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Abstract

Few-shot image generation, as an important yet chal-
lenging visual task, still suffers from the trade-off between
generation quality and diversity. According to the principle
of feature-matching learning, existing fusion-based meth-
ods usually fuse different features by using similarity mea-
surements or attention mechanisms, which may match fea-
tures inaccurately and lead to artifacts in the texture and
structure of generated images. In this paper, we propose an
exact Fusion via Feature Distribution matching Generative
Adversarial Network (F2DGAN) for few-shot image gener-
ation. The rationale behind this is that feature distribution
matching is much more reliable than feature matching to
explore the statistical characters in image feature space for
limited real-world data. To model feature distributions from
only a few examples for feature fusion, we design a novel
variational feature distribution matching fusion module to
perform exact fusion by empirical cumulative distribution
functions. Specifically, we employ a variational autoen-
coder to transform deep image features into distributions
and fuse different features exactly by applying histogram
matching. Additionally, we formulate two effective losses to
guide the matching process for better fitting our fusion strat-
egy. Extensive experiments compared with state-of-the-art
methods on three public datasets demonstrate the superi-
ority of F2DGAN for few-shot image generation in terms
of generation quality and diversity, and the effectiveness of
data augmentation in downstream classification tasks1.

1. Introduction
Relying on substantial data, deep generative models [3, 12,
14, 25] have led to a series of breakthroughs in synthesiz-
ing high-quality and diverse images. Unfortunately, there
are many scenarios in the real world where it is impossi-
ble to obtain large-scale samples of one category for model
training. To adapt to such practical applications, a variety of
few-shot image generation methods have been introduced as
data augmentation techniques [19, 24, 50] to produce more

*Corresponding author (mschen@sei.ecnu.edu.cn)
1Code is available at: https://github.com/ZYBOBO/F2DGAN

new images with a glance at a few samples of one category.
However, without sufficient training data, few-shot image
generation is still challenging to yield realistic images with
considerable diversity.

In general, prevailing few-shot image generation meth-
ods commonly suppose that trained models with the seen
data have a good generalization ability towards unseen sam-
ples. Based on this assumption, optimization-based meth-
ods [7, 30] are adopted to seek proper initial parameters
to generate images, which neglect to integrate the knowl-
edge of unseen categories and result in a distorted gener-
ation without fine-grained details. To effectively capture
the information of unseen samples, transformation-based
methods [9, 28, 51] utilize pre-trained latent spaces of style-
series models on seen data to invert the available unseen im-
ages into the latent space. However, since complicated im-
age transformations are not end-to-end training processes,
the generated images usually tend to be biased by the dis-
tribution of the seen classes. Consequently, the generation
with little category information of unseen data has subtle
benefits to downstream visual applications [16, 38, 39]. To
let the model “learn to learn” in the training process, fusion-
based methods [2, 15, 20, 21, 53] design different fusion
modules with the episodic training mechanism [41]. Tech-
nically, current fusion strategies are implemented either on
image pixels or feature representations, which match fea-
tures inaccurately and result in unsatisfactory images with
artifacts and limited diversity.

To fuse the visual semantics for high-quality image gen-
eration, it is crucial to make the model well-informed about
the consistency of global distribution in the fusion process.
In this paper, we concentrate on the shortcomings of cur-
rent fusion strategies and raise the question, “can we fuse
different features via feature distribution matching for few-
shot image generation?” Theoretically, one can fuse dif-
ferent features to match feature mean and standard devia-
tion by assuming that features follow Gaussian distribution.
However, since training one model to learn feature distri-
butions from a few samples of one category is difficult, the
learned feature mean and standard deviation are not repre-
sentative to match different features exactly. Motivated by
EFDM [49], which applies the exact histogram matching
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Figure 1. Histograms of feature values of different images in a randomly selected channel, where features are computed from the first
residual block of ResNet-18 [17] pre-trained on ImageNet [8]. A, B, and C are different feature distributions from one single image, and D
and E denote the cumulative feature distribution of three images and all the images in the same category, respectively.

algorithm to produce more stable style-transfer images, we
visualize the histograms of feature values to get an intuition
of the characteristics of feature distribution in one category.
As shown in Figure 1, one can clearly observe that different
images of the same class have different feature distributions,
and the accumulation of feature values of different images
can better reflect the feature distribution of their categories.

