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Figure 1. (a) We achieve the separation of direct and global illumination components of a scene by introducing a hybrid system comprising
an RGB camera and an event camera. The RGB camera captures an original scene image, while the event camera records rapid illumination
changes induced by the shadow of a line occluder sweeping over the scene. We propose EvDiG to combine the two signals for achieving
effective and efficient separation. (b) Classification of the input data requirements of existing methods. (c) The results of the corresponding
representative methods (Nayer et al. [25], Nie et al. [26]) and their data collection time (We collect 30 fps videos and input 25/30/1/1
frames into MF-p/MF-s/SF/ours methods respectively, events are collected during the interframe period).

Abstract

Separating the direct and global components of a scene
aids in shape recovery and basic material understanding.
Conventional methods capture multiple frames under high
frequency illumination patterns or shadows, requiring the
scene to keep stationary during the image acquisition pro-
cess. Single-frame methods simplify the capture procedure
but yield lower-quality separation results. In this paper,
we leverage the event camera to facilitate the separation of
direct and global components, enabling video-rate separa-
tion of high quality. In detail, we adopt an event camera to
record rapid illumination changes caused by the shadow of
a line occluder sweeping over the scene, and reconstruct the
coarse separation results through event accumulation. We
then design a network to resolve the noise in the coarse sep-
aration results and restore color information. A real-world
dataset is collected using a hybrid camera system for net-
work training and evaluation. Experimental results show
superior performance over state-of-the-art methods.

∗ Corresponding author

1. Introduction

When a scene is illuminated by a light source, the radiance
of each point is a cumulative result of both direct and global
components. The direct component signifies the light that
travels straight from the source, reflecting just once before
reaching the observer. Light also interacts intricately with
the environment, resulting in phenomena like interreflec-
tions, scattering, and diffusion. These phenomena make up
what is known as global illumination.

The separation of direct and global components is a
crucial process that can provide material properties of
the scene and reveal information about complex shape-
material-lighting interactions. For example, eliminating the
effect of global illumination can improve shape recovery
techniques like photometric stereo [39] and structured light
scanning [5]. These techniques predominantly assume di-
rect or low-frequency light transport and do not account for
global illumination effects.

How to separate direct and global components accurately
is a lasting and challenging problem. The direct compo-
nents travel the shortest distance among all light paths that
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arrive at a pixel [40]. The different arrival time of direct
and global lighting naturally leads to the development of
time-resolved methods. Ultrahigh temporal resolution cam-
eras, such as time-of-flight (ToF) cameras [10, 13] and sin-
gle photon sensors [19, 30], are employed to distinguish the
unique transient behaviors of two illumination components
in the order of 10 ps. Despite their effectiveness, the appli-
cation of time-resolved methods is limited by the high cost
of special devices and long periods of data capture [40].

In light of the inherent limitations of time-resolved meth-
ods, the separation of direct and global components on RGB
images has been explored. The simplest setup is separating
two components from a single image, as demonstrated by
the single-frame (SF) method illustrated in Fig. 1(b), while
it is an obviously ill-posed problem. Thus various priors
have been used to enhance separation accuracy, such as
sparsity [35], constraints on global illumination types [2],
and learned priors [26]. However, achieving reliable illumi-
nation separation, especially in challenging scenes such as
areas with highly specular reflection, remains difficult when
only relying on such priors. To alleviate ill-posedness, Na-
yar et al. [25] propose an active illumination method to sep-
arate the direct and global components using high frequency
illumination (MF-p and MF-s in Fig. 1(b)). This method
achieves promising performance and several methods even
treat their results as ground truth (e.g., Nie et al. [26]). How-
ever, it requires capturing multiple frames and keeping the
scene static throughout data capture. Achar et al. [1] extend
the methodology to dynamic scenes with motion compen-
sation, but neglect changes of direct and global components
caused by motion within a temporal sliding window.

