
DreamPropeller: Supercharge Text-to-3D Generation with Parallel Sampling

Linqi Zhou1* Andy Shih1 Chenlin Meng1,2 Stefano Ermon1

1Stanford University, 2Pika Labs
1{linqizhou, andyshih, chenlin, ermon}@stanford.edu, 2chenlin@pika.art

Abstract

Recent methods such as Score Distillation Sampling
(SDS) and Variational Score Distillation (VSD) using 2D
diffusion models for text-to-3D generation have demon-
strated impressive generation quality. However, the long
generation time of such algorithms significantly degrades
the user experience. To tackle this problem, we pro-
pose DreamPropeller, a drop-in acceleration algorithm that
can be wrapped around any existing text-to-3D generation
pipeline based on score distillation. Our framework gen-
eralizes Picard iterations, a classical algorithm for par-
allel sampling an ODE path, and can account for non-
ODE paths such as momentum-based gradient updates and
changes in dimensions during the optimization process as in
many cases of 3D generation. We show that our algorithm
trades parallel compute for wallclock time and empirically
achieves up to 4.7x speedup with a negligible drop in gen-
eration quality for all tested frameworks. Our implemen-
tation can be found here.

1. Introduction
Diffusion models [9, 38–40] have seen great success in a va-
riety of domains, including both 2D images [22, 31, 49, 49]
and 3D shapes [21, 37, 49, 49, 50]. Early attempts of apply-
ing diffusion frameworks to 3D shape generation require
training separate models for each data category with 3D
training samples. This problem is significantly alleviated
by the use of large-scale text-conditioned 2D diffusion mod-
els [31]. Such large-scale foundation models, often trained
on internet-scale data such as LAION-5B [35], have exhib-
ited remarkable semantic understanding of the visual world,
which has inspired their use for creating 3D shapes in open-
vocabulary settings. Among the most remarkable develop-
ments in recent years involves optimizing NeRF [23] scenes
using Score Distillation Sampling (SDS) [29] or Score Ja-
cobian Chaining (SJC) [45], which push the 2D rendering

*Work done at Pika Labs.
1We use batch size 16 for higher-quality generation, which requires

longer time.

DreamGaussian [43] ProlificDreamer [46]

(C
om

pl
et

e)
11 minutes 9 hours 28 minutes

(I
nc

om
pl

et
e)

2 minutes 2 hours 13 minutes

+
D

re
am

Pr
op

el
le

r

2 minutes 2 hours 13 minutes
”the leaning tower of Pisa,

aerial view” ”a pineapple”

Figure 1. We present two representative examples of applying
DreamPropeller. Gray rows denote runtime. Our framework
trades parallel compute for speed and achieves more than 4x
speedup when applied to both DreamGaussian [43]1and Prolific-
Dreamer [46] while maintaining the generation quality. At the
time when DreamPropeller finishes, the baseline versions (Incom-
plete) exhibit significantly worse appearance and geometry.

of the 3D models to be more likely under the 2D diffu-
sion prior through gradient-based optimization. More re-
cent developments including Variational Score Distillation
(VSD) [46] further improve the quality of 3D shape gener-
ation.

Despite promising results in generation quality, text-to-
3D methods using SDS/VSD suffer from long generation
time because gradient-based optimization is computation-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4610

https://github.com/alexzhou907/DreamPropeller


ally expensive over the parameters of the 3D representa-
tion, and a large number of iterations are required for con-
vergence. Recent works [5, 43, 48] have explored using
a novel efficient 3D representation, namely 3D Gaussian
Splatting [11], to accelerate the distillation process. Oth-
ers have explored amortizing the generation process by dis-
tilling a text-conditioned generator that can generate 3D
shapes at test time in one step [20]. Orthogonal to these
methods, we propose a general framework to accelerate
text-to-3D creation (regardless of the underlying 3D rep-
resentation) by leveraging parallel compute to perform the
same number of optimization steps faster (in terms of wall-
clock time).

Our method is based on a generalization of Picard itera-
tions [1] which we adapt to text-to-3D generation. While Pi-
card iterations were previously shown to be effective in ac-
celerating image generation from diffusion models through
faster (parallel-in-time) ODE solving [36], we generalize
the approach to more complex computation graphs involv-
ing multiple gradient updates and changes in the dimen-
sions of the variables. We show that all existing 3D rep-
resentations for text-to-3D generation can be accelerated
by our method, including the recently proposed 3D Gaus-
sian Splatting. Experimentally, we also achieve 4.7x times
speedup with negligible degradation in generation quality.

2. Related Works
Text-to-Image diffusion models. Diffusion models [9, 38–
40] rose to popularity due to their superior performance and
training stability compared to GANs [8]. They have been
scaled up to large-scale foundation models, among the most
popular of which are text-conditioned latent-diffusion mod-
els (LDM) [3, 31, 34], which are built on the latent space of
an autoencoder.

