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Figure 1. We propose a deformation-aware face stylization framework trained on a single real-style image pair (left). Our framework
can generate diverse, high-quality, stylized faces with desired deformations, while maintaining the input identity well (right). 

Abstract 

This paper addresses the complex issue of one-shot face 

stylization, focusing on the simultaneous consideration of 

appearance and structure, where previous methods have 

fallen short. We explore deformation-aware face stylization 

that diverges from traditional single-image style reference, 

opting for a real-style image pair instead. The cornerstone 

of our method is the utilization of a self-supervised vision 

transformer, specifically DINO-ViT, to establish a robust 

and consistent facial structure representation across both 

real and style domains. Our stylization process begins by 

adapting the StyleGAN generator to be deformation-aware 

through the integration of spatial transformers (STN). We 

then introduce two innovative constraints for generator 

fine-tuning under the guidance of DINO semantics: i) a 

directional deformation loss that regulates directional vec- 

tors in DINO space, and ii) a relative structural consistency 

constraint based on DINO token self-similarities, ensuring 

diverse generation. Additionally, style-mixing is employed 

to align the color generation with the reference, minimiz-
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ing inconsistent correspondences. This framework delivers 

enhanced deformability for general one-shot face styliza- 

tion, achieving notable efficiency with a fine-tuning dura- 

tion of approximately 10 minutes. Extensive qualitative and 

quantitative comparisons demonstrate our superiority over 

state-of-the-art one-shot face stylization methods. Code is 

available at https://github.com/zichongc/DoesFS. 

1. Introduction 

Face stylization is a stylish and eye-catching applica- 

tion favored by users in social media and the virtual world. 

Recent advances [22, 31, 36–38] mainly benefit from the 

capacity of generative models, e.g ., StyleGAN [16–18]. 

When coping with artistic styles of extremely limited ex- 

amples ( e.g ., one), it is necessary to prevent the training 

from over-fitting and mode collapse. Many one-shot meth- 

ods [6, 21, 40, 45] have addressed this issue with differ- 

ent strategies. However, these approaches mainly focus on 

color and texture transfer, seldom exploring the geomet- 

ric deformation potential. As exaggeration is an impor- 

tant characteristic of artistic style, structural deformations 

should also be emphasized in the stylization.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Can we stylize facial images according to only one 

style example while simultaneously considering appear- 

ance change and structure exaggeration ? Previous meth- 

ods [6, 21, 45] solve this problem by building “fake" guid- 

ance across the source and target domain based on the in- 

version of the style reference. However, as shown in Fig. 2, 

current GAN inversion techniques, such as [2] and [32], 

still can not produce faithful mappings for artistic images, 

which will definitely mislead the geometric deformation, 

especially when strong exaggerations occur. We argue that 

we can build reliable deformation guidance across domains 

using a real-style image pair instead of only the style exam- 

ple, thus reducing the difficulty; see, e.g ., Fig. 1. Nonethe- 

less, existing one-shot methods still failed to capture the de- 

formation pattern because of the weaker structural guidance 

they employed; see Sec. 5 for more details. 

In this work, we propose a novel stylization network 

trained on a single real-style image pair. The network is 

built upon a pre-trained StyleGAN, with additional spatial 

transformers appended to make the generator deformation- 

aware. To overcome the huge domain gap between the 

given paired references, we dive into the feature space of 

DINO [5], a self-supervised vision transformer. We present 

evidence for DINO in capturing robust and consistent struc- 

ture semantics across real and style face domains, superior 

to the other popular ViTs. Therefore, we optimize our gen- 

erator based on the DINO semantic guidance to learn the 

cross-domain structural deformation. Specifically, we com- 

pute a novel directional deformation loss that regularizes 

the direction vector in DINO space between the real and 

the style faces. Meanwhile, a new relative structure con- 

sistency upon self-similarities of DINO features is calcu- 

lated to ensure the diversity of the target (style) domain, 

preventing overfitting. Finally, color alignment based on 

style-mixing techniques is applied to further guarantee the 

correctness of semantic correspondence. Experiments show 

that our method can accurately stylize facial images into 

artistic styles with strong exaggerations, both in appearance 

change and structure deformation, yet still maintaining a 

faithful identity to the input. 

The main contributions are summarized as follows: 

• We explore the feature space of DINO and discover 

its powerful structural/semantic representation both in 

real and style face domains. 