Event camera [18] is a novel type of neuromorphic sen-
sor that can detect radiance changes and trigger an event
whenever its log variation exceeds a threshold. Thanks to
their high temporal resolution property, event cameras have
been applied to physics-based vision tasks such as shape
from polarization [23], photometric stereo [33], and struc-
tured light scanning [22], offering solutions that make a
great trade-off between speed and accuracy. Several proper-
ties of event cameras render them suitable for the separation
of direct and global components. Firstly, drawing upon the
principles of separation utilizing high frequency illumina-
tion [25], only the minimum and the maximum brightness
values of each pixel are required to compute the direct and
global components. The signal-triggering model of event
cameras makes them efficient for capturing the whole ra-
diance change process with significantly low throughput.
Secondly, the high temporal resolution of event cameras
can significantly reduce data capture duration, enhancing
adaptability to dynamic scenes. Thirdly, their high dy-

namic range can alleviate overexposure issues, particularly
in areas with highly specular reflection. These relationships
motivate us to think about: Can we use radiance changes

recorded via the event stream to assist the separation of di-
rect and global components?

Introducing event cameras to the direct-global separation
task naturally brings low throughput, shortened data capture
periods, and high dynamic range advantages. But process-
ing event streams for the separation task is not a straightfor-
ward endeavor. Event cameras have lower signal-to-noise
levels and lack color information compared to conventional
cameras. Thus, it is necessary to address the impact of noise
in event cameras and investigate the separation of color in-
formation guided by grayscale event streams.

In this paper, we propose EvDiG, to dig out unique prop-
erties of Event cameras for effective and efficient Direct
and Global components separation, with efforts in solv-
ing the above challenges. EvDiG only requires an RGB-
event hybrid camera system and a stick occluder for sepa-
ration, where the combination of a quickly sweeping stick
and a fast-sensing event camera enhances data capture

efficiency. Inputs include a single starting frame of the
original scene and corresponding event streams capturing
shadow-induced brightness changes (Fig. 1(a)). We first re-
construct the grayscale minimum and maximum brightness
value in the shadow-changing process through event accu-
mulation, thereby obtaining coarse separation results. To
address problems inherent in the coarse results, we design
a two-stage network to refine the coarse separation results
and restore color information. Overall, this paper makes the
following contributions by proposing:

• the first approach for direct and global separation with
a hybrid setup of both an RGB and an event camera,
thereby reducing the capture time and adapting to dy-
namic scenes;

• the event-guided separation framework comprised of two
networks designed to enhance the accuracy of noisy
coarse separation results and bridge the gap in color rep-
resentation between the RGB image and events;

• the first dataset for the separation of direct and global
components that includes both real-world events and im-
ages. Our method outperforms single-frame methods and
matches the performance of multi-frame+pattern meth-
ods. It maintains a data capture time equivalent to that
of single-frame methods and is 20 times more efficient
than multi-frame methods (Fig. 1(c)).

2. Related Works

Image-based separation methods. Nayar et al. [25] show
that direct-global separation can be achieved using high fre-
quency illumination. With active illumination, this sepa-
ration can be performed with two complementary patterns,
but around 20 pattern images are required to obtain satis-
factory results with a real digital projector. There have been
several extensions proposed, such as direct-global separa-
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tion for multiple light sources with a multiplexed illumina-
tion scheme [9], compensating for motions to allow direct-
global separation for dynamic scenes [1], and high-speed
capture with temporal dithering of DLP projectors [24]. In
addition, O’Toole et al. [28, 29] propose a camera-projector
system with primal-dual coding which modulates both the
illumination and the camera response, to probe the light
transport matrix. Based on this system, direct and global
components can be directly captured in live videos.To re-
duce capture time and simplify the hardware setup, single-
frame methods have been explored, using either a high-
frequency pattern image [6, 35] or the original scene im-
age [26] as input. Due to the ill-posed nature of single-
frame separation, these methods strongly rely on priors like
sparsity [35] and learned priors [6, 26].