Such text-conditional LDMs, often trained on internet-
scale datasets [35], can achieve high generation fidelity with
reasonable faithfulness to input prompts. This has inspired
many other remarkable applications such as adding addi-
tional control signals [49], customizing for subject-specific
generation [7, 13, 19, 32], and editing [22, 25]. The utiliza-
tion of large-scale Text-to-Image diffusion models lies at
the core of modern visual generative modeling, and is also
central to our method for text-to-3D generation.
Text/Image-to-3D generation via score distillation.
DreamFusion [29] and Score Jacobian Chaining [45] were
among the first to propose lifting 2D diffusion models for
3D generation by Score Distillation Sampling (SDS), which
propagates the score of pretrained diffusion models to the
differentiable rendering of NeRF [23]. ProlificDreamer [46]
introduces Variational Score Distillation (VSD) which sig-
nificantly improves the quality of 3D generation by adap-
tively training a LoRA model. Orthogonal to the distilla-
tion algorithm, other works such as [4, 15] propose to op-

timize a more memory-efficient DMTet representation for
high-resolution rendering. A more recent work [44] pro-
poses to volumetrically render signed distance fields (SDF)
for better texture and mesh extraction. Others [5, 43, 48]
have also investigated the use of 3D Gaussian Splatting [11]
as the underlying representation for fast and efficient gener-
ation, bringing the creation time down to as low as two min-
utes. Besides other applications such as controllable scene
composition [2, 6, 28], SDS is also widely applied in the
Image-to-3D task, where Zero-1-to-3 [17] finetunes a view-
dependent diffusion model for 3D generation given single
images. Other works [16, 30, 47] further improved image-
conditioned generation by integrating multi-view informa-
tion and additional guidance into the generation process.
Accelerating sampling with parallelism. Many works
have studied accelerated sampling of generative models
by leveraging parallel computation to trade compute for
speed. For autoregressive models, prior works have used Ja-
cobi/Gauss iteration [41] or predict/accept mechanisms [42]
to improve sampling speed. For diffusion models, par-
allelism based on fixed-point iterations has been shown
to speed up sampling of pretrained diffusion models [36].
Similarly, the goal of our work is to accelerate sampling,
specifically for 3D generation models, which are known to
have slow sampling speed. Our technique is most related to
the work of Shih et al. [36], which is inspired by the classic
technique of Picard iterations to solve ODEs using parallel
computation, allowing for the utilization of multiple GPUs
to accelerate sampling. Unfortunately, the method of Picard
iteration cannot be directly used to parallelize the sequential
gradient update steps of 3D generation, because of the use
of momentum-based gradient updates changes in dimension
during optimization.

In this work, we seek to overcome the challenges of the
representational differences of 3D generation and design
an algorithm that accelerates the generation of all existing
3D representations. We do so by formulating Picard iter-
ations [36] for a wider family of sequential computation,
enabling us to leverage parallel computational resources to
accelerate 3D generation.

3. Preliminary
Recent Text-to-3D generation frameworks mostly rely on
distilling knowledge from pretrained 2D diffusion models.
We hereby introduce some backgrounds and notations help-
ful for our exposition.

3.1. Text-to-3D Generation via Score Distillation

2D diffusion models [9, 38–40] learn a distribution of im-
ages by adding noise to the ground-truth image x at noise
level t, resulting in noisy images zt, and uses a score net-
work ϵϕ(zt, t, y) with parameter ϕ and caption y to esti-
mate the gradient direction towards higher likelihood given

4611



zt. Such diffusion models can faithfully produce realistic
images highly aligned with the input caption y. Their suc-
cess has also inspired their use for 3D shape generation,
which we shall introduce below. Suppose the 3D shape
(e.g. NeRF) parameterized by θ, can be rendered into an im-
age following a deterministic transformation g : Θ × C →
RH×W×C which takes in shape parameter θ ∈ Θ and cam-
era parameters c ∈ C. We seek an update rule for θ such
that g(θ, c) is a realistic image following caption y.

Score Distillation Sampling. The seminal works [29, 45]
on lifting 2D diffusion models for 3D creation propose to
directly propagate diffusion score prediction towards NeRF
parameters. The most prominent algorithm, Score Distil-
lation Sampling (SDS), or Score Jacobian Chaining (SJC),
states that a 3D model parameterized by can be guided to
generate a scene with caption y by following the update
rule θτ+1 = θτ − η∇θτLSDS. With t ∼ U(0.02, 0.98),
ϵ ∼ N (0, I), and zt = αtg(θ, c) + σtϵ,

∇θLSDS = Et,ϵ

[
ω(t)

(
ϵpretrain(zt, t, y)− ϵ

) ∂

∂θ
g(θ, c)

]
(1)

where ω(t) is a weighting function. In practice, the gra-
dient update is done through Adam gradient update, which
updates 3D models such that their rendering g(θ, c) closely
follows distributions of the pretrained 2D diffusion prior.

Variational Score Distillation. Despite success in zero-
shot 3D NeRF generation, SDS often suffers from over-
saturation and simplistic geometry. To enhance the genera-
tive quality, another recent work [46] proposes Variational
Score Distillation (VSD), which replaces the noise sample ϵ
with a trainable LoRA diffusion with parameter ϕ such that

∇θLVSD = Et,ϵ

[
ω(t)

(
ϵpretrain(zt, t, y)−

ϵϕ(zt, t, c, y)
) ∂

∂θ
g(θ, c)

] (2)

where the LoRA model is adaptively trained to fit the distri-
bution of the current render g(θ, c).

