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Figure 1. DrivingGaussian achieves photorealistic reconstruction and rendering performance for surrounding dynamic autonomous driv-
ing scenes. Naive approaches [17, 53] either produce unpleasant artifacts and blurring in the large-scale background or struggle with
reconstructing dynamic objects and detailed scene geometry. DrivingGaussian first introduces Composite Gaussian Splatting to efficiently
represent static backgrounds and multiple dynamic objects in complex surrounding driving scenes. DrivingGaussian enables the high-
quality synthesis of surrounding views across multi-camera and facilitates long-term dynamic scene reconstruction.

Abstract

We present DrivingGaussian, an efficient and effective
framework for surrounding dynamic autonomous driving
scenes. For complex scenes with moving objects, we first
sequentially and progressively model the static background
of the entire scene with incremental static 3D Gaussians.
We then leverage a composite dynamic Gaussian graph to
handle multiple moving objects, individually reconstruct-
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ing each object and restoring their accurate positions
and occlusion relationships within the scene. We further
use a LiDAR prior for Gaussian Splatting to reconstruct
scenes with greater details and maintain panoramic con-
sistency. DrivingGaussian outperforms existing methods
in dynamic driving scene reconstruction and enables pho-
torealistic surround-view synthesis with high-fidelity and
multi-camera consistency. Our project page is at: https:
//github.com/VDIGPKU/DrivingGaussian.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Representing and modeling large-scale dynamic scenes
serves as the foundation for 3D scene understanding and
contributes to a series of autonomous driving tasks, such
as BEV perception [20, 21, 25], 3D detection [7, 9], and
motion planning [6, 42]. View synthesis and controllable
simulation for driving scenes also enable the generation of
corner cases, and safety-critical situations aid in validating
and enhancing the safety of autonomous driving systems.

Unfortunately, reconstructing such complex 3D scenes
from sparse vehicle-mounted sensor data is challenging, es-
pecially when the ego vehicle moves at high speeds. Imag-
ine a scene where a vehicle emerges at the edge of an un-
bounded scene captured by the left-front camera, swiftly
moves to the center of the front camera’s view, and in
the subsequent frames, diminishes into a distant dot. For
such driving scenes, both ego vehicles and dynamic ob-
jects are moving at relatively high speeds, posing signif-
icant challenges to the scene’s construction. The static
background and dynamic objects undergo rapid changes,
depicted through limited views. Additionally, it becomes
even more challenging in multi-camera settings due to their
outward views, minimal overlaps, and variations in light
from different directions. Complex geometry, diverse opti-
cal degradation, and spatiotemporal inconsistency also pose
significant challenges to modeling such 360◦ large-scale dy-
namic driving scenes.

Neural radiance fields [30] (NeRF) has recently emerged
as a promising neural reconstruction method for model-
ing object-level or room-level scenes. Some recent stud-
ies [41, 43, 46, 56] have extended NeRF to large-scale, un-
bounded static scenes, while some focus on modeling mul-
tiple dynamic objects within the scene [32, 40]. However,
NeRF-based methods are computationally intensive and re-
quire densely overlapping views and consistent lighting.
These limit their ability to construct driving scenes with
outward multi-camera setups at high speeds. Furthermore,
network capacity limitations make it challenging for these
methods to model long-term, dynamic scenes with multiple
objects, leading to visual artifacts and blurring.

In contrast to NeRF, the 3D Gaussian Splatting
(3DGS) [17] represents scenes with more explicit 3D Gaus-
sian representation and achieves impressive performance in
novel view synthesis. However, the original 3DGS still
encounters significant challenges in modeling large-scale
dynamic driving scenes due to fixed Gaussians and con-
strained representation capacity. Some efforts [27, 47, 55]
have extended 3DGS to dynamic scenes by constructing
Gaussians at each timestamp. Unfortunately, they focus on
individual dynamic objects and fail to handle complex driv-
ing scenes involving combined static-dynamic regions and
multiple moving objects at high speeds.

