shuffle
t ). (6)

However, the label mixing strategy in the standard
mixup sometimes leads to training collapse. This is be-
cause pseudo labels are inherently inaccurate, and mixing
suboptimal pseudo labels leads to error accumulation, mak-
ing it difficult to align the preference of teachers and stu-
dents. The nonlinearity of the model may also amplify the
mapping shift of the pseudo-replay self-distillation model.
Query label of the mixed data. Based on the above analy-
sis, we directly align the output preferences of the teacher-
student model for mixed samples, and the AR losses can be
expressed as

LAR = KL Div(fwt−1
(XAR), fwt

(XAR)). (7)

The nature of ’anisotropy’ is reflected not only in the
feature mixing provided by pixel-level interpolation (such
as the mixing of lion and tiger, which may introduce new
semantics like liger), but also in the indirect combination of
supervise labels. In this way, the intra-class gap is initially

ft-1(x’)

ft(x’) ft(x)

y
stability plasticity

consistency

indirect
alignment

ft

��−1
∗ ��

∗

stability plasticity

(a) ANCL (b) AIR
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Figure 4. Achievement of chain consistency of our AIR in end-to-
end paradigm. Models with ∗ superscripts (such as f∗

t ) are addi-
tionally trained independently of the main pipeline.

filled, and the data manifold becomes uniform. This also
provides the model with the ability to generalize to unfamil-
iar and unseen semantics, as such semantics may arise in fu-
ture tasks. More specifically, adversarial samples may have
already introduced new semantics to the original data, and
the mixing between adversarial samples further explores a
richer internal maximization process.

3.6. Regularization for the Trade-off

A common dilemma in continual learning is the trade-
off between stability and plasticity. For the ’domain-
incremental-like’ continuous defense, a natural shortcut to
optimizing the trade-off is to assign all attacks under a cate-
gory to the same cluster. This approach elegantly optimizes
the trade-off and achieves consistent optimization of attack
sequences. In our AIR, augmentation data is considered as
replay data to query the previous model and can also be con-
sidered as a neighborhood sample of new data. We propose
aligning the outputs of the two as follows:

Lreg =
1

2
(KL(f1

wt
(xt)||f1

wt
(x

′

t))

+KL(f2
wt
(xt)||f2

wt
(x

′

t))),

(8)

where x
′

t is the isotropic augmentation replay data. The
alignment process is implemented in the R-Drop [47] way,
where f1

wt
and f2

wt
represent that the inputs are fed into the

model with random Dropout [42] twice, respectively. On
the one hand, a model with R-Drop will learn consistent
outputs from different local features without overfitting on
specific features. On the other hand, this constraint achieves
an indirect chain alignment. Compared to the regularization
from middle to the both sides in ANCL [20], it resembles an
alignment from both sides to the middle. Besides, AIR does
not require additional auxiliary networks, and the alignment
can be implemented in an end-to-end process (see in Fig-
ure 4). The R-Drop is also applied to the AT for new attack
with a minor probability.

3.7. Final Model

Integrally, the overall loss of AIR can be formalized as:

LAIR = LAT + λSD · (LIR + LAR) + λReg · LReg, (9)
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Transfer between two attacks

None to FGSM FGSM to None None to PGD PGD to None FGSM to PGD PGD to FGSMDatasets Tasks Task 1 Task 2 Task 1 Task 2 Task 1 Task 2 Task 1 Task 2 Task 1 Task 2 Task 1 Task 2

Vanilla AT [27] 95.18 98.55 83.97 98.86 94.22 90.01 3.72 98.59 96.48 94.71 2.56 96.96
EWC [21] 98.83 96.63 98.18 97.85 97.35 87.32 91.97 98.85 95.26 95.86 94.77 96.90

Feat. Extraction [24] 98.16 89.23 97.46 98.80 12.72 11.35 95.23 98.80 96.94 73.61 95.23 97.93
LFL [19] 98.85 97.02 90.54 98.80 97.32 87.52 33.84 98.71 95.84 91.87 25.05 98.40

AIR (ours) 99.37 98.84 98.18 98.84 98.89 94.26 95.93 99.06 97.45 95.67 96.25 97.93

MNIST

Joint Training [24] 99.11 98.52 98.52 99.11 99.35 95.44 95.44 99.35 96.72 94.29 94.29 96.72