• Based on DINO features, we propose two novel cross- 

domain losses to constrain the geometric deformation 

from real faces to artistic styles. 

• We propose a novel deformable face stylization net- 

work, trained with only a single-paired real-style ex- 

ample. Extensive qualitative and quantitative compar- 

isons with existing state-of-the-art demonstrate the ef- 

fectiveness and superiority of our framework.

Artistic Style Real Face Image Inversion by [31] Inversion by [45]

 

Figure 2. GAN inversion. Previous one-shot stylization methods 

like [45] and [6], build the cross-domain guidance by inverting the 

artistic style image into real face domain. But compared with the 

ground truth real face, current GAN inversion techniques [2, 32] 

still cannot give out a faithful mapping across unseen domains, 

which may mislead the structure deformation in the stylization. 

2. Related Work 

Face Stylization. Driven by deep learning techniques, 

face stylization has evolved rapidly. Since the seminal work 

of [10], methods upon neural style transfer have been de- 

veloped for face stylization [13, 19, 20, 30, 34]. However, 

these general style transfer methods did not make use of 

the learned prior of generative models, e.g ., GANs [12]. 

In contrast, image translation-based methods [4, 11, 15, 22, 

26, 28, 31, 37] usually train dedicated stylization GANs, or 

fine-tune pretrained StyleGANs [17, 18] over large collec- 

tions of artistic facial images (from hundreds to thousands). 

Although some of these methods are deformation-aware, 

specifically for caricature portraits, the requirement of data 

amount makes them fail in styles defined by extremely lim- 

ited examples, which is yet the most cases in real applica- 

tions. Recently, researchers have addressed the few data 

challenge on domain adaption by introducing a series of 

regularizations in the fine-tuning [23,24,35,41–43]. On face 

stylization, more specifically, a few works [6,21,40,45] fur- 

ther use a single example as the style reference. Although 

they can generate well-stylized appearances, the one-shot 

methods tend to strictly preserve the face structures, while 

overlooking the non-local deformations in the style exam- 

ple. In this work, we present a novel framework for de- 

formable face stylization based on a single paired data. 

ViT Feature Representation. Features from vision trans- 

former (ViT) [8] are powerful and versatile visual represen- 

tations. Researchers have demonstrated that ViT trained in 

specific manners can serve well for numerous downstream 

tasks in both vision and graphics [3,5,27,44]. Among them, 

CLIP [27] are most widely used for text-guided image edit- 

ing [25], generation [9], and stylization [21, 40, 45]. Then, 

DINO [5], a self-supervised ViT model, exhibits striking 

properties in capturing high-level semantic information [3]. 

Amir et al . [3] use the keys of DINO as ViT features and ap- 

ply them to many challenging vision tasks in unconstrained 

settings. Tumanyan et al . [33] further splice the DINO fea- 

tures as disentangled appearance and structure representa-
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tions, realizing a semantic-aware appearance transfer from 

one natural image to another. Given the success achieved, 

we believe DINO has the potential for deformable face styl- 

ization. Next, we will explore the DINO features and com- 

pare them with two other ViT features. 

3. DINO Semantic Guidance 

In this section, we first briefly review the DINO-ViT [5]. 

Then, we explore and analyze the properties of different 

DINO features, and further compare them with two weakly 

supervised ViTs, CLIP [27] and FaRL [44]. 

DINO is a ViT model trained in self-distillation [5]. Dur- 

ing training, an input image is randomly transformed into 

two different inputs for a student and a teacher network 

(with the same architecture but different parameters). The 

student is optimized by cross-entropy loss that measures the 

output similarity, and the exponential moving average of the 

student updates the teacher. DINO shows emerging prop- 

erties in encoding high-level semantic information at high 

spatial resolution [3, 5]. We expect DINO to extract a con- 

sistent semantic representation across the source and target 

domains ( i.e ., the real and the style faces). Thus, we can 

build reliable deformation guidance despite the huge do- 

main gap. 

Previously, Amir et al . [3] demonstrated that DINO is 

superior to traditional CNN-based models and supervised 

ViTs in semantic information capture. But they lack the 

comparison with alternative weakly-supervised ViTs, such 

as CLIP [27], which has been widely adopted in many style 

transfer tasks [9, 25]. To investigate comprehensively, we 

choose two recently popular weakly-supervised ViTs, CLIP 

and FaRL [44], which are both text-guided and learn a 

multi-modal embedding to estimate the semantic similarity 

between a given text and an image. In particular, FaRL is 

specially targeted for human facial representation. 