In this paper, we introduce DrivingGaussian, a novel

framework that represents surrounding dynamic au-
tonomous driving scenes. Our key idea is to model the com-
plex driving scene hierarchically using sequential data from
multiple sensors. We adopt Composite Gaussian Splat-
ting to decompose the whole scene into static background
and dynamic objects, reconstructing each part separately.
Specifically, we first use incremental static 3D Gaussians
to construct backgrounds from surrounding multi-camera
views sequentially. We then employ a composite dynamic
Gaussian graph to individually reconstruct each moving ob-
ject and dynamically integrate them into the entire scene
based on the Gaussian graph. Based on these, global ren-
dering via Gaussian Splatting captures occlusion relation-
ships in the real world, encompassing static backgrounds
and dynamic objects. Further, we incorporate the LiDAR
prior to 3DGS, which is capable of recovering more precise
geometry and maintaining better multi-view consistency.

Extensive experiments show that our method achieves
state-of-the-art performance on public autonomous driv-
ing datasets. Even without LiDAR prior, our method still
presents promising performance, demonstrating its versatil-
ity in reconstructing dynamic driving scenes. In addition,
our framework enables controllable scene editing, such as
corner case simulation, which facilitates the validation of
the safety and robustness of autonomous driving systems.
The main contributions of this work are:
• To our knowledge, DrivingGaussian is the first represen-

tation and modeling framework for large-scale, dynamic
driving scenes based on Composite Gaussian Splatting.

• Two novel modules are introduced, including Incremental
Static 3D Gaussians and Composite Dynamic Gaussian
Graph. The former reconstructs the static background
incrementally, while the latter models multiple dynamic
objects with a Gaussian graph. Assisted by LiDAR prior,
the proposed method facilitates the recovery of complete
geometry in surrounding dynamic driving scenes.

• Comprehensive experiments show that DrivingGaus-
sian outperforms previous methods in challenging au-
tonomous driving benchmarks and enables corner case
simulation for various downstream tasks.

2. Related Work
NeRF for Bounded Scenes. The rapid progress in neural
rendering has received significant attention. Neural Radi-
ance Fields (NeRF), which utilizes multi-layer perceptrons
(MLPs) and differentiable volume rendering, can recon-
struct 3D scenes and synthesize novel views from a set of
2D images. However, original NeRF is limited to bounded
scenes, requiring a consistent distance between the center
object and cameras. It also struggles with scenes captured
with slight overlaps and outward capture methods. Numer-
ous advancements have expanded the capabilities of NeRF,
leading to notable improvements in training speed [10, 12,
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Figure 2. Overall pipeline of our method. Left: DrivingGaussian takes sequential data from multi-sensor, including multi-camera images
and LiDAR. Middle: To represent the large-scale dynamic driving scenes, we propose Composite Gaussian Splatting, which consists of
two components. The first part incrementally reconstructs the extensive static background, while the second constructs multiple dynamic
objects with a Gaussian graph and dynamically integrates them into the scene. Right: DrivingGaussian demonstrates good performance
across multiple tasks and application scenarios.

31], pose optimization [4, 23, 45], scene editing [19, 36],
and dynamic scene representation [8, 11, 16, 33]. Neverthe-
less, applying NeRF to large-scale unbounded scenes, such
as surrounding driving scenarios, remains a challenge.

NeRF for Unbounded Scenes. For large-scale un-
bounded scenes, [26, 28, 41, 43, 46, 56] have intro-
duced refined versions of NeRF to model multi-scale urban-
level static scenes. Inspired by the mipmapping approach
to preventing aliasing, [2, 3] extend NeRF to unbounded
scenes. To enable high-fidelity rendering, [51] combines the
compact multi-resolution ground feature planes with NeRF
for large urban scenes. [14] proposes a close-range-vs-
distant-view disentanglement approach, which can model
unbounded street views but ignores dynamic objects on the
road. However, these methods model scenes under the as-
sumption that the scene remains static and face challenges
in effectively capturing dynamic elements.