Based on the above insights, we propose a novel ex-
act Fusion via Feature Distribution matching Generative
Adversarial Network (F2DGAN) for few-shot image gen-
eration. To be concrete, we design a lightweight but effec-
tive feature distribution matching module (FDMM) to fuse
different image features, which can obtain more consistent
structures and textures with an image-matching reconstruc-
tion loss. Moreover, we devise a simple but ingenious vari-
ational feature learning module (VFLM) to produce more
diverse feature representations, which can transform high-
level semantics into distributions smoothly with a feature
reconstruction loss. Regarding FEMM and VFLM as our
variational feature distribution matching fusion, F2DGAN
shows significant superiority over the state-of-the-art meth-
ods on three well-known benchmarks.

Our contributions can be summarized as follows:
• We propose a novel fusion-based framework called

F2DGAN for few-shot image generation, which can
achieve better generation quality and diversity by our
variational feature distribution matching fusion module.
• We design a feature distribution matching module with

an image-matching reconstruction loss, which can fuse
consistent semantics exactly with histogram matching.
• We devise a variational feature learning module with a

feature reconstruction loss, which further guarantees the
diversity of fused deep semantics in feature space.
Comprehensive experiments show that our proposed

F2DGAN can not only achieve stable few-shot image gen-
eration with state-of-the-art quality and diversity, but also
significant improvements in the accuracy for downstream
classification tasks.

2. Related Work
Few-shot Image Generation. Given a few samples from
one novel category, few-shot image generation aims to pro-

duce more new images with high quality and various diver-
sity. Existing methods are classified as optimization-based,
fusion-based, and transformation-based. Optimization-
based methods [7, 30] introduce meta-learning to explore
a set of initial parameters with good generalization for
different tasks, which can hardly generate realistic im-
ages. Fusion-based methods [2, 20, 21] adopt feature-
matching learning to obtain fused features with an at-
tention mechanism or similarity measurement, which are
prone to yield limited-diversity images with artifacts in de-
tail. While transformation-based methods [9, 28, 51] can
learn more differences in the unseen-specific features via
intra-category transformations, the generated images have
little category information preserved for the unseen im-
ages. To be concrete, AGE [9] generates images with
an intra-category transformation from the ”editing-based“
perspective, LSO [51] introduces latent space optimiza-
tion to model the distribution of unseen samples with
category-specific features, and HAE [28] captures the hi-
erarchy among images in hyperbolic space to control the
semantic diversity of the generated images. Despite the
above-mentioned transformation-based approaches produc-
ing leading results in diversity, their roles as image augmen-
tation techniques for downstream classification tasks are in-
ferior to the latest fusion-based method WaveGAN [45]. In
this work, we build a novel fusion-based framework by em-
ploying variational feature learning and feature distribution
matching to generate more diverse images and further im-
prove the accuracy for downstream classification tasks. To
the best of our knowledge, we are the first to introduce vari-
ational feature learning and feature distribution matching
into few-shot image generation.

Feature Distribution Matching. In the arbitrary style
transfer (AST) [13, 22] field, image styles can be interpreted
as feature distributions and style transfer can be achieved
by cross-distribution feature matching. The most common
approach for feature distribution matching is to match fea-
ture mean and standard deviation with Gaussian distribu-
tion [29, 33]. Unfortunately, the feature distributions of lim-
ited real-world data are usually too difficult to be sampled
by Gaussian. To minimize the feature distribution diver-
gence for AST, EFDM [49] introduces an exact histogram-
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Figure 2. Overview of our framework. Given a few samples of a novel category, we can generate new images belonging to the same category
by our variational feature distribution matching fusion strategy. Note that we do not visualize the discriminator branch for simplicity.