Time-resolved separation methods. The time-resolved
method is another paradigm for the separation of direct
and global components that exploits ultrafast unconven-
tional cameras and the finite speed of light. Wu et al. [40]
propose to use temporal delay profiles to analyze global
light transport with a streak camera [37]. Similar sepa-
ration methods can be applied to other ToF camera mod-
ifications [13, 16]. Besides ToF cameras, multiple time-
resolved methods have been proposed, such as optical in-
terferometer [8] and single-photon avalanche diode (SPAD)
sensors [19, 30]. Measuring the full transient images of the
scene is a straightforward way to separate the two compo-
nents. The ultrahigh temporal resolution enables them to
distinguish different traveling time of optical components.
However, to obtain the whole x-y-t data, multiple captures
are required, which increases the overall data capture time.
For instance, the streak camera [37] requires one hour cap-
ture time for a 600 slices ToF image [40]. Separation using
optical interferometer [8] needs to translate the reference
mirror to capture frames corresponding to different path-
lengths. A comparison between time-resolved sensors and
event cameras is presented in Tab. 1.

Event camera for physics-based vision. Event cameras
have been introduced into many physics-based vision tasks
in recent years. Corresponding methods have demonstrated
the distinct advantages of event cameras across various
fields, such as shape from polarization [23] and structured
light scanning [21, 22], etc. MC3D [21] is an event-
based structured light 3D scanning technique that simul-
taneously achieves high resolution, high speed and robust
performance. Building on MC3D, ESL [22] enhances noise
robustness by exploiting regularities in neighborhoods of
event data. Takatani et al. [36] utilize an event camera to
acquire bispectral difference images using temporally mod-
ulated illumination. Chen et al. [4] leverage the event cam-
era to alleviate the intensity-distance ambiguity for para-
metric indoor lighting estimation. Similarly, Chen et al. [3]

Table 1. Comparison of typical transient imaging sensors used in
direct-global separation [15] with event cameras.

Methods
Overall

Acquisition Time
Temporal

Resolution Technology

PMD sensor [13] 90 s 1000 ps Time-of-flight imaging

Optical interferometry [8] > 1 h 0.033 ps Interferometry-based imaging

SPAD [30] 64 s 300 ps Photon accumulation imaging

Event camera 33 ms 1 μs Radiance change sensing

integrate the event camera into a visible light positioning
system. By introducing “transient event frequency”, Han et
al. [11] derive precise radiance values from high-temporal-
resolution event signals during light activation. Besides, Xu
et al. [41] propose a method for effectively extracting elec-
tric network frequency traces based on the event-sensing.
These algorithms showcase the wide range of application
scenarios and the potential of event cameras in tasks related
to scene understanding.

3. Method

3.1. Image formation model

Event formation. An event signal e = (p, t, σ) is trig-
gered whenever the logarithmic change of brightness at
pixel p = (x, y) and time t exceeds a preset threshold θ:

|log It(p)− log It−Δt(p)| ≥ θ, (1)

where It(p) denotes the intensity of pixel p at time t, and
the previous event of pixel p is triggered at t − Δt. Po-
larity σ ∈ {1,−1} indicates whether the intensity changes
increase or decrease. Since Eq. (1) applies to each pixel p
independently, pixel indices are omitted henceforth.

Given the instantaneous latent image It1 , let’s assume
Ne events occurring between t1 and t2, denoted as {ek}Ne

k=1.
We can obtain the latent image It2 from the physical model
of event cameras:

log It2 = log It1 + θ ·
Ne∑

k=1

σk. (2)

Direct and global components separation. The intensity
of each pixel comprises two components: the direct compo-
nent Id and the global component Ig . It is assumed that Id
and Ig remain constant at each scene point within a small
temporal window. When the scene is lit with high frequency
illumination at time t, the contribution of the global illu-
mination component to brightness can be approximated as
being scaled by a spatially-uniform factor [25], denoted as
βIg . Here, β represents the fraction of activated source pix-
els. If the scene point is not lit by the source, there will be
no direct contribution. Consequently, the intensity at time t
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Figure 2. Network architecture of EvDiG. We first obtain coarse separated global components in grayscale channel through event accumu-
lation, then use a U-Net and separation correction block built module EvSepNet to refine grayscale separation, and an ImColorNet module
built by color correction blocks is designed to achieve chrominance compensation.

can be expressed as:

It = mt � Id + βIg, (3)

where mt denotes the illumination pattern at the camera
pixels at time t and � is element-wise multiplication. Nayar
et al. [25] propose to utilize a projector to generate the high
frequency illumination patterns or use source occluders cast
high frequency shadows on the scene.