Vanilla AT [27] 70.60 49.30 34.90 83.83 71.09 45.52 15.19 83.59 34.90 35.21 17.14 60.24
EWC [21] 72.66 49.17 43.85 82.62 69.38 41.46 30.25 61.70 48.63 40.53 24.44 45.18

Feat. Extraction [24] 67.69 35.11 45.27 82.13 40.04 30.90 45.54 75.02 52.85 24.88 42.51 44.54
LFL [19] 74.23 50.17 42.77 78.59 67.31 42.76 28.27 80.59 51.98 43.30 24.18 46.71

AIR (ours) 76.73 51.48 42.32 82.85 75.53 45.14 41.21 77.02 53.39 44.12 43.00 52.26

CIFAR10

Joint Training [24] 86.10 47.65 57.65 86.10 72.58 44.86 44.86 72.58 49.81 42.56 42.56 49.81

Vanilla 42.27 20.67 25.98 50.26 40.58 17.31 20.21 47.47 24.08 19.03 20.89 30.47
EWC [21] 50.04 22.43 29.13 45.12 48.45 16.61 19.21 44.66 22.98 18.00 20.16 24.32

Feat. Extraction [24] 37.02 8.35 23.62 47.68 11.46 4.96 20.70 41.42 23.63 18.22 19.54 24.08
LFL [19] 28.61 15.30 37.48 49.06 19.19 13.36 20.08 43.62 25.49 15.77 19.19 23.85

AIR (ours) 50.77 24.32 27.47 50.67 47.88 21.41 22.05 45.61 27.59 23.19 23.40 27.51

CIFAR100

Joint Training [24] 56.44 35.88 35.88 56.44 46.01 22.54 22.54 46.01 35.27 21.45 21.45 35.27

Table 1. Adaptation between two attacks for different defense methods. Each method is combined with vanilla adversarial training and
the Joint Training is considered to be the empirical upper bound marked with a gray background. The best performance, excluding Joint
Training, is highlighted in bold.

where λSD and λReg represent the hyper-parameters for
self-distillation and regularization respectively. The AIR
model will adapt to new attack while aligning with the pre-
vious model on the augmentation neighbor data, and the
overall structure of AIR can be seen in Figure 3.

4. Experiments

4.1. Experimental Setup

Datasets and Backbones. Three commonly used datasets
for adversarial attack & defense are explored:

• MNIST: Following the settings in [7, 53], we employ
the smallCNN architecture, consisting of four convolutional
layers and three fully-connected layers. Typically, we set
the perturbation parameter ϵ = 0.3, perturbation step size
η1 = 0.01, number of iterations K = 40, learning rate
η2 = 0.01, and batch size m = 128.

• CIFAR10 / CIFAR100: Following the settings in [27,
53], we employ the WRN-34-10 and WRN-34-20 architec-
ture [51] for CIFAR10 and CIFAR100 respectively. We set
the perturbation parameter ϵ = 8/255, perturbation step
size η1 = 2/255, number of iterations K = 10, learning
rate η2 = 0.1, and batch size m = 128.
Evaluation Protocol. We set attack sequences with lengths
of 2 and 3, following the setting of existing continual learn-
ing works [19, 24, 36], including ’from hard to easy attack’
and ’from easy to hard attack’ strategies. The classic FGSM
attack [16] is selected as the easy attack, while the PGD at-
tack [27] is chosen as the hard attack. Considering that all

attacks originate from benign samples, these benign sam-
ples are also considered as a base task. The adversarial
training corresponding to these above two types of attacks
serves as the adaptation processes to specific attacks. We do
not choose the advanced AutoAttack [11], as it is commonly
used for evaluation rather than defensive training, and there
is no specifically designed adaptation method for AutoAt-
tack to our best knowledge yet. Additionally, we will ex-
plore attack sequences with different budgets of PGD.

4.2. Experimental Results

Attack Sequences of Different Lengths. The continual
defense results of the attack sequences with a length of 2
are shown in Table 1, while that of the attack sequences
with a length of 3 are shown in Table 2 (for MNIST), Ta-
ble 3 (for CIFAR10) and Table 4 (for CIFAR100). Regard-
less of the length or arrangement of the attack sequence,
the vanilla model consistently suffers from catastrophic for-
getting. The internal maximization pattern and the ’ridges’
reached by different attacks may vary, leading to a distribu-
tion shift in model parameters. Additionally, the ’from diffi-
cult to easy’ attack sequence appears to exhibit more catas-
trophic forgetting compared to the ’from easy to difficult’
sequence. This discrepancy may be attributed to the adap-
tation process to simple attacks being more trivial, making
the model more prone to overfitting and trapping in local
optima. According to [39], the essence of adversarial train-
ing is smoothness regularization, and our AIR may have
added stronger smoothness constraints compared on the ba-
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MNIST: None & FGSM & PGD