matching algorithm to match the empirical cumulative dis-
tribution function of image features, which can result in
matched feature distributions with exact mean, standard de-
viation, and high-order statistics. Considering that image
features can be distinguished by equivalent pixel values ei-
ther randomly or according to their local mean, in this pa-
per, we propose a more accurate fusion strategy based on
the matching of histograms for few-shot image generation.
Variational Feature Learning. Variational autoencoders
(VAEs) [11, 23], as one common type of variational fea-
ture learning model, can transform an image or feature into
a distribution, which has been used in various tasks, such
as zero/few-shot learning [26, 47], metric learning [10, 44],
and disentanglement learning [31]. For fusion-based few-
shot image generation, feature inconsistency makes it hard
to correctly fuse different features by matching the seman-
tically nearest local representations or global vectors. Even
worse, the existing fusion strategies can be roughly re-
garded as point estimate approaches, which are sensitive
to sample noise from random selection and inductive bias
from scarce data. To alleviate the inconsistency between
different features, in this paper, we utilize VAEs to model
class distributions in image feature space, which are robust
to limited data than point estimates.

3. Methodology

3.1. Overview

Problem Definition. Given k images sampled of the same
category, we intend to generate realistic and diverse images
for this category, defined as a k-shot image generation task.
To handle this task, a dataset usually is split into two sub-
sets, i.e., the seen categories Cs and the unseen categories
Cu, where Cs ∩ Cu = ∅. In the training phase, hundreds
of k-shot image generation tasks sampled from Cs are fed
into the model to learn transferable generation ability. In

the test phase, we utilize the well-trained model to generate
new images for Cu.
Overall Framework. As shown in Figure 2, the overall
framework of F2DGAN consists of four basic components,
i.e., one feature extractor F , one encoder E, one decoder
D, and one generator G. The key design of our method
is the variational feature distribution matching fusion strat-
egy, which is composed of the feature distribution matching
module (FDMM) and the variational feature learning mod-
ule (VFLM). Given a few images as inputs, we first obtain
deep features by our feature extractor f . Then, our VFLM
transforms these features into an approximate distribution
based on variational inference. Finally, we regard feature
maps at different scales as feature distributions to fuse dif-
ferent semantics with their category distributions based on
exact histogram matching. During the whole training pro-
cess, we formulate two effective losses (i.e., feature recon-
struction loss Lfr and image-matching reconstruction loss
Lir) to guide the model training. Note that we omit the
discriminator branch in our overall framework due to our
fusion strategy mainly involving the generator part.

3.2. Feature Distribution Matching Module

Empirical Cumulative Distribution Function. Empiri-
cal cumulative distribution function (eCDF) is one non-
parametric method to describe the distribution of sample
data in statistics. Given the data points x of samples X ,
the cumulative probability of each point in the overall dis-
tribution is defined as:

F̂X(x) =
1

n

n∑
i=1

1xi≤x, (1)

where 1A is the indicator of event A and xi is the i-th el-
ement of x. Based on the Glivenko–Cantelli theorem [40],
the eCDF asymptotically converges to the CDF when the
number of samples approaches infinity [42].
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Figure 3. An illustration of feature distribution matching module. We utilize feature values and indices to implement the exact histogram
matching via the sort-matching algorithm, resulting in matched features and fused features.