So, are DINO features better than those of existing 

weakly-supervised ViTs ( i.e ., CLIP and FaRL) for seman- 

tic representation in the task of face stylization? To this end, 

we visualize their intermediate features for comparison. As 

shown in Fig. 3, we input both real and artistic face images 

to these ViTs. Keys and tokens from different layers are vi- 

sualized by principal component analysis (PCA). From the 

PCA results, high-level DINO features show cleaner, more 

precise, and, more importantly, more consistent facial seg- 

ments than CLIP and FaRL features. Lower-level features 

of DINO contain semantic and positional information si- 

multaneously. In contrast, features from CLIP and FaRL are 

relatively chaotic, demonstrating the superiority of DINO. 

We conclude that DINO can well capture the facial se- 

mantics across different facial domains, whereas others can- 

not. We attribute the advantages to DINO’s self-distillation. 

The pair-wised augmentation on the training input makes 

DINO naturally focus on structural semantics. On the con-
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Figure 3. Visualization of the hierarchical features from 

CLIP [27], FaRL [44], and DINO [5], where the same color repre- 

sents the same semantics shared. Note that the same architecture 

ViT (ViT-B/16) is employed fairly for image encoding. We choose 

layers 3, 6, and 12 to represent different levels (L, M, H) of fea- 

tures. Following [3], we only use keys and tokens in ViTs, while 

discarding the queries and values. The [CLS] token is also dis- 

carded as it mainly encodes the visual appearance [33]. 

trary, text-guided ViTs lose precision in semantic capture, 

probably due to the ambiguity of natural language. Further- 

more, different from [3, 33], we found using keys will also 

miss some structural semantics through a simple over-fitting 

test; see supplementary for more details and a comprehen- 

sive comparison. Therefore, we use DINO tokens as our 

feature representation, named DINO semantic guidance. 

4. Method 

As illustrated in Fig. 4, at the core of our framework is 

a deformation-aware generator Gt fine-tuned by two novel 

DINO-based losses and an adversarial loss. Specifically, 

we design Gt upon StyleGANv2 [18], with spatial trans- 

formers [14] appended for structural deformation. During 

training, we first sample a latent code w ∈ R18 × 512 in W+ 

space, followed by style mixing for color alignment. Then, 

we feed the code to Gt and Gs, respectively, where Gs is
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Figure 4. Framework Overview. Given a single real-style paired reference, we fine-tune a deformation-aware generator Gt that si- 

multaneously realizes geometry deformation and appearance transfer. To learn the cross-domain deformation, we design a directional 

deformation loss Ldir ect 

and a relative structural consistency loss Lcons, both computed in DINO feature space (middle). Inversion and 

style mixing further ensure a consistent DINO semantic representation aligned with the given reference (left). In addition, we involve 

adversarial training using a patch-level discriminator to enhance the transferred style and fidelity (right).
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Figure 5. Deformation-aware generator . (a) A StyleGAN syn- 

thesis block plugged in with a Transform module. (b) A thin- 

plate-spline spatial transformer (TPS-STN) for feature warping, 

which shows the detail of the Transform module in (a). 

a pre-trained StyleGAN generator frozen during training, 

and Gt is to be fine-tuned by the new proposed losses. In 

inference time, we first input the given facial images to a 

pre-trained e4e encoder [32], obtaining their inversion code 

w 

∗ in W+ space. Then, we can generate the corresponding 

stylized faces Gt( w 

∗) by a single forward pass. 

Below, we first describe the details of our deformation- 

aware generator, followed by the DINO-based domain 

adaption, where two novel constraints based on DINO se- 

mantic guidance are introduced. In the end, we describe the 

color alignment enhancing the stability. 

4.1. Deformation-aware generator 

StyleGAN [18] pretrained on large-scale facial datasets, 

such as FFHQ [17]), is powerful in various facial image 

generation tasks. However, it is hard to synthesize faces 

with exaggerated components given the prior learned from 

real face domain. Inspired by [38], we warp the intermedi- 

ate features of StyleGAN to facilitate the generator to output 

the desired deformation pattern. 

As depicted in Fig. 5, we insert a simple differen- 

tiable spatial transformer network (STN) [14], denoted as 

Transform , after the synthesis block of StyleGAN gener- 

ator. The Transform module transforms a feature map by 

a single forward pass, where the transformation could be 

translation, rotation, thin-plane-spline warping (TPS), etc. 