Generative 3D Gaussian Splatting. 3D Gaussian Splat-
ting [11] is a recently developed 3D representation for effi-
cient rendering. It is represented by a set of 3D Gaussians
which are optimized with differentiable rasterizers. More
recent works [5, 43, 48] have adopted this representation
for score distillation, which greatly reduces the generation
time. However, this representation is different from others
in that the number of Gaussians can change during the opti-
mization process due to its split-and-prune operations.

Figure 2. Picard dependency graph. Gray nodes have outgoing
edges to all subsequent nodes in k+1-th iteration and are indepen-
dent of each other. This allows parallel computation of s(xk

τ , τ)
for all τ ∈ [0, T − 1].

3.2. Picard Iterations

The classic Picard iteration approximates the solution tra-
jectory of an ODE x0:τ ending at time τ

xτ = x0 +

∫ τ

0

s(xu, u)du (3)

via fixed-point iteration, by starting with a guess of the full
trajectory xk=0

0:T and iteratively refining until convergence
using the following iteration rule for each iteration k:

xk
τ = xk−1

0 +

∫ τ

0

s(xk−1
u , u)du (4)

which under mild conditions will converge to a unique ODE
solution given initial condition x0. The discrete-time ap-
proximation is

xk
τ = xk−1

0 +
1

T

τ−1∑
i=0

s(xk−1
i ,

i

T
) (5)

which is guaranteed to converge in T steps, but in practice
often converges much faster in K ≪ T iterations. This pro-
cedure allows us to leverage parallel computation to con-
verge to the solution in O(K) steps. In Figure 2 we depict
the computation graph of Picard iterations, where we see
long-range dependencies allowing for information to prop-
agate quickly to the end of the sequence.

Previously, Shih et al. [36] leveraged Picard iterations to
accelerate sampling for diffusion models on images. Once
converged, we simply extract the endpoint of the solution
trajectory of the final iteration xk=K

τ=T as the sample of the
diffusion model.

In this work, we seek to extend the method of Picard
iterations to Text-to-3D generation via score distillation.
However, generalizing this process to 3D generation is non-
trivial because, unlike Shih et al. [36], solution trajectories
for 3D generation is not in data space, but rather in “pa-
rameter” space. This presents key challenges: 1) for meth-
ods such as 3D Gaussian Splatting, the parameter space has
changing dimensionality over the length of the trajectory,
2) all score distillation methods involve sequential gradient

4612



update using Adam optimizer, as opposed to a trivial prefix
sum. Therefore, we must investigate more deeply to come
up with a generalized formulation of Picard iteration that is
applicable to 3D generation.

4. Method
Despite the impressive quality of the generation results from
VSD and SDS, all of score distillation methods suffer from
long generation time (e.g. 10 hours for one generation from
VSD on an NVIDIA A100), making them prohibitively ex-
pensive to use in practice. Motivated by this problem, we
seek to design an acceleration algorithm for all existing 3D
representations suitable for score distillation.

4.1. Score Distillation as Sequential Computation

Our key insight is that the parameter update rules for
SDS/VSD can roughly be written as a sequential compu-
tation θτ+1 = θτ + η∇θτL of a form that is similar to Pi-
card iterations, where L can either be LSDS or LVSD and η
is step size. However, we cannot directly apply Picard iter-
ations because these methods have further complications in
their sequential computations. For example, SDS/VSD rely
on momentum-based optimizers such as Adam [12] to per-
form the parameter update, where the momentum prevents
us from directly using vanilla Picard iteration. Special rep-
resentations such as Gaussian Splatting intertwine gradient
updates with splitting operations, which increase the dimen-
sionality of θ, a property that similarly prevents the naı̈ve
use of Picard.

4.2. Generalizing Picard Iterations

We now present a generalized version of Picard iterations
that will enable us to apply the same parallelization tech-
niques to more complicated computation graphs, encom-
passing cases such as Gaussian Splatting and SDS/VSD.

In standard Picard iterations, our goal is to parallelize an
ODE that takes additive sequential updates of the form

θτ+1 = g(θτ ) = θτ + ηs(θτ ) (6)

where s(·) is the drift function of the ODE, and the eventual
computational unit that we will parallelize over. To take the
first step towards generalizing Picard iteration, we rearrange
to write this computational unit s explicitly:

s(θτ ) =
1

η
(g(θτ )− θτ ) (7)

where g(·) denotes the underlying function outputting the
next parameter θτ . Choosing the computational unit s as
the drift is natural for ODEs, and is convenient because un-
rolling drifts can be easily done via a summation. However,
this choice of computing the drift cannot be generalized to

Algorithm 1 Generalized Picard Iteration

Input: Initial parameter θ, pseudo-inverse h†, drift s,
maximum time T
Output: Score distillation output
θ0τ ← θ, ∀τ ∈ [0, T ]
τ, k ← 0, 0
while not converged do

for τ from 0 to T − 1 do compute s(θkτ ) in parallel
for τ from 0 to T − 1 do θk+1

τ+1 ← h†(s(θkτ ), θ
k
τ )

k ← k + 1

return θkT

settings such as expanding/shrinking of dimensions and dis-
crete domains, where subtraction operator can be unnatural
or even undefined. Moreover, in settings using momentum-
based updates (Adam), applying drift-based error accumu-
lation to the momentum terms can lead to very poor perfor-
mance.