Histogram Matching. The goal of histogram matching
is to transform an input vector x into an output vector o,
whose eCDF matches the target eCDF of a target vector
y. According to the Eq. (1), we can find the yi satisfies
F̂X(xi) = F̂Y (yi) for each element xi of the input x, re-
sulting in the transformation function: H(xi) = yi. Ideally,
histogram matching could exactly match eCDFs of image
features using bins of infinitesimal width. However, due
to the finite number of bits to represent features in discrete
feature space [5], histogram matching is hard to equal to
eCDFs when there exist equivalent feature values in inputs.
Fusion with Feature Distribution Matching. To match
histograms of image pixels exactly, we apply an ex-
act histogram-matching algorithm to distinguish equiva-
lent pixel values and apply an element-wise transforma-
tion to merge equivalent values. Given a few features
X ∈ RB×k×C×H×W of the same category, we randomly
select the features with the index of b ∈ {1, 2, · · · , k} as
x and compute the average of all the image features as y.
Then, we adopt the sort-matching algorithm [37] to match
two sorted feature vectors for feature distribution matching
fusion as shown in Figure 3. Flattening feature maps into
feature vectors, the feature indexes are illustrated as:

x : i = (i1 i2 i3 · · · in),

y : j = (j1 j2 j3 · · · jn),
(2)

where {xim}nm=1 and {yjm}nm=1 are sorted values of x and
y in an ascending order. In other words, xi1 = min(x),
xin = max(x), and xim ≤ xin if m < n. yjm has a similar
properties as xim . Based on the definition in Eq. (2), the
matched feature vectors o with its im-th element oim as:

oim = yjm . (3)

To enable the gradient back-propagation in the model with-
out the interference of non-parametric matching, we practi-
cal perform the feature distribution matching for our fusion

strategy by modifying Eq. (3) as:

Match(x, y) : Mim = xim + yjm − ⟨xim⟩ , (4)

where ⟨·⟩ denotes the stop-gradient operation. In this way,
we can get the fused features as follows:

Fusion(x, y) : Fim = xim +Mjm . (5)

To measure the distribution divergence more exactly, we re-
gard the input images I = {I1, I2, · · · , Ik} as distributions
to formulate the image-matching reconstruction loss:

Lir = Φ(Ib,
1
k

∑k
i=1 Ii), (6)

where Φ(·) represents the mean square error (MSE) loss in
a channel-wise manner following [22, 52].

3.3. Variational Feature Learning Module

Although we can use feature values as feature distributions
to promote the learning ability of the model, the values
of deep features are too few to accumulate histograms as
feature distributions effectively. To alleviate this problem,
we transform deep features into category distributions with
VAEs. Since the estimated distribution is not biased toward
specific examples, features sampled from Gaussian noises
have a better consistency in high-level semantics. In this
way, we can match class-level features for robust feature
fusion with feature distribution matching.
Variational Feature Learning with VAEs. Formally, we
aim to transform deep features into a class distribution N ,
and sample the variational feature z from N for feature
matching as shown in Figure 2. Suppose that the features
s follow a conditional distribution p(s|z), where z is sam-
pled from a prior distribution p(z), we can learn the distri-
bution of z based on Bayes rule p(z|s) = p(z)p(s|z)/p(s).
However, the process involves a computation intractable in-
tegral with an unknown variable z. For easy to compute,
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we model the posterior distribution with variational infer-
ence. More concretely, we approximate the true posterior
distribution p(z|s) with another distribution q(z|s) by min-
imizing the Kullback-Leibler (KL) divergence:

DKL(q(z|s)∥p(z|s)) =
∫

q(z|s) log q(z|s)
p(z|s)

, (7)

which is equivalent to maximizing the evidence lower
bound (ELBO) [27]:

ELBO = Eq(z|s)[log p(s|z)]−DKL(q(z|s)∥p(z)). (8)

According to Eq. (8), a KL-divergence between the pos-
terior and prior distributions needs to be calculated. We as-
sume the prior distribution z is a centered isotropic multi-
variate Gaussian, p(z) = N (0, I), and the posterior distri-
bution q(z|s) is a multivariate Gaussian with diagonal co-
variance, i.e., q(z|s) = N (µ, σ). To obtain the parameters
of µ and σ, we use an encoder E to encode the category
feature s = 1

k

∑k
i=1 si, where si are a few deep features

of the same category. Then, the variational feature z can
be implemented by the parameterization trick [27], where
z = µ + σ · ϵ, and ϵ ∼ N (0, I). In this way, the first term
of Eq. (8) is simplified as a reconstruction loss between the
input s and the decoded feature s′ in the L2 distance:

Lrec = ∥s− s′∥ = ∥s−D(z)∥ , (9)

where D(·) denotes a feature decoder. Meanwhile, the sec-
ond term of Eq. (8) is directly minimized as:

LKL = DKL(N (µ,σ))∥N (0,I)

=
1

2
(µ2 + σ − log σ − 1),

(10)

which forces the variation feature z to learn a class-specific
distribution with a normal distribution.
Fusion with Variational Feature Learning. To combine
variational feature learning and feature distribution match-
ing, we flatten deep features si ∈ RB×C×H×W gener-
ated from the last layer of the feature extractor F into
si ∈ RB×CHW , where i ∈ {1, 2, · · · , k}, which can pre-
serve the values of features in the process of variational in-
ference. By optimizing Lrec and LKL, we can fuse the vari-
ational features s′ with the selected features sb via feature
distributions matching. Based on Eq. (4) and (5), the pro-
cess of fused deep features with variational feature learning
can be written as in the following equation:

Fusion(sb, s
′) : F s

im = 2 ∗ (sb)im + s′jm − ⟨sim⟩ . (11)

To further ensure that the fused deep features are seman-
tically consistent in category information, we define an or-
thogonal projection loss within a mini-batch as follows:

Lopt = 1−
i,j∈B∑
i=j

sib · s′j∥∥sib∥∥ ·
∥∥s′j∥∥+

∣∣∣∣∣∣
i,j∈B∑
i ̸=j

sib · s′j∥∥sib∥∥ ·
∥∥s′j∥∥

∣∣∣∣∣∣ , (12)

where B denotes mini-batch size, ∥·∥ and |·| refer to the
L2 distance and the absolute value operator, respectively.
In Eq. (12), our objective is to ensure the clustering of the
same class semantics and the orthogonality of different class
information, which can obtain more robust category distri-
butions. Adding the orthogonal projection loss as a regu-
larization term to the reconstruction loss, our feature recon-
struction loss is established as:

Lfr = Lrec + λ1LKL + λ2Lopt, (13)

where λ1 and λ2 are the hyper-parameters balancing the
weight for the three different constraints.

3.4. Optimization Objective

Given k images X = {x1, x2, · · · , xk} of a novel category
C, our goal is to generate new image x̂ with the same la-
bel. With hundreds of k-shot image generation tasks as in-
puts, our model is updated in an end-to-end episodic train-
ing mechanism, where the generator G and the discrimina-
tor Dis are optimized alternatively by adversarial training.
Apart from the proposed Lir and Lfr, we also use adver-
sarial loss and classification loss to constrain our objective.
Adversarial Loss. To make the generated image x̂ close to
real inputs X , we employ a discriminative model Dis like
LoFGAN [15], which utilizes the hinge version of adversar-
ial loss [46] to train the model. The loss functions for the
discriminator and the generator are expressed as follows:

LDis

adv = max(0, 1−D(X)) + max(0, 1 +D(x̂)),

LG
adv = −D(x̂).

(14)

Classification Loss. To ensure that the generated image
x̂ has the same label as X , we follow ACGAN [36] and
construct an auxiliary classifier in the discriminator. In this
way, we can guide the generator to produce images while
maintaining the category information and constrain the dis-
criminator to classify images with the following loss:

LDis

cls = − logP (C|X),

LG
cls = − logP (C|x̂).

(15)

Therefore, the overall optimization objective of our
method can be formulated as:

LDis
= LDis

adv + λclsLDis

cls ,

LG = LG
adv + λclsLG

cls + λirLir + λfrLfr,
(16)

where λcls, λir, and λfr are weight coefficients controlling
the whole optimization process.