In our case, we chose TPS-STN for warping feature maps, 

as well as a basic STN that shares the same architecture 

as TPS-STN to perform translation, rotation, and scaling. 

Empirically, we only add Transform in the resolutions of 

32 × 32 and 64 × 64 with a grid size of 10 . 

We are not the first to make StyleGAN deformation- 

aware. StyleCariGAN [15] presented a layer-mixed Style- 

GAN with CNN-based exaggeration blocks. However, 

these deformation blocks require additional training with 

massive training data. Our STN-based Transform , instead, 

only performs simple transformations on feature maps, 

which can be directly plugged into the pretrained StyleGAN 

generator. According to [11], we regularize the TPS warp- 

ing field to be smooth by

  \mathcal {L}_{reg}=\sum _{i,j\in \textbf {F}}\Big (2-{\rm sim}(\textbf {F}_{i,j-1}, \textbf {F}_{i, j})-{\rm sim}(\textbf {F}_{i-1,j},\textbf {F}_{i,j})\Big ), 











 

  







 

(1) 

where sim refers to the cosine similarity, F represents the 

warping field, and i, j are pixel indices. 

4.2. DINO-based domain adaption 

Our deformation-aware generator is initialized by a 

StyleGANv2 model pre-trained on FFHQ. To adapt it to 

the target domain defined by the style reference, we fine-
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tune the generator with three criteria: 1) a novel directional 

deformation loss guiding the cross-domain structural defor- 

mation, 2) a newly designed relative structural consistency 

transferring the generation diversity, and 3) an adversarial 

loss facilitating the style synthesis. 

Directional Deformation Loss. Based on the DINO se- 

mantic guidance in Sec. 3, we construct a directional de- 

formation loss guiding the cross-domain structural defor- 

mation. As in Fig. 4, given a single paired reference, we 

first project them into DINO space and calculate the struc- 

tural changing direction from source to target, represented 

by dr ef 

= ED( I 

t 

r ef ) − ED( I 

s 

r ef ) , as the directional de- 

formation reference. We expect the deformation direction 

of generated images across domains to align with the defor- 

mation reference. Akin to [9], we compute the DINO-based 

directional loss measured by cosine similarity between the 

cross-domain deformation directions, which is

  \mathcal {L}_{direct}=1-{\rm sim}(\frac {\textbf {d}_w}{||\textbf {d}_w||},\frac {\textbf {d}_{ref}}{||\textbf {d}_{ref}||}), 



  




















 

(2) 

where dw 

= ED( Gt( w )) − ED( Gs( w )) , with ED 

as the 

DINO encoder, and w is the latent code in W+ space. 

Relative Structural Consistency. As a few-shot training, 

adapting the generator only with the above directional de- 

formation guidance will easily result in over-fitting. In- 

spired by [24], we introduce a relative structural consis- 

tency to preserve the structural diversity across domains. 

Specifically, we measure the difference/similarity between 

every two generated batch samples of the same domain. The 

self-similarity vector* computed with DINO tokens is used 

as the structure representation for each sample, which is 

si 

= 

ED( Ii) ED( Ii)
T

 

|| ED( Ii) ||2 

2 

. For the ground truth pair, we involve 

them in the relative structural consistency as well. Accord- 

ingly, two relative similarity matrices can be formed for the 

source and target domain, respectively, as depicted in Fig. 6. 

We then transform them into probability distributions by

  \begin {aligned} C^s=&{\rm softmax}\big (\big \{{\rm sim}(s_i^s, s_j^s)\big \}\big )_{{\forall i > j, \atop i,j=1,...,N}}\\ &\cup {\rm softmax}\big (\big \{{\rm sim}(s_i^s, s_{ref}^s)\big \}\big )_{{\forall i=1,...,N}},\\ C^t=&{\rm softmax}\big (\big \{{\rm sim}(s_i^t, s_j^t)\big \}\big )_{{\forall i > j, \atop i,j=1,...,N}}\\ &\cup {\rm softmax}\big (\big \{{\rm sim}(s_i^t, s_{ref}^t)\big \}\big )_{{\forall i=1,...,N}}, \end {aligned} 





































































 