When changing the projected illumination pattern or
sweeping the source occluder across the scene, we will cap-
ture a collection of images {Itk}Nk=0, where N represents
the number of images captured. Defining Imax and Imin

as the maximum and minimum intensities observed at each
scene point within {Itk}Nk=0, we can separate the direct and
global components from:

Imax = Id + βIg, Imin = βIg. (4)

The separation of direct and global components using high-
frequency illumination ideally requires only two comple-
mentary images. In cases using projection illumination
patterns, achieving perfect complementary patterns with
real digital projectors is challenging, due to light leakages
within the projector optics and limited depth of field. In
the experimental setting of [25], 25 images are captured to
ensure the efficacy of separation results. Similarly, when
employing high frequency shadows, to guarantee all scene
points have been subjected to the shadow’s umbra, a sub-
stantial number of images are typically required, often ex-
ceeding 20 (i.e., N > 20).

The shadow
trajectory

Events record 
radiance changes

Coarse direct 
component

Coarse global
component

Original pixel value The max/min intensity

+
Events

≈

Figure 3. The illustration of the event-based minimum brightness
value reconstruction. The θ is the threshold in Eq. (1).

3.2. Event-guided separation

The pipeline of our method is illustrated in Fig. 2. For
the sake of versatility, we focus on separation from moving
shadows in this work. Initially, the color space of the start-
ing frame is converted from RGB to YUV. Subsequently,
we employ event accumulation to reconstruct the maximum
and minimum brightness values in grayscale for each pixel,
as formulated in Eq. (2). The coarse separated results are
derived using Eq. (4). Then EvSepNet is employed to re-
fine the grayscale coarse separation results and ImColor-

Net is used to infer the color information, enhancing color
accuracy and authenticity.
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Coarse separation using event accumulation. We sub-
stitute the image collection {Itk}Nk=0 with the initial frame
It0 and events triggered between t0 and tN . The event
streams, denoted as E , continuously measure the dynamic
brightness changes induced by moving shadows. With the
grayscale starting frame IYt0 and the corresponding events E ,
we can reconstruct any latent image IYtk within the interval
from t0 to tN , applying an event accumulation process as
shown in Eq. (2) and illustrated in Fig. 3. Following the sep-
aration approach presented in Eq. (4), we need to compute
the maximum and minimum pixel intensities during the pe-
riod. Leveraging the asynchronous nature of events, we up-
date the maximum and minimum intensities at each pixel in
an event-by-event manner. Then we obtain the coarse esti-
mated direct component ÎYd and global component ÎYg .

Separation through event accumulation offers several ad-
vantages: 1) With high temporal resolution of event cam-
eras, the capture time can be greatly reduced. Remark-
ably, even when employing a line occluder, the capture time
required is close to single-frame methods. 2) The event-
triggering model, as formulated in Eq. (1), optimizes the
capture of essential brightness changes, thereby reducing
data redundancy in {Itk}Nk=0. However, the coarse separa-
tion results manifest several issues. Firstly, ÎYd and ÎYg are
noisy due to spatial-temporal variations in thresholds [14],
and quantization errors inherent in event cameras. Addi-
tionally, when employing a simple line occluder to cast
high frequency shadows, the smooth global assumption in
Eq. (3) does not always hold, leading to inaccuracies in the
separation. Moreover, the coarse separation results are in
grayscale, devoid of color information. To overcome these
challenges, we propose a two-stage network specifically de-
signed to refine the coarse separation results and restore
color information.