To generalize Picard iterations, our insight is that we can
consider many different choices of the computational unit
s. We can write s as some general function of g(θτ ) and θτ :

s(θτ ) = h(g(θτ ), θτ ) (8)

where h is equipped with h†(·, ·), a pseudo-inverse of h
w.r.t. the first argument g(θτ ). Under this condition, we can
write the following iteration rule:

θkτ = h† (s(θk−1
τ−1), h

† (s(θk−1
τ−2), . . . h

†(s(θk−1
0 ), θk−1

0 )
))
(9)

This iteration rule can be understood as the generalized
form of Picard iterations. Similar to Picard iterations, we
1) perform the computation units s(θk−1

0:T ) in parallel and
2) do a sequential unrolling of the trajectory from iteration
k − 1 to arrive at iteration k. In contrast, Picard iteration
has a simple form for the sequential unrolling, i.e. cumula-
tive sum (as in Table 1).

We further show in Appendix A that the existence of h†

paired with the iteration rule in Eq. (9) is well-defined and
guarantees a fixed-point solution.

Finally, we proceed by demonstrating two concrete
choices of s for generalized Picard iterations on 3D Gaus-
sian Splatting and SDS, both of which pose problems for
naive Picard iteration.
Example 1: 3D Gaussian Splatting

Recently, 3D Gaussian Splatting [11] has been adopted
for 3D generative models using SDS [5, 43, 48]. A unique
property of this representation is its ability to dynamically
change its dimension (i.e. number of Gaussians) during the
optimization process. This poses significant challenges to

4613



Figure 3. Overview of DreamPropeller. Starting from top left, for iteration k, we initialize a window of 3D shapes (in green) with dimension
D and dispatch them to p GPUs for parallelly computing the SDS/VSD gradients, which are gathered for rollout using the rule in Eq. (9).
The resulting shapes (in orange) for iteration k + 1 are compared to those in iteration k. The window is slid forward until the error at that
time step is not smaller than the threshold e, which is adaptively updated with the mean/median error of the window. Optionally, in the
case of VSD, we keep independent copies of LoRA diffusion on all GPUs which are updated independently without extra communication.

Picard Generalized

Sequential output θk+1
τ+1 g(θkτ ) g(θkτ )

Update function s(θkτ ) s(θkτ ) =
1
η (g(θ

k
τ )− θkτ ) s(θkτ ) = h(g(θkτ ), θ

k
τ )

Output parameterization θk+1
τ+1 = θkτ + ηs(θkτ ) θk+1

τ+1 = h†(s(θkτ ), θ
k
τ )

Iteration rule θkτ = θk−1
0 + η

∑τ−1
i=0 s(θk−1

i ) θkτ = h†(s(θk−1
τ−1), . . . h

†(s(θk−1
0 ), θk−1

0 ) . . . )

Table 1. Comparison between Picard and generalized iterations.

the classical Picard iterations as it assumes fixed dimensions
throughout (i.e. θτ , θτ+1 have the same dimension).

Concretely, in the case of 3D Gaussian Splatting where
the number of points may increase, the difference in di-
mension θkτ and g(θkτ ) can be addressed by designing
h(g(θkτ ), θ

k
τ ) to be

s(θkτ ) =
1

η
(proj(g(θkτ ))− θkτ ) (10)

where proj : RN → RM , N ≥ M , is a projection func-
tion from RN to RM by deleting a subset of points from its
input. Its pseudo-inverse can be

θk+1
τ+1 = unproj(θkτ + ηs(θkτ )) (11)

where unproj : RM → RN is a dimensionality-increasing
function that adds new points to the current parameter. Fol-
lowing Tang et al. [43], we use the split-and-clone function
as our unproj(·) function.
Example 2: Adam gradient updates

With methods that use optimizers such as Adam, the se-
quential update involves a momentum term (here denoted
as mk

τ ) which necessitates the use of the generalized form
of Picard iterations, since applying vanilla Picard iterations
on s((θkτ ,m

k
τ )) will lead to poor updating of the additional

momentum parameters.
To incorporate the additional momentum update rules,

we can simply design h(g(θkτ ,m
k
τ ), (θ

k
τ ,m

k
τ )) to be ∇θk

τ
L,

which gives us (assuming learning rate η) the natural
pseudo-inverse

θk+1
τ+1,m

k+1
τ+1 = Adam(s((θkτ ,m

k
τ )), (θ

k
τ ,m

k
τ )) (12)

and the generalized Picard update becomes

θk+1
τ+1,m

k+1
τ+1 ← g(θkτ ,m

k
τ ) = Adam(∇θk

τ
L, (θkτ ,mk

τ ))

(13)

For clarity, we additionally provide a high-level algo-
rithm in Algorithm 1. Because of parallel computation of
s(·), this algorithm can converge in O(K) where K ≪ T .

4614



4.3. Practical Decisions

We note several practical considerations that are significant
for empirical success.
Sliding window. Although one can in theory parallelize the
entire trajectory, it is impractical to start by keeping all of
{θ0τ}Tτ=0 in memory. In 3D generation settings, T can usu-
ally be on the order of 10K and each parameter can cost
large amounts of memory. We therefore similarly take in-
spiration from [36] and employ a batched window scheme
such that the Picard iteration is only performed on θkτ :τ+p

and the window is slid across until the fixed-point conver-
gence error at the starting time step is above a threshold e.
More details on the distance metric and how to handle di-
mension mismatch can be found in Appendix C.