Meanwhile, previous NeRF-based methods highly relied
on accurate camera poses. Without precise poses, [24, 29]
enable synthesis from dynamic monocular video. However,
these methods are confined to forward monocular view-
points and encounter challenges when dealing with inputs
from surrounding multi-camera setups. For dynamic urban
scenes, [32, 40] extend NeRF to dynamic scenes with mul-
tiple objects using a scene graph. [48, 54] propose instance-
aware, modular, and realistic simulators for monocular dy-
namic scenes. [44, 50, 53] decompose the scene into static
background and dynamic objects and constructs the scene
with the help of LiDAR depth and 2D optical flow.

The quality of views synthesized by the aforementioned
NeRF-based methods deteriorates in scenarios with multi-
ple dynamic objects and variations and lighting variations,
owing to their dependency on ray sampling. In addition,

the utilization of LiDAR is confined to providing auxiliary
depth supervision, and its potential benefits in reconstruc-
tion, such as providing geometric priors, are not explored.

To address these limitations, we utilize Composite Gaus-
sian Splatting to model unbounded dynamic scenes, where
the static background is incrementally reconstructed as the
ego vehicle moves, and multiple dynamic objects are mod-
eled and integrated into the entire scene through Gaussian
graph. Meanwhile, LiDAR is utilized as the initialization
for Gaussians, offering more precise geometric shape priors
and comprehensive descriptions for 3D representation.

3D Gaussian Splatting. Recent 3D Gaussian Splatting
(3DGS) [17] model a static scene with numerous 3D Gaus-
sians, achieving optimal results in novel view synthesis and
training speeds. Compared with previous explicit scene rep-
resentations (e.g., mesh, voxels), the 3DGS can model com-
plex shapes with fewer parameters. Unlike implicit neu-
ral rendering, the 3DGS allows fast rendering and differen-
tiable computation with splat-based rasterization.

Dynamic 3D Gaussian Splatting. The original 3DGS is
designed to represent static scenes, and some researchers
have extended it to dynamic objects/scenes. Given a set of
dynamic monocular images, [55] introduces a deformation
network to model the motion of Gaussians. [47] connects
adjacent Gaussians via a HexPlane, enabling real-time ren-
dering. However, these two approaches are explicitly de-
signed for monocular single-camera scenes focused on a
center object. [27] parameterizes the entire scene using a
set of dynamic Gaussians that evolve. However, it requires
a camera array with dense multi-view as inputs.

In real-world autonomous driving scenes, the high-speed
movement of data collection platforms leads to exten-
sive and complex background variations, often captured by
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sparse views (e.g., 2-4 views). Moreover, fast-moving dy-
namic objects with intense spatial changes and occlusion
further complicate the situation. Collectively, these factors
pose significant challenges for existing methods.

3. Method
3.1. Composite Gaussian Splatting

3DGS performs well in purely static scenes but has signifi-
cant limitations in mixed scenes involving large-scale static
backgrounds and multiple dynamic objects. As illustrated
in Figure 2, we aim to represent surrounding dynamic driv-
ing scenes with Composite Gaussian Splatting for large-
scale static backgrounds and dynamic objects.

Incremental Static 3D Gaussians. The static back-
grounds of driving scenes pose challenges due to their large
scale, long duration, and variations in ego vehicle move-
ment across multiple cameras. As the ego vehicle moves,
the static background frequently undergoes temporal-spatial
alterations. Prematurely incorporating distant street scenes
from distant time steps can cause scale confusion due to the
perspective principle, resulting in unpleasant artifacts and
blurring. To solve this, we enhance 3DGS by introducing
Incremental Static 3D Gaussians (Figure 3), leveraging the
perspective changes introduced by the vehicle’s movements
and temporal relationships between adjacent frames.

Specifically, we first uniformly divide the static scene
into N bins based on the depth range provided by LiDAR
prior (Section 3.2). These bins are arranged in chronologi-
cal order, denoted as {bi}N , where each bin contains multi-
camera images from one or more time steps. For the scene
within the first bin, we initialize the Gaussians using LiDAR
priors (similarly applicable to SfM points):

pb0(l|µ,Σ) = e−
1
2 (l−µ)⊤Σ−1(l−µ) (1)

where l ∈ R3 is the position of the LiDAR prior; µ is the
mean of the LiDAR points; Σ ∈ R3×3 is an anisotropic
covariance matrix; and ⊤ is the transpose operator. We uti-
lize the surrounding views within this bin segment as su-
pervision to update the parameters of the Gaussian model,
including position P (x, y, z), covariance matrix Σ, coef-
ficients of spherical harmonics for view-dependent color
C(r, g, b), along with an opacity α.