EvSepNet. To address the noise and inaccuracies present
in the coarse separation results ÎYd and ÎYg , we employ
a U-Net architecture-based network, herein referred to as
EvSepNet. This network is specifically designed to denoise
and refine the separation results derived from event accu-
mulation, effectively dealing with cases of high-frequency
global illumination. We transform the input events to an
event stack E, as described in [7]. The refined separation
results are obtain from:

IYd , I
Y
g = fr(I

Y
t0 ,E, ÎYd , Î

Y
g ), (5)

where IYd and IYg represent the refined direct and global
components in grayscale respectively, and fr denotes the
implicit function modeled by EvSepNet. The multi-scale
architecture has been proven to be effective for event-based
video reconstruction [31] and image-event data fusion [42].
The image and event stack features are fused in a multi-
scale manner by the EvSepNet. Leveraging the input image

Reference
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Our Gray Simple Combine

Figure 4. An example (real data) of combining the grayscale sep-
aration results (left column) with the U, V channel of the original
frame (middle column). Such a straightforward strategy leads to
unnatural color. The reference results are obtained by using [25]
with shifted checkerboard patterns shown in the right column.

as guidance, the network can predict the brightness changes
more accurately under spatial-temporal variant thresholds.

To tackle the issue of high-frequency global illumina-
tion, we need to estimate a spatial-variant factor β instead
of a spatial-uniform one in Eq. (3). A Separation Correc-
tion Block (SCB) is integrated into each decoder stage of
EvSepNet to implicitly reweight features at each location,
as depicted in Fig. 2. The design of the SCB is inspired by
previous works in spatial attention [38]. For a given input
feature F ∈ R

H×W×C , we first aggregate its channel infor-
mation by average and maximum pooling and obtain Fs

max

and Fs
avg. Then those are concatenated and processed by a

convolution layer with 11 × 11 kernels to obtain the spatial
attention map As ∈ R

H×W×1, which is formulated as:

As = Sigmoid(Conv([Fs
max;F

s
avg])). (6)

Subsequently, spatially corrected features are obtained
through element-wise multiplication. The SCB enables
EvSepNet to implicitly extract light transport cues encoded
in the image and events, facilitating separation correction.
The network effectively diminishes artifacts arising from
high-frequency global illumination issues in the results.

ImColorNet. This network is designed for chrominance
compensation to restore color information in separation re-
sults. A preliminary approach to color restoration is to com-
bine the estimated grayscale separation results from EvSep-
Net with U, V channel of the original frame, denoted as IU ,
IV respectively, and convert it back to RGB color space.
However, this strategy overlooks the essential fact that the
color information inherent in direct and global illuminations
differs due to the variance in their light paths. Simply ap-
plying the color information in the original frame It0 fails to
yield satisfactory results. This issue is illustrated in Fig. 4,
where directly combining the U, V channel of the original
image with the grayscale separation results produces an in-
accurate color representation.
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Inspired by the chrominance compensation network pro-
posed in [12], we design the color correction network,
named ImColorNet, to recover the true color appearance in
direct and global components as:

Id, Ig = fc(I
Y
d , I

Y
g , I

U , IV ), (7)

where fc is the implicit function modeled by ImColorNet,
Id and Ig are the final color-corrected results for the direct
and global components.

The primary challenge in chrominance compensation
involves color correction using the color information in
the original image, under the guidance of light transport
information encoded in the grayscale separation results.
Channel-wise matrix transformation is commonly used in
canonical ISP [17] for both color correction and color space
conversion. Drawing inspiration from this, we propose a
Color Correction Block (CCB) to perform color correction
implicitly in feature space. In the decoder of ImColorNet,
CCBs are stacked at each stage, as depicted in Fig. 2.