Tasks None to FGSM to PGD PGD to FGSM to None
Task1 Task2 Task3 Task1 Task2 Task3

Vanilla AT [27] 95.97 97.55 96.90 2.66 71.49 98.73

EWC [21] 98.97 96.47 92.91 89.67 95.43 99.11
Feat. Extra [24] 11.71 11.35 11.38 90.92 95.99 99.18

LFL [19] 99.36 94.80 88.15 10.06 89.51 98.97
AIR (ours) 99.39 97.21 94.54 91.55 97.34 99.33

Joint Training [24] 99.11 97.07 94.76 94.76 97.07 99.11

Table 2. Results among None, FGSM, and PGD on MNIST.

CIFAR10: None & FGSM & PGD

Tasks None to FGSM to PGD PGD to FGSM to None
Task1 Task2 Task3 Task1 Task2 Task3

Vanilla AT [27] 70.93 40.70 44.04 21.87 36.80 84.59

EWC [21] 68.31 45.09 36.57 27.32 51.66 75.22
Feat. Extraction [24] 37.95 53.28 40.62 44.42 53.63 73.77

LFL [19] 74.21 52.42 42.89 22.12 46.27 76.37
AIR (ours) 75.75 53.51 43.12 42.35 52.44 76.66

Joint Training [24] 70.62 51.35 44.36 44.36 51.35 70.62

Table 3. Results among None, FGSM, and PGD on CIFAR10.

CIFAR100: None & FGSM & PGD

Tasks None to FGSM to PGD PGD to FGSM to None
Task1 Task2 Task3 Task1 Task2 Task3

Vanilla 42.01 22.30 17.80 19.50 22.62 47.04

EWC [21] 48.35 22.54 16.59 19.88 24.48 44.83
Feat. Extraction [24] 2.17 1.67 4.63 21.01 24.84 41.88

LFL [19] 29.97 10.39 8.96 19.94 24.36 45.41
AIR (ours) 47.08 27.34 23.04 23.12 27.04 44.16

Joint Training [24] 45.33 30.23 21.25 21.25 30.23 45.33

Table 4. Results among None, FGSM, and PGD on CIFAR100.

sic traditional one-shot adversarial training to prevent out-
put shifts in the case of continual input shift. Another issue
is that the performance of our AIR may fluctuate. One can
select a better model by monitoring the training online. A
more detailed analysis of the results can be found in Sec-
tion 2 of the supplementary materials.
Transfer between different attack budgets. Attacks with
different budgets present different threats, which may seem
counterintuitive. People may generally expect models ad-
versarially trained with stronger internal maximization to be
robust to weaker attacks. However, our findings reveal that
the model exhibits different preferences for internal maxi-
mization with different budgets. This means that sequences
composed of attacks with different intensities can lead to
catastrophic forgetting. We briefly explore this issue on CI-
FAR10, setting attack budgets for strong and weak attacks
to 8/255 and 80/255, respectively. Table 5 shows our ex-

CIFAR10: Weak Attack & Strong Attack

Tasks Weak to Strong Strong to Weak
Task1 Task2 Task1 Task2

Vanilla 36.59 39.35 10.89 42.56
AIR (ours) 45.70 37.20 29.09 42.87

Joint Training [24] 37.03 36.57 36.57 37.03

Table 5. Results between Weak & Strong PGD on CIFAR10.