4. Experiments
In this section, We evaluate the superiority of our approach
on two few-shot image tasks, i.e., few-shot image genera-
tion and low-data image classification.
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Figure 4. Qualitative comparison with state-of-the-art methods on Flowers, Animal Faces, and VGGFaces. Please zoom in for more details.

4.1. Implementation Details

Network Details. Our feature extractor F consists of five
convolutional blocks, each of which has one convolution,
Leaky-ReLU activation [34], and batch normalization [4]
operations. The generator G is symmetric to the structure
of the extractor F , and G has extra skip operations in up-
sampling convolutional blocks. We use the feature distribu-
tion matching module (FDMM) to fuse features at different
scales in each convolution block of the F and add the fused
features to the generator G by skip operations, which are
implemented with element-wise additions. As for the vari-
ational feature learning module (VFLM), we implement it
based on a light encoder E and decoder D, where E con-
tains a linear layer and two parallel linear layers to produce
µ and σ and D consists of two linear layers to generate the
variational features s′. Note that our VFLM only works on
8 × 8 deep feature maps, and it incorporates the FDMM
to get the fused deep features. Additionally, our discrimi-
nator Dis adopts a similar network in [15], which has four
residual blocks and two linear layers to accomplish the clas-
sification and discrimination of inputs.

Hyper-parameter Settings. In the training stage, we use
the Adam optimizer to optimize our network with 100, 000
iterations, where the learning rate α is fixed as 1e − 4 in
the first 50, 000 iterations and linearly decayed to 0 in the
second 50, 000 iterations. We set the mini-batch to 8, which
means that we randomly sample eight k-shot image gener-
ation tasks in each iteration. The selection ratios of λ1 and
λ2 in the feature reconstruction loss Lfr are set to 0.0025
and 2, respectively. For our overall optimization objective
function, we set λcls = λir = 1, and λfr = 10.

4.2. Baselines and Metrics

Baselines. We compare our F2DGAN with several few-
shot image generation methods, including the optimization-
based FIGR [7] and DAWSON [30], the fusion-based
MatchingGAN [20], F2GAN [21], LoFGAN [15] and
WaveGAN [45], the transformation-based AGE [9],
LSO [51] and HAE [28]. To ensure a fair comparison,
we reproduce LoFGAN, WaveGAN and HAE under the
same experimental environment, denoted as LoFGAN⋆,
WaveGAN⋆ and HAE⋆, respectively.
Metrics. We use Fréchet Inception Distance (FID) [18] and
Learned Perceptual Image Patch Similarity (LPIPS) [48]
as the metrics for quantitative evaluation. FID is used to
measure the distance between real image vectors and gen-
erated image vectors, where the smaller distance indicates
the higher quality of the generated images. LPIPS is widely
employed to evaluate the consistency between paired input
and output in the image-to-image translation field [1, 43].
In contrast, we utilize LPIPS to measure the diversity of the
generated images, where the higher LPIPS means the better
diversity of the generated images.

4.3. Evaluation Datasets

We conduct experiments on three commonly used bench-
marks, namely Flowers [35], Animal Faces [32], and VG-
GFaces [6] following the settings described in [15].
Flowers. We randomly split Flowers into 85 seen categories
for training and 17 unseen categories for testing. All the
images are collected with the resolution of 128× 128.
Animal Faces. We select 119 classes as seen classes for
training and 30 classes as unseen classes for evaluation. All

8388



Table 1. Quantitative comparison results between our model and the baselines. The best and the second-best results are highlighted and
underlined, respectively. The symbol ↓ indicates that lower is better while the symbol ↑ indicates that higher is better.