The design of CCB is based on recent advances in trans-
posed self-attention [43]. For a given input feature F ∈
R

H×W×C , the CCB first generates query Q, key K and
value V projections by applying a 1×1 convolution layer
followed by a depth-wise convolution layer. Then Q and
V are reshaped, then the attention map M ∈ R

C×C is ob-
tained through matrix multiplication, which is defined as:

Q,K,V = Reshape(DConv(Conv(F))),

M = Softmax(K⊗Q/λ),

Fout = Conv(V ⊗M) + F,

(8)

where Fout is the color corrected feature, DConv is a depth-
wise convolution layer, and λ is a learnable scaling param-
eter. The CCB enables ImColorNet to perform global color
correction using channel-wise self-attention, supplemented
by local color refinement through convolution layers.

3.3. Implementation details

Loss functions. We derive the reference direct and global
components obtained from Nayar et al. [25] as the pseudo
ground truth to train the proposed network. The loss func-
tion L for training is a linear combination of the reconstruc-
tion loss Lmse, Llap and perceptual loss Lperc:

L = α1Lmse + α2Llap + α3Lperc, (9)

where α1 = 10, α2 = 1 and α3 = 0.5 are hyper-parameters
to balance the contributions of different terms. The term
Lmse represents a pixel-wise mean square error (MSE). The
Llap is the L1 distance between two Laplacian pyramid rep-
resentations [27] comprising 5 layers. The perceptual loss
Lperc is defined as the L2 distance between features ex-
tracted from a pre-trained VGG-19 network [34] on the Im-
ageNet dataset [32].

Training details. We implement our approach using the
Pytorch framework and run on a single NVIDIA GeForce
RTX 3090 GPU. We use AdamW optimizer [20] with the
default parameter setting in the training phrase. We config-
ure the batch size to 12. The EvSepNet and ImColorNet are
trained together for 100 epochs. The initial learning rate is
set to 3×10−4, and a cosine annealing learning rate schedul-
ing strategy is employed. We apply random cropping, hor-
izontal flipping and rotation for spatial-level data augmen-
tation, and incorporate pixel-level augmentations, including
color channel shuffle and brightness scaling.

4. Experiments

In this section, we introduce our collected dataset in
Sec. 4.1, and qualitatively and quantitatively compare our
method with state-of-the-art direct and global components
separation methods on our collected dataset (Sec. 4.2), and
our real-captured outdoor scenes (Sec. 4.3).

4.1. Dataset collection

Due to the absence of suitable datasets for the separation
of direct and global components using event cameras, we
collect a dataset consisting of both images and events under
controlled indoor scenes. The captured scenes encompass a
wide range of daily-life objects, meticulously selected to
cover different global illumination effects, such as inter-
reflection and subsurface scattering.

Data collection for each scene is conducted in two steps:
1) Initially, the scene is illuminated with high-frequency
checkerboard patterns emitted by a projector. The refer-
ence direct and global components are computed using the
methodology established by Nayar et al. [25]. 2) Subse-
quently, a white background pattern is projected onto the
scene, while source occluders move across the scene at var-
ied speeds. During this phase, both RGB videos and cor-
responding event signals are recorded. Following the setup
outlined in [25], we employ 25 shifted checkerboard pat-
terns for data collection. The images are captured using
a 30 fps RGB camera, requiring a minimum total capture
duration of 833 ms, with an interframe period of approxi-
mately 33 ms, as shown in Fig. 1 (c). In total, we collect
230 distinct scenes and 1800 clips of moving shadow .

4.2. Comparison on indoor scenes

We compare EvDiG with four image-based methods:
learning-based single-frame method that takes the original
scene image as input (SF-scene-deep) [26], learning-based
single-frame method using one single pattern image (SF-
pattern-deep) [6] and two variants of Nayar et al. [25] which
take one single pattern image (SF-pattern-classic) and mul-
tiple shadow-sweeping images (MF-shadow-classic) as in-
put respectively. For the MF-shadow-classic method, we
regulate the movement of source occluders to capture more
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Figure 5. Direct and global components separation results on our captured real-world indoor scenes. EvDiG is compared to (a) SF-
pattern-classic [25], (b) SF-scene-deep [26], (c) SF-pattern-deep [6], and (d) MF-shadow-classic [25], where we name these methods using
three encoded elements: single frame (SF) or multiple frames (MF) based methods, original scene image (scene) or pattern-marked image
(pattern) or occluder-shadowed image (shadow) as the input, and non-deep learning (classic) or deep learning (deep) based methods.