In addition, to maximize efficiency, we want to paral-
lelize the expensive calculation of SDS/VSD gradients, so
we need to put one pretrained diffusion model on each GPU.
We set the window size to be one less than the total number
of GPUs, and use the remaining one for sequential rollout.
Eliminating stochasticity. As Picard iterations’ conver-
gence depends on the deterministic fixed-point iteration
scheme, which requires deterministic gradient for the same
θkτ at each τ . However, the calculation of both∇θτLSDS and
∇θτLVSD are stochastic due to Monte Carlo approximation
of the expectation. To resolve this, we simply fix the ran-
dom seed for each iteration, which works well empirically.
Parallelizing Variational Score Distillation. Variational
Score Distillation requires training an additional LoRA
model to adapt to the distribution of the current generated
results. There are two possible solutions for parallelization:
(1) we can update LoRA parameters similarly as our 3D pa-
rameters, by calculating their gradients on separate GPUs
and aggregating them on the remaining GPU; (2) we can
keep different LoRA models on different GPUs and sepa-
rately update each without passing them back for aggrega-
tion. The first approach results in more accurate gradients as
it seeks to parallelize updates of a single LoRA model, but
we find that passing around LoRA parameters across GPUs
is very expensive and can undermine any speed gain for the
actual 3D model updates. We therefore avoid this approach.
The second solution provides less accurate LoRA gradients
in theory because our 3D model parameters can be passed to
different LoRA models on different GPUs at any iteration,
which can provide different LoRA updates at any point in
time. However, we observe that since each of our 3D model
parameters in the window is randomly allocated to different
GPUs for gradient calculation, there is approximately equal
probability that each LoRA model will observe all models
in the window. This means, roughly speaking, each LoRA
model will learn the distribution of all 3D models in the cur-
rent window. Therefore, updating LoRA separately on dif-
ferent GPUs gives valid guidance and eliminates the need
for communicating additional parameters across GPUs.

Adaptive threshold. Fixed-point errors control how close
one is to the true trajectory. Smaller thresholds lead to slow
convergence and larger thresholds lead to worse generation
quality. In practice, we observe the threshold can be differ-
ent for different prompts and 3D representations. To avoid
the need for excessively tuning thresholds, we propose to
adaptively update the threshold by the exponential moving
average (EMA) of the mean or median error of the current
window. With EMA decay rate γ, window of size p start-
ing at time τ and iteration k, and assume the parameter has
dimension D, we update threshold e by

e← γe+ (1− γ) ∗M({ 1
D
d(θk+1

τ+i , θ
k
τ+i)

2}pi=1) (14)

where M is a mean or median function. We investigate the
effect of the EMA parameters in ablation studies.

Our final method is depicted in Figure 3, and we provide
a detailed practical algorithm in Appendix B.

5. Experiments
Running DreamPropeller for T iterations is guaranteed to
give the same results as the original method, and it em-
pirically often requires much fewer steps for convergence,
a property we empirically investigate in this section. We
first show that our method achieves consistent more than
4x speedup when applied to a variety of 3D representations
and different score distillation frameworks. We then con-
duct ablation studies on the proposed practical decisions.

5.1. Accelerating Text-to-3D Generation

We choose baselines that represent the most promi-
nent 3D representations, namely NeRF from DreamFu-
sion [29], DMTet from Magic3D [15], SDF from coarse-
stage TextMesh [44] (see Appendix D for detail), and 3D
Gaussian Splatting from DreamGaussian [43], and directly
apply our wrapper to them. In addition, we show that
our algorithm can similarly be adapted to the recently pro-
posed VSD from ProlificDreamer [46]. Our DreamPro-
peller wrapper is modular and agnostic to the calculation of
gradient updates via score distillation, and we test its per-
formance by comparing each of the baselines’ runtime and
quality with and without our wrapper.
Data and metrics. We use 30 prompts from the DreamFu-
sion gallery to test each algorithm. We run each framework
with each individual prompt and record its wallclock run-
time in seconds. Following [10, 24, 44], we use CLIP R-
Precision [27] for measuring semantic alignment between
the generated asset and its input prompt. CLIP R-Precision
is the retrieval accuracy of a prompt from the set of prompts
given a generated image conditioned on this prompt, and
we use top-1 retrieval accuracy for all experiments. We ad-
ditionally use CLIP FID score [14] compared against the
ImageNet 2012 validation set [33] for generation quality.

4615



DreamFusion [29] + DreamPropeller DreamFusion [29] + DreamPropeller

2 hours 10 minutes 32 minutes 2 hours 9 minutes 31 minutes
”a delicious croissant” ”a small saguaro cactus planted in a clay”

Magic3D [15] + DreamPropeller Magic3D [15] + DreamPropeller

3 hours 34 minutes 52 minutes 3 hours 35 minutes 54 minutes
”a DSLR photo of a blue jay standing on a macaron” ”a DSLR photo of a blue tulip”

TextMesh [44] + DreamPropeller TextMesh [44] + DreamPropeller

2 hours 5 minutes 30 minutes 2 hours 6 minutes 30 minutes
”a ceramic upside down yellow octopus

holding a blue-green ceramic cup” ”a highly detailed stone bust of the tiger”

DreamGaussian [43] + DreamPropeller DreamGaussian [43] + DreamPropeller

11 minutes 2 minutes 11 minutes 2 minutes
”a photo of an ice cream ” ”a ripe strawberry ”

ProlificDreamer [46] + DreamPropeller ProlificDreamer [46] + DreamPropeller

9 hours 21 minutes 2 hours 10 minutes 9 hours 13 minutes 2 hours 15 minutes
”fries and a hamburger” ”an imperial state crown of England ”

Figure 4. Visual comparisons. Methods using DreamPropeller achieve equally high-quality generation with a much shorter runtime.