Method Type Flowers [35] Animal Faces [32] VGGFaces [6]
FID ↓ LPIPS ↑ FID ↓ LPIPS ↑ FID ↓ LPIPS ↑

FIGR [7] O 190.12 0.0634 211.54 0.0756 139.83 0.0834
DAWSON [30] O 188.96 0.0583 208.68 0.0642 137.82 0.0769
MatchingGAN [20] F 143.35 0.1627 148.52 0.1514 118.62 0.1695
F2GAN [21] F 120.48 0.2172 117.74 0.1831 109.16 0.2125
LoFGAN⋆ [15] F 78.83 0.3869 113.01 0.4894 20.52 0.2921
WaveGAN⋆ [45] F 42.17 0.3868 30.35 0.5076 4.96 0.3255
AGE [9] T 45.96 0.4305 28.04 0.5575 34.86 0.3294
LSO [51] T 34.59 0.3914 23.67 0.5198 3.98 0.3344
HAE⋆ [28] T 50.10 0.4739 26.33 0.5636 35.93 0.5919
F2DGAN (Ours) F 38.26 0.4325 25.24 0.5463 4.25 0.3521

the images have a resolution of 128× 128.
VGGFaces. We divide VGGfaces into two subsets, where
the seen subset has 1802 categories for training and the un-
seen subset has 552 categories for testing. All the images
are collected with the resolution of 64× 64.

4.4. Few-shot Image Generation

To highlight the superiority of our method in generation per-
formance, we carry out the following experiments to qual-
itatively and quantitatively evaluate F2DGAN compared
with the state-of-the-art methods.
Qualitative Evaluation. We qualitatively compare our
F2DGAN with LoFGAN [15], WaveGAN [45] and
HAE [28]. The visualization of synthesis results on Flow-
ers, Animal Faces, and VGGFaces are presented in Fig-
ure 4, where the leftmost three columns are the inputs for
each method. From Figure 4, we can observe that F2DGAN
can produce higher-quality images with fine-grained details
while maintaining more category-related diversity than oth-
ers. For instance, the flowers generated by WaveGAN⋆ tend
to be homogeneous, while F2DGAN can yield new flowers
with petal color and texture variations. Although animal
faces generated by HAE⋆ have more semantic diversity in
appearances and poses, they preserve little category-related
information of the inputs, which look less natural than the
animal faces generated by F2DGAN. Moreover, the gender
and outline of faces generated by HAE are inconsistent with
those of real images, while F2DGAN can produce identity-
preserving faces with skin color and shadow change. In a
nutshell, F2DGAN can also achieve more visually pleasing
and diverse results than WaveGAN⋆ and HAE⋆.
Quantitative Evaluation. For quantitative comparison,
we randomly sample 128 generated images for each un-
seen category and calculated the FID and LPIPS to eval-
uate the fidelity and diversity of the generation following
3-shot settings in [15]. As shown in Table 1, we present
our quantitative results with 9 baselines on Flowers, An-

imal Faces, and VGGFaces, where “O”, “F” and “T” in
the second column denote optimization-based, fusion-based
and transformation-based method, respectively. Specifi-
cally, our method significantly outperforms all the fusion-
based methods on FID and LPIPS scores over four datasets,
which indicates the effectiveness of our fusion strategy. Al-
though transformation-based methods (i.e., AGE, LSO, and
HAE) show slight advantages on FID or LPIPS, their gener-
ation plays limited roles in downstream classification tasks
due to the absence of category-specific information of un-
seen images. In the following subsection, we will elaborate
on the performance of the generated images as a means of
data augmentation on low-data image classification tasks.

Table 2. Top-1 accuracy (%) comparison on low-data image clas-
sification over Flowers, Animal Faces, and VGGFaces.

Flowers Animals VGGFaces
Baseline 58.09 32.98 60.35
LoFGAN [15] 66.10 35.71 67.89
AGE [9] 68.94 43.14 64.38
HAE [28] 70.23 45.28 63.35
WaveGAN [45] 79.24 55.27 72.40
F2DGAN (ours) 84.02 60.76 77.92

4.5. Low-data Image Classification

To investigate the performance of generated images on
downstream image classification, we use few-shot gener-
ation models as data augmentation techniques to produce
more new images for unseen categories. Specifically, we
split the unseen categories of each dataset into Dtr, Dva

and Dte, where the ratios are 10 : 10 : 15 for Flowers
while 30 : 35 : 35 for Animal Faces and VGGfaces, re-
spectively. Following [15], we first initialize a ResNet-18
backbone [17] based on the seen categories. Then, we train
a new classifier with the augmentations to evaluate the re-
sulting classification. Note that we regard the new well-
trained classifier using Dtr without any augmentation as the
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Real images w/o FDMM FDMM w/o ℒ𝑖𝑟 w/o VFLM VFLM w/o ℒ𝑖𝑟 F2DGAN (ours)

Figure 5. Visual comparison of ablation studies with different fusion components on Flowers. Please zoom in for more details.