(b) SF-scene-deep (c) SF-pattern-deep(a) SF-pattern-classic

(d) MF-shadow-classic (e) Ours (f) Reference

Figure 6. Direct components separation results in a challenging
scene with a disco ball. Note that the interreflections from the
disco ball should not appear in the direct components. The com-
pared methods are (a) SF-pattern-classic [25], (b) SF-scene-deep
[26], (c) SF-pattern-deep [6], and (d) MF-shadow-classic [25].

than 30 images, which takes as least 1 s for the entire data
collection process, as illustrated in Fig. 1(c). As for EvDiG,
the inherent high-speed capabilities of event cameras allow
for rapid event data collection. By precisely controlling the
source occluder, the event data collection duration can be
reduced to fit within the interframe interval, thus achieving
a data capture time equivalent to that of single-frame meth-

Table 2. Quantitative comparison on our dataset. ↑(↓) indicates
the higher (lower), the better throughout this paper. The best per-
formances are highlighted in bold. The content in each cell refers
to the results for direct and global components respectively.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
MF-shadow-classic [25] 20.59/19.98 0.768/0.653 0.203/0.215
SF-pattern-classic [25] 23.73/27.86 0.675/0.762 0.288/0.222
SF-scene-deep [26] 26.05/27.67 0.805/0.807 0.121/0.178
SF-pattern-deep [6] 28.51/32.96 0.834/0.867 0.208/0.228
Ours 30.01/31.66 0.883/0.846 0.077/0.117

ods. In our dataset, the source occluder is swung at random
speeds, and the total capture time of our setup varies from
33 to 2000 ms, demonstrating the robustness of our method
across a broad spectrum of dynamic scenarios. For separa-
tion results on dynamic scenes, please refer to the supple-
mentary video for a more comprehensive visualization.

The two aforementioned learning-based single-frame
methods are retrained on our dataset, leveraging the ref-
erence direct and global components as pseudo ground
truth for training. We utilize Peak Signal-to-Noise (PSNR),
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Figure 7. Direct and global components separation results on our captured real-world outdoor scenes. EvDiG is compared to MF-shadow-
classic [25] and SF-scene-deep [26] methods.

Structural Similarity (SSIM), and Learned Perceptual Im-
age Patch Similarity (LPIPS) between the separation results
and reference to evaluate the performance of each method.
The quantitative comparison results are listed in Tab. 2,
and the qualitative comparisons are shown in Fig. 5. Our
method performs well across all metrics, markedly surpass-
ing the two variants of Nayar et al. [25] and the SF-scene-
deep [26]. The SF-pattern-deep method [6] tends to pro-
duce results that, while high in PSNR and SSIM, exhibit
blurry textures accompanied by checkerboard-like artifacts.
The inherent smoothness of global components contributes
to slightly lower scores in terms of PSNR and SSIM for
the global components relative to the SF-pattern-deep ap-
proach. The artifacts introduced by SF-pattern-deep be-
come apparent when evaluated using the LPIPS metric. In
the first case presented in Fig. 5, the specular reflection re-
gion on the tomato is accurately separated by our method,
attributable to the high dynamic range capability of event
cameras. The second example showcased in Fig. 5 demon-
strates our method’s effectiveness in separating interreflec-
tions. Note that the input of compared methods are differ-
ent, the comparison here is to illustrate the considerable per-
formance gains attainable by incorporating event streams.

In Sec. 3.2, we introduce EvSepNet to address the chal-
lenges posed by high-frequency global illuminations. A
challenging scene with a disco ball is shown in Fig. 6.
Because the smooth global illumination assumption is vi-
olated, the reference results obtained from Nayar et al. [25]
fails to separate the specular interreflections of the disco
ball, as shown in Fig. 6 (f). In contrast, our method, trained
on the reference results, removes the specular interreflec-
tions in the direct components. This improvement shows
the efficacy of EvSepNet and highlights the advantages of
separating components based on event data.