For the subsequent bins, we use the Gaussians from the
previous bin as the position priors and align the adjacent
bins based on their overlapping regions. The 3D center for
each bin can be defined as:

P̂b+1(Gs) = Pb(Gs)
⋃

(xb+1, yb+1, zb+1) (2)

where P̂ is the collection of 3D center for Gaussians Gs
of all currently visible regions, (xb+1, yb+1, zb+1) is the
Gaussians coordinate within the b + 1 region. Iteratively,

we incorporate scenes from the subsequent bins into the
previously constructed Gaussians with multiple surround-
ing frames as supervision. The incremental static Gaussian
model Gs can be defined as:

Ĉ(Gs) =

N∑
b=1

Γb αb Cb, Γb =

b−1∏
i=1

(1− αb) (3)

where C denotes the color corresponding to each single
Gaussian at a certain view, α is the opacity, and Γ is the
accumulated transmittance of the scene according to the α
at all the bins. During this process, the overlapping regions
between surrounding multi-camera images are used to form
the Gaussian models’ implicit alignment jointly.

Note that during the incremental construction of static
Gaussian models, there might be differences in sampling
the same scene between the front and rear cameras [14]. To
address this, we employ a weighted averaging to reconstruct
the scene’s colors as accurately as possible during the 3D
Gaussian projection:

C̃ = ς(Gs)
∑

ω(Ĉ(Gs)|R, T ) (4)

where C̃ is the optimized pixel color, ς denotes the differ-
ential splatting, ω is a learnable weight coefficient, [R, T ] is
the view-matirx for aligning multi-camera views.

Composite Dynamic Gaussian Graph. The autonomous
driving environment is highly complex, involving multiple
dynamic objects and temporal changes. As shown in Fig-
ure 3, objects are often observed from limited views (e.g.,
2-4 views) due to the movements of the ego vehicle and
dynamic objects. The high speed also leads to significant
spatial changes in dynamic objects, making it challenging
to represent them using fixed Gaussians.

To address the challenges, we introduce the Compos-
ite Dynamic Gaussian Graph, enabling the construction of
multiple dynamic objects in large-scale, long-term driving
scenes. We first decompose dynamic foregrounds from
static backgrounds to build the dynamic Gaussian graph us-
ing bounding boxes provided by the datasets or predicted
results from the 3D object detector and tracker. Dynamic
objects are identified by their object ID and corresponding
timestamps of appearance. Additionally, SAM-based mod-
els [18, 35] are employed for precise pixel-wise extraction
of dynamic objects based on the range of bounding boxes.

We then build the dynamic Gaussian graph as

H =< O,Gd,M, P,A, T >, (5)

where each node stores an instance object o ∈ O, gi ∈ Gd
denotes the corresponding dynamic Gaussians, and mo ∈
M is the transform matrix for each object. po(xt, yt, zt) ∈
P is the center coordinate of the bounding box, and ao =
(θt, ϕt) ∈ A is the orientation of the bounding box at time
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Figure 3. Composite Gaussian Splatting with Incremental
Static 3D Gaussians and Dynamic Gaussian Graph. We adopt
Composite Gaussian Splatting to decompose the whole scene into
static background and dynamic objects, reconstructing each part
separately and integrating them for global rendering.

step t ∈ T . For each dynamic object, we instantiate a sep-
arate ensemble of dynamic Gaussians and collectively opti-
mize all parameters associated with these object Gaussians.
Using the transformation matrix mo, we transform the coor-
dinate system of the target object o to the world coordinate
where the static background resides:

m−1
o = R−1

o S−1
o (6)

where R−1
o and S−1

o are the rotation and translation matri-
ces corresponding to each object.