Speedup is calculated as the ratio of wall-clock runtime for
baseline to our method – higher is better.

Evaluation. As larger batch size can lead to higher-quality
generation [4, 15, 26, 46], we use batch size 16 for all base-
lines but ProlificDreamer, for which, due to memory con-
straints, we use batch size 8 for the first 5000 steps (ren-
dered at 64 × 64 resolution) and batch size 2 for the re-
maining steps (rendered at 512× 512 resolution). We use 8
NVIDIA A100 PCIe GPUs for all experiments, which de-
fault to window size 7. More details can be found in Ap-
pendix D. We evaluate R-Precision and FIDCLIP using all
rendered images from all generated shapes. Quantitative
results can be found in Table 2 and qualitative results are

shown in Figure 4.

Notice that with competitive generation quality, we con-
sistently achieve more than 4x speedup for all frameworks
and algorithms, with the most speedup for ProlificDreamer.
This is in line with the intuition that our parallelization al-
gorithm is more effective when each iteration’s GPU work-
load becomes heavier, which is the case for ProlificDreamer
due to it keeping and updating another LoRA model on the
fly. The heavy workload is effectively delegated to differ-
ent GPUs. In theory, the heavier the GPU workload is, the
more the optimization benefits from our framework. Also
note that DreamGaussian experiences competitive speedup
as ProlificDreamer. This is because its original implementa-

4616



(a) Ablation on window size. (b) Ablation on threshold EMA rate. (c) Ablation on batch size.

Figure 5. Ablation studies on practical choices. Speedup is the ratio of baseline wall-clock runtime to our wall-clock runtime. Relative
quality is the ratio of baseline FIDCLIP to our FIDCLIP.

R-Precision ↑ FID ↓ Runtime (s) ↓ Speedup

DreamFusion [29] 82.70 60.91 8080 4.22x+ DreamPropeller 79.57 59.88 1910

Magic3D [15] 88.45 59.24 13470 4.17x+ DreamPropeller 87.18 59.19 3230

TextMesh [44] 88.06 64.19 7690 4.18x+ DreamPropeller 84.43 62.12 1830

DreamGaussian [43] 83.28 58.33 700 4.67x+ DreamPropeller 83.85 58.26 150

ProlificDreamer [46] 94.11 49.66 7390 4.69x+ DreamPropeller 96.12 49.65 3710

Table 2. Quantitative evaluation on 30 prompts from the DreamFu-
sion gallery. Runtime is reported in seconds. Our method achieves
competitive quality while provide more than 4x speedup.

tion requires sequential rendering of each instance within a
batch. This scales its GPU runtime linearly with batch size,
so our framework gives better speedup. We also notice that
our results do not exactly match those of baselines. This
is likely due to the fixed-point error not being low enough
for converging to the fixed-point solution, and Adam takes
the parameters to slightly different but equally valid local
optima through momentum-based gradient updates.

5.2. Ablation Studies

We further conduct ablation studies for the practical choices
to investigate their effectiveness.
Effect of window size. By default, we set the window size
to be 1 less than the number of GPUs, since we need the re-
maining one for sequential rollout. Allowing all other GPUs
to do independent work intuitively maximizes speedup.
However, how does the speedup scale when window size
is independent of the number of GPUs? For our experi-
ment in Figure 5a, we assume access to 8 NVIDIA A100
PCIe GPUs and adjust the window size from 1 to beyond 7.
The speedup of our framework peaks at window size 7, be-
cause we fully utilize all GPU resources for maximum par-
allelization. We also observe a drop in speedup for window
size beyond 7. We hypothesize that this is due to longer

sliding windows not advancing far enough under GPU re-
source constraints while requiring more FLOPs, thus caus-
ing slower speedup.
Effect of threshold adaptivity. The adaptivity parame-
ter aims to stabilize speedup while maintaining generation
quality. We show in Figure 5b its ablation study. Rela-
tive quality is calculated as the ratio of baseline FIDCLIP
to our FIDCLIP – a higher ratio means better relative qual-
ity. For each model, 5 settings are tested with γ ∈
{0.2, 0.4, 0.6, 0.8, 1.0} and initial thresholds set to 1% of
the default thresholds. This is to maximally bottleneck our
framework to test how much γ counteracts an ill-initialized
threshold. We observe a large gap between results from
γ = 1 and γ < 1 (in red region), implying as long as γ < 1
(i.e. our framework is adaptive), all models achieve similar
speedup without significantly degrading quality.
Effect of batch size. As SDS/VSD requires evaluating
expectation over diffusion time t, one is motivated to use
a large batch size of t for more accurate estimate of the
guidance score, which can lead to higher-quality genera-
tion [4, 15, 26, 46]. As such, this increases computational
demand for GPU per iteration, a regime where our method
is particularly beneficial. As shown Figure 5c, the speedup
of our method scales with increasing batch sizes because
of the increase in computational intensity per iteration. In
particular, our method benefits VSD more even when batch
size is small because the LoRA training is costly and is ef-
fectively amortized across GPUs because their parameters
are never communicated across processes.