(3) 

where sim is cosine similarity, N is the batch-size, super- 

scripts s and t indicate the samples generated from Gs and 

Gt, respectively. To encourage the generated images of

 

*The self-similarity between DINO tokens forms a large similarity ma- 

trix (in size of 783*783). We flatten it into a self-similarity vector.
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Figure 6. Relative structural consistency. We compute a rel- 

ative structural similarity matrix for each domain, where pairs of 

generated-reference (in blue) and generated-generated (in green) 

are both considered. A well-designed loss Lcons 

is dedicated to 

preserving similar structural diversity between the two domains. 

target domain to have a similar structural diversity as the 

source, we compute the MSE loss between them, which is

  \mathcal {L}_{cons}=\frac {1}{|C|}\sum _{i=1}^M||C_i^t-C_i^s||^2_2. 

































 

(4) 

Adversarial Style Transfer. Given the DINO features 

employed, the above two components mainly correspond to 

structural deformation. To guarantee a correct color trans- 

fer for face stylization, we introduce a patch-level discrim- 

inator Dpatch 

according to [24]. Unlike image-level dis- 

criminators, the patch-level discriminator focuses more on 

local texture and color. Meanwhile, we found that a dis- 

criminator also helps to improve the fidelity of the gener- 

ated stylized faces, thanks to the adversarial training. Fol- 

lowing [24], we finetune a StyleGANv2 discriminator pre- 

trained on FFHQ, and read off the layers with effective 

patch size of 22 × 22. The adversarial losses for Dpatch 

and 

our deformation-aware generator Gt are given by:

  \begin {aligned} \mathcal {L}_{adv}^{D}=\log (1-D_{patch}(I_{ref}^t))+\mathbb {E}_{w}[\log (D_{patch}&(G^t(w)))],\\ \mathcal {L}_{adv}^{G}=-\mathbb {E}_{w}[\log (D_{patch}(G^t(w)))]. \end {aligned} 





  



  







 

(5) 

The total loss function can be finalized as:

  \mathcal {L}_{total}=\mathcal {L}_{adv}+\lambda _{direct}\mathcal {L}_{direct}+\lambda _{cons}\mathcal {L}_{cons}+\lambda _{reg}\mathcal {L}_{reg}. 



















 

(6) 

4.3. Color alignment 

Even though DINO well disentangles the structure and 

appearance of images in its feature space, the vast color 

variations in the real facial domain would bring undesired 

errors in structure matching. To alleviate this disturbance, 

we use the inversion and style mixing technique of Style- 

GAN to align the samples’ color. As shown in the leftmost 

of Fig. 4, we first inverse the paired reference ( I 

s 

r ef 

, I 

t 

r ef ) 

into the latent space of source domain by optimizing from
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a mean latent ¯ w using L1 and perceptual loss [39], obtain- 

ing their latents w 

s 

r ef 

, w 

t 

r ef 

∈ R18 × 512. Then, for a random 

sample w in W+ space, unlike [6,21,45], we swap the fine- 

level (9-18th) codes of w with the corresponding codes of 

w 

s 

r ef 

and w 

t 

r ef , resulting in the latent codes ws 

, wt 

with 

aligned color to the references. The generated images af- 

ter color alignment share the same structure/identity as the 

original random sample but have aligning colors to the cor- 

responding reference. See supplementary for more details. 

5. Experiments 

Implementation Details. Our framework is built upon 

the StyleGANv2 [18] and initialized by the model pre- 

trained on FFHQ [17]. We use λdir ect 

= 6 , λcons 

= 5 e 4 

and λr eg 

= 1 e - 6 , empirically. For training, we set the 

batch size to 4 and used ADAM optimizer with a learning 

rate 0 . 002 for the generator following the existing one-shot 

methods [6, 21, 40, 45]. For the multi-resolution STN mod- 

ules, we set the learning rate of TPS-STN and basic-STN 

to 5 e - 6 and 1 e - 4 , respectively, which are different from the 

generator, but they are fine-tuned together. All the STNs ap- 

pended consist of two convolution layers followed by two 

linear layers. We use a mixture of M- and H-level features 

of DINO for the computation of the directional deformation 

guidance and only M-level features for the relative struc- 

tural consistency, as we expect to keep more positional in- 

formation while changing the semantic contents. All exper- 

iments are performed using a single NVIDIA RTX 3090. 

For simplicity, the paired references we used are mainly 

obtained from existing generative models that are trained 

with massive training data, such as [1, 15, 31, 37]. These 

models can stylize facial images with convincing quality. 