After optimizing all nodes in the dynamic Gaussian
graph, we combine dynamic objects and static backgrounds
using a Composite Gaussian Graph. Each node’s Gaus-
sian distribution is concatenated into the static Gaussian
field based on the bounding box position and orientation
in chronological order. In cases of occlusion between mul-
tiple dynamic objects, we adjust the opacity based on the
distance from the camera center: closer objects have higher
opacity, following the principles of light propagation:

αo,t =
∑ (pt − bo)

2 · cot ao
∥(bo|Ro, So)− ρ∥2

αp0 (7)

where αo,t is the adjusted opacity of dynamic Gaussians
for object o at time step t, pt = (xt, yt, zt) is the center
of Gaussians for the object. [Ro, So] denotes the object-
to-world transform matrix, ρ denotes the center of camera
view, and αp0

is the opacity of Gaussians.
Finally, the composite Gaussian graph, including both

static background and multiple dynamic objects, can be for-
mulated as:

Gcomp =
∑

H < O,Gd,M, P,A, T > +Gs (8)

where Gs is obtained in Section 3.1 through Incremental
Static 3D Gaussians, and H denotes the optimized dynamic
Gaussian graph of the entire scene.

3.2. LiDAR Prior with surrounding views

The primitive 3DGS attempts to initialize Gaussians via
structure-from-motion (SfM). However, unbounded urban

scenes for autonomous driving contain many multiscale
backgrounds and foregrounds. Nonetheless, they are only
glimpsed through exceedingly sparse views, resulting in er-
roneous and incomplete recovery of geometric structures.

To provide better initialization for Gaussians, we in-
troduce the LiDAR prior to 3D Gaussian to obtain better
geometries and maintain multi-camera consistency in sur-
rounding view registration. At each timestep t ∈ T , given a
set of multi-camera images {Iit |i = 1 . . . N} collected from
the moving platform and multi-frame LiDAR sweeps Lt.
We aim to minimize multi-camera registration errors using
LiDAR-image multi-modal data and obtain accurate point
positions and geometric priors.

We first merge multiple frames of LiDAR sweeps to ob-
tain the complete point cloud of the scene, denoted as L.
We follow Colmap [39] and extract image features X = xq

p

from each image individually. Next, we project the LiDAR
points onto surrounding images. For each LiDAR point l,
we transform its coordinates to the camera coordinate sys-
tem and match it with the 2D-pixel of the camera image
plane through projection:

xq
p = K[Ri

t · ls + T i
t ] (9)

where xq
p is the 2D pixel of the image, Iit , Ri

t and T i
t are or-

thogonal rotation matrices and translation vectors, respec-
tively. K ∈ R3×3 is the known camera intrinsic. Notably,
points from LiDAR might be projected onto multiple pix-
els across multiple images. Therefore, we select the point
with the shortest Euclidean distance to the image plane and
retain it as the projected point [1, 13], assigning color.

Similar to former works [15, 38] in 3D reconstruction,
we extend the dense bundle adjustment (DBA) to multi-
camera setup and obtain the updated LiDAR points. Ex-
periment results prove that initializing with LiDAR prior to
aligning with surrounding multi-camera images aids in pro-
viding the 3D Gaussians with more precise geometry priors.

3.3. Global Rendering via Gaussian Splatting

We adopt the differentiable 3D Gaussian splatting renderer
ς from [17] and project the global composite 3D Gaussian
into 2D, where the covariance matrix Σ̃ is given by:

Σ̃ = JE Σ E⊤J⊤ (10)

where J is the Jacobian matrix of the perspective projection,
and E denotes the world-to-camera matrix.

The composite Gaussian field projects the global 3D
Gaussian onto multiple 2D planes and is supervised using
surrounding views at each time step. In the global render-
ing process, Gaussians from the next time step are initially
invisible to the current and subsequently incorporated with
the supervision of corresponding global images.

The loss function of our method consists of three parts.
Following [17, 49], we first introduce the Tile Structural
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Figure 4. Qualitative comparison on dynamic reconstruction. We demonstrate the qualitative comparison results with our main com-
petitors EmerNeRF [53] and 3DGS [17] on dynamic reconstruction for 4D driving scenes of nuScenes. DrivingGaussian enables the
high-quality reconstruction of dynamic objects at high speed while maintaining temporal consistency.