6. Conclusion

In this work, we introduce DreamPropeller, a drop-in ac-
celeration framework for all existing score distillation-
based text-to-3D generation methods. DreamPropeller can
achieve more than 4x speedup for various predominant 3D
representations and benefits more from heavier demand for
GPU computation per iteration. We hope our framework
serves as a significant step towards usable high-quality text-
to-3D methods and inspires more advancements to come.

4617



References
[1] Monther Alfuraidan and Qamrul Ansari. Fixed Point The-

ory and Graph Theory: Foundations and Integrative Ap-
proaches. Academic Press, 2016. 2

[2] Haotian Bai, Yuanhuiyi Lyu, Lutao Jiang, Sijia Li, Hao-
nan Lu, Xiaodong Lin, and Lin Wang. CompoNeRF: Text-
guided multi-object compositional NeRF with editable 3D
scene layout. 2023. 2

[3] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Ji-
aming Song, Qinsheng Zhang, Karsten Kreis, Miika Aittala,
Timo Aila, Samuli Laine, Bryan Catanzaro, Tero Karras, and
Ming-Yu Liu. EDiff-I: Text-to-image diffusion models with
an ensemble of expert denoisers. 2022. 2

[4] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fan-
tasia3D: Disentangling geometry and appearance for high-
quality Text-to-3D content creation. 2023. 2, 7, 8

[5] Zilong Chen, Feng Wang, and Huaping Liu. Text-to-3D us-
ing gaussian splatting. 2023. 2, 3, 4

[6] Dana Cohen-Bar, Elad Richardson, Gal Metzer, Raja Giryes,
and Daniel Cohen-Or. Set-the-Scene: Global-Local training
for generating controllable NeRF scenes. 2023. 2

[7] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik,
Amit H Bermano, Gal Chechik, and Daniel Cohen-Or. An
image is worth one word: Personalizing Text-to-Image gen-
eration using textual inversion. 2022. 2

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Adv. Neural Inf.
Process. Syst., 27, 2014. 2

[9] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Adv. Neural Inf. Process. Syst.,
33:6840–6851, 2020. 1, 2

[10] Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter
Abbeel, and Ben Poole. Zero-shot text-guided object genera-
tion with dream fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
867–876. openaccess.thecvf.com, 2022. 6

[11] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler,
and George Drettakis. 3D gaussian splatting for Real-Time
radiance field rendering. ACM Trans. Graph., 42(4):1–14,
2023. 2, 3, 4

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. 2014. 4

[13] Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli
Shechtman, and Jun-Yan Zhu. Multi-concept customization
of text-to-image diffusion. pages 1931–1941, 2022. 2

[14] Tuomas Kynkäänniemi, Tero Karras, Miika Aittala, Timo
Aila, and Jaakko Lehtinen. The role of ImageNet classes
in fréchet inception distance. 2022. 6

[15] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa,
Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler,
Ming-Yu Liu, and Tsung-Yi Lin. Magic3D: High-Resolution
Text-to-3D content creation. 2022. 2, 6, 7, 8

[16] Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Varma T
Mukund, Zexiang Xu, and Hao Su. One-2-3-45: Any single
image to 3D mesh in 45 seconds without Per-Shape opti-
mization. 2023. 2, 3

[17] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-
makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3:
Zero-shot one image to 3d object. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 9298–9309. openaccess.thecvf.com, 2023. 2, 3, 4

[18] Ying-Tian Liu, Yuan-Chen Guo, Vikram Voleti, Ruizhi
Shao, Chia-Hao Chen, Guan Luo, Zixin Zou, Chen Wang,
Christian Laforte, Yan-Pei Cao, and Others. threestudio:
a modular framework for diffusion-guided 3D generation.
cg.cs.tsinghua.edu.cn. 1

[19] Zhiheng Liu, Ruili Feng, Kai Zhu, Yifei Zhang, Kecheng
Zheng, Yu Liu, Deli Zhao, Jingren Zhou, and Yang Cao.
Cones: Concept neurons in diffusion models for customized
generation. 2023. 2

[20] Jonathan Lorraine, Kevin Xie, Xiaohui Zeng, Chen-Hsuan
Lin, Towaki Takikawa, Nicholas Sharp, Tsung-Yi Lin, Ming-
Yu Liu, Sanja Fidler, and James Lucas. ATT3D: Amortized
Text-to-3D object synthesis. 2023. 2

[21] Shitong Luo and Wei Hu. Diffusion probabilistic models for
3D point cloud generation. pages 2837–2845, 2021. 1

[22] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jia-
jun Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit: Guided
image synthesis and editing with stochastic differential equa-
tions. 2021. 1, 2

[23] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
representing scenes as neural radiance fields for view synthe-
sis. Commun. ACM, 65(1):99–106, 2021. 1, 2, 3, 4