4.3. Comparison on outdoor scenes

Direct and global separation using source occluders can be
utilized for outdoor scenes. To further verify the effec-
tiveness of our method in real-world scenarios, we capture
several outdoor scenes with the same hybrid setup. We
compare our method with MF-shadow-classic [25] and SF-
scene-deep [26], which are applicable in outdoor settings.

The visual comparisons are presented in Fig. 7. For pix-
els never recorded within the umbra of the shadow in the
captured image sequence, MF-shadow-classic inaccurately
calculates their direct components as zero. However, it is
challenging to ensure all pixels have been captured within
shadows in a regular 30 fps video using a line occluder.
SF-scene-deep, which predicts direct and global compo-
nents without physical cues, exhibits limited generalization
to outdoor scenes, producing severe artifacts in the separa-
tion results. In contrast, our method generates satisfactory
separation results, showing the robustness to outdoor scenes
and rapid-moving occluders.

5. Conclusion

We propose an event-guided direct and global components
separation method. Our method takes advantage of the
high temporal resolution events to record fast illumination
changes, greatly reducing the data capture time close to that
of single-frame methods. We propose EvSepNet and Im-
ColorNet to resolve the noise and colorless issues in the
coarse separation results. Experimental results show that
our method achieves comparable performance with multi-
frame methods, whose data capture time is 20 times longer.

Limitations. Since the ground truth of the separation task is
difficult to obtain, the results of method [25] are used as ref-
erences for performance comparison in this paper. Besides,
the impact of events caused by motion is not considered
in this paper, our method obtains satisfactory performance
only when the motion is relatively minor compared to the
movement of the shadow in dynamic scenes.

Acknowledgement

This work was supported by National Science and Tech-
nology Major Project (Grant No. 2021ZD0109803), Bei-
jing Natural Science Foundation (Grant No. L233024) and
National Natural Science Foundation of China (Grand No.
62088102, 62136001, 62276007). Peiqi Duan was also sup-
ported by China National Postdoctoral Program for Innova-
tive Talents (Grant No. BX20230010) and China Postdoc-
toral Science Foundation (Grant No. 2023M740076).

9619



References

[1] Supreeth Achar, Stephen T Nuske, and Srinivasa G
Narasimhan. Compensating for motion during direct-global
separation. In Proc. of International Conference on Com-
puter Vision, 2013. 2, 3

[2] Jiamin Bai, Manmohan Chandraker, Tian-Tsong Ng, and
Ravi Ramamoorthi. A dual theory of inverse and forward
light transport. In Proc. of European Conference on Com-
puter Vision, 2010. 2

[3] Guang Chen, Wenkai Chen, Qianyi Yang, Zhongcong Xu,
Longyu Yang, Jörg Conradt, and Alois Knoll. A novel visi-
ble light positioning system with event-based neuromorphic
vision sensor. IEEE Sensors Journal, 20(17):10211–10219,
2020. 3

[4] Zehao Chen, Qian Zheng, Peisong Niu, Huajin Tang, and
Gang Pan. Indoor lighting estimation using an event camera.
In Proc. of IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021. 3

[5] Brian Curless and Marc Levoy. Better optical triangulation
through spacetime analysis. In Proc. of International Con-
ference on Computer Vision, 1995. 1

[6] Zhaoliang Duan, James Bieron, and Pieter Peers. Deep sep-
aration of direct and global components from a single photo-
graph under structured lighting. Computer Graphics Forum,
39(7):459–470, 2020. 3, 6, 7, 8

[7] Daniel Gehrig, Antonio Loquercio, Konstantinos G Derpa-
nis, and Davide Scaramuzza. End-to-End learning of rep-
resentations for asynchronous event-based data. In Proc. of
International Conference on Computer Vision, 2019. 5

[8] Ioannis Gkioulekas, Anat Levin, Frédo Durand, and Todd
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