Similarity (TSSIM) to Gaussian Splatting, which measures
the similarity between the rendered tile and the correspond-
ing ground truth.

LTSSIM (δ) = 1− 1

Z

Z∑
z=1

SSIM(Ψ(Ĉ),Ψ(C)) (11)

where we split the screen into M tiles, δ is the training pa-
rameters of the Gaussians, Ψ(Ĉ) denotes the rendered tile
from Composite Gaussian Splatting, and Ψ(C) denotes the
paired ground-truth tile.

We also introduce robust loss for reducing outliers [37]
in 3D Gaussians, which can be defined as:

LRobust(δ) = κ(∥Î − I∥2) (12)

where κ ∈ (0, 1] is set to a free variable that controls the
robustness of the loss, I and Î denote the ground truth and
synthesis image, respectively.

The LiDAR loss is further employed by supervising the
expected Gaussians’ position from the LiDAR, obtaining
better geometric structure and edge shapes:

LLiDAR(δ) =
1

s

∑
∥P (Gcomp)− Ls∥2 (13)

where P (Gcomp) is the position of 3D Gaussians, and Ls is
the LiDAR point prior. We optimize the Composite Gaus-
sians by minimizing the sum of three losses.

4. Experiments
4.1. Datasets

The nuScenes [5] dataset is a public large-scale dataset for
autonomous driving, containing 1000 driving scenes col-
lected with multiple sensors (6 cameras, 1 LiDAR, etc).

It has annotations of 23 object classes with 3D bounding
boxes ground truth. Our experiment uses the keyframes
of driving scenes with images collected from 6 cameras
and corresponding LiDAR sweeps (optional) as input. The
KITTI-360 [22] dataset contains multiple sensors, corre-
sponding to over 320k images and point clouds with in-
stance annotations. Even though the dataset provides stereo
camera images, we only use a single camera to validate that
our method also performs well in monocular settings.

4.2. Implementation Details

Our implementation is primarily based on the 3DGS [17]
and 4DGS [47] framework, with fine-tuned optimization
parameters to fit the driving scenes. Instead of using SFM
or randomly initialized points as input, we employ the Li-
DAR prior mentioned in Section 3.2 as the initialization.
We increase the total training iterations to 60,000, set the
threshold for densifying grad to 0.001, and reset the opac-
ity interval to 900. The learning rate of Incremental Static
3D Gaussians remains the same as in the official setting,
while the learning rate of the Composite Dynamic Gaussian
Graph exponentially decays from 1.6e-3 to 1.6e-6. We eval-
uate our method using various metrics, including PSNR,
SSIM, and LPIPS. All the experiments are carried out on
8 RTX8000 with 384 GB memory in total.

4.3. Results and Comparisons

Comparisons of surrounding view reconstruction on
nuScenes. We conduct benchmarking against the state-of-
the-art approaches, including NeRF-based methods [2, 3,
31, 32, 34, 44, 50, 53] and 3DGS-based methods [17, 47].
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Table 1. Overall perforamnce of DrivingGaussian with existing state-of-the-art approaches on the nuScenes dataset. Ours-S denotes
the DrivingGaussian with SfM points initialization, and Ours-L denotes training the Gaussian model with LiDAR prior.

Methods Input PSNR ↑ SSIM ↑ LPIPS ↓
Instant-NGP [31] Images 16.78 0.519 0.570

NeRF+Time Images 17.54 0.565 0.532
NSG [32] Images 21.67 0.671 0.424

Mip-NeRF [2] Images 18.08 0.572 0.551
Mip-NeRF360 [3] Images 22.61 0.688 0.395
Urban-NeRF [34] Images + LiDAR 20.75 0.627 0.480

S-NeRF [50] Images + LiDAR 25.43 0.730 0.302
SUDS [44] Images + LiDAR 21.26 0.603 0.466

EmerNeRF [53] Images + LiDAR 26.75 0.760 0.311
3DGS [17] Images + SfM Points 26.08 0.717 0.298
4DGS [47] Images + SfM Points 19.79 0.622 0.473

Ours-S Images + SfM Points 28.36 0.851 0.256
Ours-L Images + LiDAR 28.74 0.865 0.237

Table 2. Overall perforamcne of DrivingGaussian with existing
state-of-the-art approaches on the KITTI-360 dataset.