[24] Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky,
and Tiberiu Popa. CLIP-Mesh: Generating textured meshes
from text using pretrained image-text models. In SIGGRAPH
Asia 2022 Conference Papers, number Article 25 in SA ’22,
pages 1–8, New York, NY, USA, 2022. Association for Com-
puting Machinery. 6

[25] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and
Daniel Cohen-Or. Null-text inversion for editing real images
using guided diffusion models. pages 6038–6047, 2022. 2

[26] Zijie Pan, Jiachen Lu, Xiatian Zhu, and Li Zhang. Enhancing
High-Resolution 3D generation through pixel-wise gradient
clipping. 2023. 7, 8

[27] Dong Huk Park, Samaneh Azadi, Xihui Liu, Trevor Darrell,
and Anna Rohrbach. Benchmark for compositional Text-to-
Image synthesis. 2021. 6

[28] Ryan Po and Gordon Wetzstein. Compositional 3D scene
generation using locally conditioned diffusion. 2023. 2

[29] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Milden-
hall. DreamFusion: Text-to-3D using 2D diffusion. 2022. 1,
2, 3, 6, 7, 8

[30] Guocheng Qian, Jinjie Mai, Abdullah Hamdi, Jian Ren,
Aliaksandr Siarohin, Bing Li, Hsin-Ying Lee, Ivan Sko-
rokhodov, Peter Wonka, Sergey Tulyakov, and Bernard
Ghanem. Magic123: One image to High-Quality 3D object
generation using both 2D and 3D diffusion priors. 2023. 2,
3

[31] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of

4618



the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695. openaccess.thecvf.com,
2022. 1, 2

[32] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. DreamBooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. pages 22500–22510, 2022. 2

[33] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C Berg, and Li
Fei-Fei. ImageNet large scale visual recognition challenge.
2014. 6

[34] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
and Others. Photorealistic text-to-image diffusion models
with deep language understanding. Adv. Neural Inf. Process.
Syst., 35:36479–36494, 2022. 2

[35] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-
man, Patrick Schramowski, Srivatsa Kundurthy, Katherine
Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia
Jitsev. LAION-5B: An open large-scale dataset for train-
ing next generation image-text models. pages 25278–25294,
2022. 1, 2

[36] Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh,
and Nima Anari. Parallel sampling of diffusion models.
2023. 2, 3, 6

[37] J Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner,
Jiajun Wu, and Gordon Wetzstein. 3D neural field generation
using triplane diffusion. pages 20875–20886, 2022. 1

[38] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In Proceedings of the
32nd International Conference on Machine Learning, pages
2256–2265, Lille, France, 2015. PMLR. 1, 2

[39] Yang Song and Stefano Ermon. Generative modeling by esti-
mating gradients of the data distribution. Advances in neural
information processing systems, 32, 2019.

[40] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-Based
generative modeling through stochastic differential equa-
tions. 2020. 1, 2

[41] Yang Song, Chenlin Meng, Renjie Liao, and Stefano Ermon.
Accelerating feedforward computation via parallel nonlinear
equation solving. In International Conference on Machine
Learning, pages 9791–9800. PMLR, 2021. 2

[42] Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Block-
wise parallel decoding for deep autoregressive models. Ad-
vances in Neural Information Processing Systems, 31, 2018.
2

[43] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang
Zeng. DREAMGAUSSIAN: GENERATIVE GAUSSIAN
SPLAT- TING FOR EFFICIENT 3D CONTENT CRE-
ATION. 1, 2, 3, 4, 5, 6, 7, 8

[44] Christina Tsalicoglou, Fabian Manhardt, Alessio Tonioni,
Michael Niemeyer, and Federico Tombari. TextMesh: Gen-
eration of realistic 3D meshes from text prompts. 2023. 2, 6,
7, 8

[45] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh,
and Greg Shakhnarovich. Score jacobian chaining: Lift-
ing pretrained 2d diffusion models for 3d generation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12619–12629. openac-
cess.thecvf.com, 2023. 1, 2, 3

[46] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan
Li, Hang Su, and Jun Zhu. ProlificDreamer: High-Fidelity
and diverse Text-to-3D generation with variational score dis-
tillation. 2023. 1, 2, 3, 6, 7, 8

[47] Haohan Weng, Tianyu Yang, Jianan Wang, Yu Li, Tong
Zhang, C L Philip Chen, and Lei Zhang. Consistent123:
Improve consistency for one image to 3D object synthesis.
2023. 2

[48] Taoran Yi, Jiemin Fang, Guanjun Wu, Lingxi Xie, Xiaopeng
Zhang, Wenyu Liu, Qi Tian, and Xinggang Wang. Gaussian-
Dreamer: Fast generation from text to 3D gaussian splatting
with point cloud priors. 2023. 2, 3, 4

[49] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. pages
3836–3847, 2023. 1, 2

[50] Linqi Zhou, Yilun Du, and Jiajun Wu. 3D shape genera-
tion and completion through point-voxel diffusion. In 2021
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 5826–5835. IEEE, 2021. 1

4619


	. Introduction
	. Related Works
	. Preliminary
	. Text-to-3D Generation via Score Distillation
	. Picard Iterations

	. Method
	. Score Distillation as Sequential Computation
	. Generalizing Picard Iterations
	. Practical Decisions

	. Experiments
	. Accelerating Text-to-3D Generation
	. Ablation Studies

	. Conclusion