Their produced results are enough to represent real pairs. 

5.1. Evaluation and comparisons 

To validate the effectiveness of our framework, we con- 

ducted qualitative and quantitative comparisons to several 

baselines, including MTG [45], JoJoGAN [6], DiFa [40], 

and OneshotCLIP [21]. For fairness, we also convert MTG 

and JoJoGAN into paired one-shot methods for comparison. 

Qualitative Comparison. Fig. 7 shows the results of styl- 

izing two real portraits into three different styles using dif- 

ferent adaption methods. Due to the unfaithful inversion 

of style reference, the compared one-shot methods fail to 

capture the exaggerated components, e.g ., the face contour 

in all three examples. In contrast, our method stylizes the 

faces with plausible exaggeration and correct color transfer. 

We also convert MTG and JoJoGAN to accept paired 

references in training; see supplementary for the details of 

these two variants (MTG-pair and JoJoGAN-pair). Fig. 8 

shows the qualitative comparison. Again, our results have
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Figure 7. Qualitative comparison with existing one-shot face 

stylization methods , MTG [45], JoJoGAN [6], DiFA [40] and 

Oneshot-CLIP [21]. Note all these competitors were trained using 

only the style example, whereas we used paired reference. 

better color style and finer geometry deformation. The two 

variants are still limited to generating deformed faces due to 

the lack of precise cross-domain structure guidance. More 

comparisons are included in the supplementary. 

Quantitative Comparison. We evaluate the generated re- 

sults from three aspects: perception, deformation, and iden- 

tity. For perceptual evaluation, we compute the widely used 

LPIPS distance [39]. To evaluate structural deformation and 

identity, we designed two new metrics: directional content 

consistency (dir-CC) and directional identity similarity (dir- 

ID). For both metrics, we first compute a directional feature 

vector for each pair between the source and the target do- 

main. As the reference pair provides the ground truth di- 

rectional vector, we measure the cosine similarity between 

the ground truth pair and the generated pairs. Given that we 

have already used DINO features in our training, for fair- 

ness, we employ VGG [29] and ArcFace [7] features for 

these two metrics. 

Table 1 lists the full quantitative evaluation. Specifically, 

our method shows an obvious advantage in deformation and 

identity compared with the one-shot methods trained with 

only the style reference. While compared with the “paired” 

variants, our method still leads ahead on most metrics, es- 

pecially style perception and structure deformation.
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Figure 8. Qualitative comparison with the “paired” variants of MTG [45] and JoJoGAN [6]. We replace the inversion of the style 

example they used with the ground-truth real face. Our method surpasses these two variants both in color style and geometry deformation. 

Table 1. Quantitative comparison. We choose the three styles shown in Fig. 7 for evaluation, denoted as Example-1, Example-2 and 

Example-3. Part I shows the comparison with existing one-shot methods trained with only the style reference, whereas Part II lists the 

comparison with the “paired” variants of MTG [45] and JoJoGAN [6]. Note the best results are blod , and the second-bests are underlined

 

.

 

Method

 

Example-1

 

Example-2

 

Example-3

 

LPIPS ↓ dir-CC ↑ dir-ID ↑

 

LPIPS ↓ dir-CC ↑ dir-ID ↑

 

LPIPS ↓ dir-CC ↑ dir-ID ↑

 

I

 

MTG [45]

 

0.340 0.123 0.264

 

0.361

 

0.111 0.301

 

0.328 0.095 0.254

 

JoJoGAN [6]

 

0.357 0.149 0.290

 

0.385 0.138

 

0.378

 

0.355 0.097 0.382

 

DiFa [40]

 

0.362 0.142 0.223

 

0.293 0.137 0.328

 

0.346 0.094 0.123

 

OneshotCLIP [21]

 

0.452 0.157

 

0.333

 

0.449 0.119 0.113

 

0.460 0.136

 

0.201

 

Ours

 

0.353

 

0.196 0.468

 

0.379 0.194 0.379

 

0.342

 

0.191 0.330

 

II

 

MTG-pair

 

0.423 0.195

 

0.392

 

0.447 0.174

 

0.335

 

0.379

 

0.159 0.280

 

JoJoGAN-pair

 

0.381

 

0.180 0.405

 

0.395

 

0.155 0.393

 

0.383 0.173

 

0.400

 

Ours

 

0.353 0.196 0.468

 

0.379 0.194 0.379

 

0.342 0.191 0.330

 

Table 2. User preference score. Each user answered 60 ques- 

tions, and each question asked to compare our method to an oppo- 

nent on 3 real faces. Finally, 30 participants were involved, result- 

ing in 1800 × 3 comparisons. See supplementary for more details.