Methods PSNR ↑ SSIM ↑
NeRF [30] 21.94 0.781
NSG [32] 22.89 0.836

Point-NeRF [52] 21.54 0.793
Mip-NeRF360 [3] 23.27 0.836

SUDS [44] 23.30 0.844
DNMP [26] 23.41 0.846
3DGS [17] 22.93 0.847

Ours-S 25.18 0.862
Ours-L 25.62 0.868

As shown in Table 1, our method outperforms Instant-
NGP [31] by a large margin, which employs a hash-based
NeRF. Compared with NSG [32], Mip-NeRF [2] and Mip-
NeRF360 [3], our method also significantly surpasses them
across all evaluated metrics.

Urban-NeRF [34] first introduces LiDAR to NeRF to re-
construct urban scenes. However, it primarily only lever-
ages LiDAR to provide depth supervision. Instead, we
leverage LiDAR as a more effective geometric prior and
incorporate it into 3DGS. Our proposed method achieves
superior results compared to S-NeRF [50] and SUDS [44],
both of which decompose the scene into static background
and dynamic objects and construct the scene with the help
of LiDAR. Compared to our primary competitor, EmerN-
eRF [53], which applies spatial-temporal representation for
dynamic driving scenes using flow fields. Our method out-
performs it across all metrics, eliminating the necessity
for estimating scene flow. For Gaussian-based approaches,
our method boosts the performance of our baseline method
3DGS [17] and 4DGS [47] on driving scenes across all eval-
uated metrics and achieves optimal results.

We also compare qualitatively with our main competitors
EmerNeRF [53] and 3DGS [17] on challenging nuScenes
driving scenes. For surrounding view synthesis with multi-
camera, as shown in Figure 1, our method enables the
generation of photo-realistic rendering images and ensures

view consistency across multi-camera. Meanwhile, EmerN-
eRF [53] and 3DGS [17] struggle in challenging regions,
displaying undesirable visual artifacts such as ghosting, dy-
namic object disappearance, loss of plant texture details,
lane markings, and distant scene blurring.

We further demonstrate the reconstruction results for dy-
namic temporal scenes. Our method accurately models dy-
namic objects within large-scale scenes, mitigating issues
such as loss, ghosting, or blurring of these dynamic ele-
ments. We also maintain consistency in constructing dy-
namic objects over time, even when they move at a rela-
tively fast speed. In comparison, [17, 53] both fail in mod-
eling fast-moving dynamic objects, as shown in Figure 4.
Comparisons of mono-view reconstruction on KITTI-
360. To further validate the effectiveness of our method on
monocular driving scene setting, we conduct experiments
with the KITTI-360 dataset and compare it with existing
SOTA methods, including NeRF-based methods [3, 30],
point-based method Point-NeRF [52], graph-based method
NSG [32], flow-based method SUDS [44], mesh-based
method DNMP [26], and 3DGS [17]. As shown in Ta-
ble 2, our method demonstrates the optimal performance in
monocular driving scenes, surpassing existing methods by
a large margin. More quantitative and qualitative results are
available in the supplementary material.

4.4. Ablation Study

Initialization prior for Gaussians. Comparative experi-
ments are conducted to analyze the effect of different pri-
ors and initialization methods on the 3DGS. The original
3DGS provides two initialization modes: randomly gener-
ated points and SfM points computed by COLMAP [39].
We additionally offer two other initialization approaches:
point clouds exported from a pre-trained NeRF model and
points generated with LiDAR prior.