perimental results and our AIR successfully alleviates the
catastrophic forgetting caused by attack sequences with dif-
ferent attack budgets.
Ablation study. We conducted ablation analysis of AIR on
CIFAR10 with the ’hard to easy’ attack sequence, which
suffers from more serious forgetting and the comparisons
are more significant. Figure 5 shows the ablation study
results. Essentially, each of our proposed modules con-
tributes improvements for previous attacks (PGD attack in
this case). The AR and IR modules individually enhance
the performance against the previous attack, while the com-
posite regularizer provides an overall increment for both
previous and new attacks. Due to the trade-off involving
’plasticity-stability’ and ’robustness-precision’, our AIR,
like other continual learning methods, also experiences per-
formance degradation for new tasks. However, this sacrifice
is necessary and cost-effective, as it results in effective im-
provement on previous attacks, aligning with the ’small pain
but great gain’ philosophy. Moreover, the overall perfor-
mance of the model for both new and previous tasks steadily
increases. In summary, the ablation analysis demonstrates
the effectiveness of our designs in AIR.
Discussion. Our AIR sometimes can even outperforms
Joint Training (JT). JT is typically considered as the em-
pirical upper bound of continual learning, while our AIR
can approach or even surpass JT in a memory-free manner.
This may be attributed to the fact that the old attacks can
be considered as the pre-training for new attacks. However,
this superiority appears to be conditional: pre-training from
easy to difficult attacks exhibits a better regularization ef-
fect on subsequent tasks, indicating that features from sim-
pler tasks may be more generalizable. Utilizing previous
task knowledge to enhance the learning of subsequent tasks
may be one of the potentials of continual defense.

4.3. Feature Distribution

Our AIR tends to homogenize different attacks of the same
category. In one-shot vanilla training, the model often al-
locates different clusters for different attacks of the same
class, as observed in Figure 6. This partially explains
the forgetting mechanism in continual adversarial defense.
While each class under the new attack is clustered, it does
not share the same cluster as the previous attack. Conse-
quently, attacks with the same label become isomerized.
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Figure 5. Ablation analysis of the ’from hard to easy’ attacks on CIFAR10. We reported its results after learning the whole attack sequence.
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Figure 6. T-SNE diagram of features encoded by vanilla AT and
AIR on CIFAR10. The proposed AIR is able to encode all attacks
in the sequence of the same category into one shared cluster.

For instance, the features of FGSM and PGD attack of a
certain label (e.g., ’dog’) are assigned to different clusters,
when ideally they should be in the same cluster. The adap-
tation learning of new clusters inevitably leads to the for-
getting of old clusters. Intuitively, our AIR aligns the fea-
ture distribution of different attacks belonging to the same
label into one cluster. This may benefit from the implicit
alignment in the IR module and the chain regularizer, which
aligns the output of new and previous models on the neigh-
bor of the new data. This indirect alignment further harmo-
nizes the feature distribution of new and previous models
for different attacks of the same category, which provides
an explanation beyond parameters regularization for AIR.

4.4. The Twinship Between Two Trade-offs

A common dilemma in adversarial defense is the trade-off
between accuracy and robustness. Similarly, the ’plasticity-
stability’ dilemma in continual adversarial defense offers
a novel perspective on the ’accuracy-robustness’ trade-off.
As the model transfers from benign data to adversarial data,
the accuracy of benign tasks inevitably declines, reflect-
ing the ’accuracy-robustness’ dilemma. This reveals that
the two dilemmas share similar insights: an excessive at-
tention on the min-max process causes the model to for-
get relatively easy benign samples. Through the indirect
alignment of the output preferences of old and new mod-
els, the pseudo-replay framework in our AIR can alleviate

the forgetting problem of benign samples without access-
ing the original data. This alignment can be interpreted
as optimizing the trade-off between accuracy and robust-
ness. Such unified perspective reveals that ideas to alleviate
the ’accuracy-robustness’ dilemma may also be effective in
mitigating the forgetting problem in continual adversarial
defense. In defense communities, a common way to ad-
dress the ’accuracy-robustness’ trade-off is TRADES [53],
which aligns the output of clean and adversarial samples.
However, querying previous data in continual defense is
not feasible, making explicit alignment process challenging.
Actually, our analysis indicates that AIR aligns the output
preferences of new and old attacks in an indirect chain-like
manner, which is similar to an implicit form of TRADES.

5. Conclusion and Outlook
In this paper, we first explore the challenge of achieving
continual adversarial robustness under attack sequences,
and verify that adaptation to new attacks can lead to catas-
trophic forgetting of previous attacks. Subsequently, we
propose AIR as a memory-free continual adversarial de-
fense baseline model. AIR aligns the outputs of new and
old models in the neighborhood distribution of current sam-
ples and learns richer mixed semantic combinations to en-
hance adaptability to unknown semantics. An intuitive but
efficient regularizer optimizes the generalization of multi-
trade-offs in a chain-like manner.

One limitation of AIR is that it overlooks the regular-
ization effect of previous knowledge for new tasks, where
the previous tasks may act as pre-training. Additionally, we
observed that in the ’from easy to difficult’ attack sequence,
AIR sometimes performs better in new tasks. There remains
significant research space for continual adversarial defense.
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