Baseline. Using each few-shot image generation model as
a data augmentation technique, we augment 30 images for
each unseen category in Flowers, while 50 images for each
unseen category in Animal Faces and VGGFaces.

The results are presented in Table 2. Compared with
the baseline, all the few-shot image generation models
can improve the accuracy for low-data image classifica-
tion tasks on four benchmarks. Furthermore, the images
generated by transformation-based AGE and HAE bring
fewer benefits than those of WaveGAN, which indicates
that transformation-based methods have poor generalization
abilities in capturing the category information of unseen im-
ages. More importantly, the images generated by our pro-
posed method as the data augmentation achieve the best ac-
curacy on all three datasets. Such performance in classifica-
tion tasks demonstrates that F2DGAN can effectively learn
the unseen category distributions and generate new images
with unseen category information.

4.6. Ablation Studies

Fusion Components. Our fusion strategy includes the fea-
ture distribution matching module (FDMM) with the image-
matching reconstruction loss Lir and the variational feature
learning module (VFLM) with the feature reconstruction
loss Lfr. To verify the effectiveness of our fusion com-
ponents. we disable each component for ablation studies
and evaluate each component with FID, LPIPS, and accu-
racy gain as shown in Table 3. In this Table, we can find
that each component of our proposed fusion strategy plays
a positive role in the generation quality and diversity. More-
over, the satisfying gain in the classification task demon-
strates that fusing different features with the FDMM and
FVLM can effectively capture the real unseen distributions.
In addition, we visualize our ablation study results in Fig-
ure 5, which further demonstrates the effectiveness of our
variational feature distribution matching fusion.
k Shots. To explore the generation performance under
different k-shot image generation settings, we train our
F2DGAN with k ∈ {2, 3, 5, 7, 9} on Flowers. As seen in
Figure 6, we use lg(FID) and eLPIPS to substitute FID
and LPIPS scores, respectively. As k increases, lg(FID)
scores vary from 1.56 to 1.61, and eLPIPS scores vary from
1.52 to 1.58, which manifests our method has good gener-
alization ability for few-shot image generation tasks.

Table 3. Quantitative results of ablation studies on generation per-
formance and low-data image classification over Flowers.

Conditions Flower
FDMM VFLM FID ↓ LPIPS ↑ Accuracy (%)

w/o FDMM 58.48 0.3915 77.84
FDMM w/o Lir 46.42 0.4129 80.19

w/o VFLM 44.96 0.4083 72.88
VFLM w/o Lfr 40.87 0.4234 80.96
F2DGAN (ours) 38.26 0.4325 84.02

1.45

1.5

1.55

1.6

1.65

2 3 5 7 9

𝐥𝐠(𝑭𝑰𝑫) 𝒆𝑳𝑷𝑰𝑷𝑺

Sc
or

es

Number of shots (𝒌)

Figure 6. Scores under different k-shot settings on Flowers.

5. Conclusion
In this paper, we delve into fusion-based few-shot image
generation from a new perspective of feature distribution
matching. To obtain an exact fusion via feature distribu-
tion matching, we propose a variational feature distribution
matching fusion strategy, which can fuse different features
consistently and maintain category-specific semantics un-
changeably for unseen categories. Qualitative and quanti-
tative results on three well-known datasets demonstrate the
superiority and robustness of our method, which brings con-
siderable benefits for downstream classification tasks.
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