Meanwhile, to analyze the effect of point cloud quantity,
we down-sample the LiDAR to 600K and apply adaptive fil-
tering (1M) to control the number of LiDAR points. Differ-
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Figure 5. Qualitative comparison with different initialization
methods for 3D Gaussians. The LiDAR prior for 3D Gaussians
aids in obtaining better geometries and precise details.
Table 3. Effect of different initialization methods on the Gaus-
sian model. LiDAR-600K † denotes for downsampling the orig-
inal LiDAR points to a corresponding point cloud magnitude.
LiDAR-1M ‡ denotes denoising and removing outliers in LiDAR
points, which is used in our method.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
Random-600K 22.18 0.653 0.424
Random-1M 22.23 0.653 0.421
SfM-600K 28.36 0.851 0.256
NeRF-1M 28.51 0.858 0.251

LiDAR-600K † 28.49 0.854 0.245
LiDAR-1M ‡ 28.74 0.865 0.237
LiDAR-2M 28.78 0.867 0.237

ent maximum thresholds (600K and 1M) are set for random
initializations. Here, SfM-600K denotes the points com-
puted by COLMAP, NeRF-1M denotes the points generated
by the pre-trained NeRF model, and LiDAR-2M refers to
the original quantity of LiDAR points.

As shown in Table 3, randomly generated points lead to
the worst results as they lack any geometric prior. Initial-
izing with SfM points also cannot adequately recover the
scene’s precise geometries due to the sparse points and in-
tolerable structural errors. Leveraging point clouds gener-
ated from a pre-trained NeRF model provides a relatively
accurate geometric prior, but there are still noticeable out-
liers. For the model initialized with LiDAR prior, although
downsampling results in loss of geometric information in
some local regions, it still retains relatively accurate struc-
tural priors, thus surpassing SfM (Figure 5). We can also
observe that experiment results do not linearly change with
increasing LiDAR point quantities. We deduce this is be-
cause overly dense points store redundant features that in-
terfere with the optimization of the Gaussian model.
Effectiveness of Each Module. We analyze how each
proposed module contributes to the final performance. As
shown in Table 4, the Composite Dynamic Gaussian Graph
module plays a crucial role in reconstructing dynamic driv-
ing scenes, while the Incremental Static 3D Gaussians mod-
ule enables high-quality large-scale background reconstruc-
tion. These two novel modules significantly enhance the
modeling quality of complex driving scenes. Regarding the
proposed loss functions, results indicate that both LTSSIM

Table 4. Effect of each module in our proposed method. IS3G is
short for the Incremental Static 3D Gaussians module, and CDGG
is short for the Composite Dynamic Gaussian Graph module.

Model PSNR ↑ SSIM ↑ LPIPS ↓
w/o IS3G 27.72 0.771 0.295

w/o CDGG 26.97 0.752 0.306
w/o LTSSIM 27.88 0.783 0.280
w/o LRobust 28.05 0.814 0.271
w/o LLiDAR 28.45 0.854 0.248

Ours-S 28.36 0.851 0.256
Ours-L 28.74 0.865 0.237

and LRobust notably improve the rendering quality, enhanc-
ing texture details and removing artifacts. LLiDAR, assisted
by LiDAR prior, helps Gaussians achieve better geometric
priors. Experimental results also demonstrate that Driving-
Gaussian performs well even without LiDAR prior, show-
casing strong robustness for various initialization methods.

4.5. Corner Case Simulation

We demonstrate the effectiveness of our approach to simu-
lating corner cases in real-world driving scenes. As shown
in Figure 6, we can insert arbitrary dynamic objects into the
reconstructed scenes. The simulated scene maintains tem-
poral coherence and exhibits good inter-sensor consistency
among multiple sensors. Our method enables controllable
simulation and editing for autonomous driving scenes, fa-
cilitating safe self-driving systems research.

t
1

t
2

t
3

Figure 6. Example of corner case simulation: A man walking
on the road suddenly falls, and a car approaches ahead.

5. Conclusion
We introduce DrivingGaussian, a novel framework for rep-
resenting large-scale dynamic autonomous driving scenes
based on the proposed Composite Gaussian Splatting. Driv-
ingGaussian progressively models the static background
with incremental static 3D Gaussians and captures multi-
ple moving objects using a composite dynamic Gaussian
graph. We further leverage LiDAR prior for accurate ge-
ometric structures and multi-view consistency. Driving-
Gaussian achieves state-of-the-art performance on two au-
tonomous driving datasets, allowing high-quality surround-
ing view synthesis and dynamic scene reconstruction.
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