 

Ours vs.

 

MTG [45] JoJoGAN [6] OneshotCLIP [21]

 

Rate

 

73.0% 77.0% 83.7%

 

Ours vs.

 

MTG-pair JoJoGAN-pair DiFa [40]

 

Rate

 

76.7% 70.7% 71.3%

 

User Study. We further conducted a user study to inves- 

tigate human evaluation of the results. Each time, we show 

the user the paired reference, three real face images, three 

results from our method, and three results from a competi- 

tor. The user is asked to choose the better results group or 

“comparable”. Table 2 reports the user preference score of 

our method against the opponents. 

5.2. Ablation Analysis 

Effect of loss terms. As shown in Fig. 9, the directional de- 

formation loss Ldir ect 

brings reliable deformation guidance 

but, meanwhile, leads to over-fitting. The relative structural 

consistency Lcons 

ensures a correct correspondence across 

domains but introduces color variations too. The adversar- 

ial loss stabilizes the style quality. Therefore, our full loss 

terms guarantee the deformation and style simultaneously. 

Effect of STN blocks. As shown in Fig. 11, the generator 

with STN blocks brings a more accurate deformation effect 

regarding the desired exaggerations shown in the style refer- 

ence, thus improving the stylization quality, as exaggeration 

is a key component in artistic styles. 

Effect of color alignment. Fig. 12 verifies the effect of 

color alignment. When a huge color gap exists in the paired 

reference, color alignment ensures a consistent DINO se- 

mantic representation, alleviating structural mismatching. 

5.3. Facial deformation control 

Since the STNs are plug-in blocks that warp the interme- 

diate features of StyleGAN, we can use them to control the 

feature warping degree by interpolation. Specifically, we 

interpolate the warping field of TPS-STNs by a weight α :

  \mathbf {F}(\alpha )=(1-\alpha )*\mathbf {F}_0+\alpha *\mathbf {F}, 

     

  

 

(7)
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Baseline (ℒ𝑑𝑖𝑟𝑒𝑐𝑡 + ℒ𝑟𝑒𝑔) Baseline + ℒ𝑐𝑜𝑛𝑠 Baseline + ℒ𝑎𝑑𝑣 Ours

 

Figure 9. Ablation of different loss terms. Using only Ldir ect+ Lr eg 

makes the generated results all look similar to the reference. Adding 

Lcons 

improves the diversity but still lacks a correct color style regarding the reference, which is rectified after Ladv 

is introduced.

𝛼 = 1𝛼 = 0𝛼 = −0.5 𝛼 = 1.5𝛼 = 0.5

 

Figure 10. Controllable face deformation. The STN blocks are functioned as plug-ins. We linearly interpolate the warping field of 

TPS-STNs to control the deformation degree of stylized faces. The triplets in the top row show the real faces, the stylized faces without 

and with STN-deformation, respectively. At the bottom, we showcase two stylized faces the deformation control of different degrees.

w/o STNs

w/ STNs

 

Figure 11. Ablation of the STNs appended in generator. We 

fine-tune the generator with and without STN blocks. Some key 

exaggerated components, such as the eye contraction (left) and the 

cheek deformation (right), are missed when removing STN blocks. 

where F0 

is the original warping field without any warping. 

Setting α =1 or α =0, respectively, leads to results with or 

without the warping deformations. Fig. 10 shows examples 

of such controllable face deformation in different styles. 

6. Conclusion 

We have presented a deformable face stylization frame- 

work using only a single paired reference. By fine-tuning 

a deformation-aware generator under DINO semantic guid- 

ance, we can stylize facial images with high-quality appear- 

ance transfer and convincing structure deformation. Qual-

w/o C.A.

w/ C.A.

 

Figure 12. Ablation of color alignment. Color alignment (C.A.) 

plays an important role in ensuring correct semantic matching 

when color gaps exist in the paired reference. Note how the lower 

lips (highlighted) are influenced when there is no color alignment. 

itative and quantitative comparisons demonstrate that our 

method surpasses the existing one-shot methods. 
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