
Expandable Subspace Ensemble for
Pre-Trained Model-Based Class-Incremental Learning

Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye(�), De-Chuan Zhan
National Key Laboratory for Novel Software Technology, Nanjing University, China

School of Artificial Intelligence, Nanjing University, China
{zhoudw,sunhl,yehj,zhandc}@lamda.nju.edu.cn

Abstract

Class-Incremental Learning (CIL) requires a learning
system to continually learn new classes without forget-
ting. Despite the strong performance of Pre-Trained Mod-
els (PTMs) in CIL, a critical issue persists: learning new
classes often results in the overwriting of old ones. Exces-
sive modification of the network causes forgetting, while
minimal adjustments lead to an inadequate fit for new
classes. As a result, it is desired to figure out a way of effi-
cient model updating without harming former knowledge.
In this paper, we propose ExpAndable Subspace Ensem-
ble (EASE) for PTM-based CIL. To enable model updat-
ing without conflict, we train a distinct lightweight adapter
module for each new task, aiming to create task-specific
subspaces. These adapters span a high-dimensional feature
space, enabling joint decision-making across multiple sub-
spaces. As data evolves, the expanding subspaces render
the old class classifiers incompatible with new-stage spaces.
Correspondingly, we design a semantic-guided prototype
complement strategy that synthesizes old classes’ new fea-
tures without using any old class instance. Extensive exper-
iments on seven benchmark datasets verify EASE’s state-
of-the-art performance. Code is available at: https:
//github.com/sun-hailong/CVPR24-Ease

1. Introduction
The advent of deep learning leads to the remarkable per-
formance of deep neural networks in real-world applica-
tions [7, 9, 11, 41, 66]. While in the open world, data of-
ten come in the stream format, requiring a learning system
to incrementally absorb new class knowledge, denoted as
Class-Incremental Learning (CIL) [46]. CIL faces a major
hurdle: learning new classes tends to overwrite previously
acquired knowledge, leading to catastrophic forgetting of
existing features [18, 19]. Correspondingly, recent ad-

†Correspondence to: Han-Jia Ye (yehj@lamda.nju.edu.cn)

100 101 102

Trainable Parameters (%)

72

74

76

78

80

Av
er

ag
e A

cc
ur

ac
y

(%
)

L2P
[CVPR'22]

DualPrompt
[ECCV'22]

CODA-Prompt
[CVPR'23]

DER
[CVPR'21]

FOSTER
[ECCV'22]

MEMO
[ICLR'23]

Ours

Using Exemplars

Figure 1. Parameter-performance comparison of different methods
on ImageNet-R B100 Inc50. All methods utilize the same PTM as
initialization. EASE requires the same scale parameters as other
prompt-based methods [49, 61, 62] while performing best among
all competitors without using exemplars.

vances in pre-training [24] inspire the community to utilize
pre-trained models (PTMs) to alleviate forgetting [61, 62].
PTMs, pre-trained with vast datasets and substantial re-
sources, inherently produce generalizable features. Conse-
quently, PTM-based CIL has shown superior performance,
opening avenues for practical applications [44, 49, 54, 60].

With a generalizable PTM as initialization, algorithms
tend to freeze the pre-trained weight and append minimal
additional parameters (e.g., prompts [31]) to accommodate
incremental tasks [49, 60–62]. Since pre-trained weights
are frozen, the network’s generalizability will be preserved
along the learning process. Nevertheless, to capture new
tasks’ features, selecting and optimizing instance-specific
prompts from the prompt pool inevitably rewrites prompts
of former tasks. Hence, it results in the conflict between old
and new tasks, triggering catastrophic forgetting [32].

In CIL, the conflict between learning new knowledge and
retaining old information is known as the stability-plasticity
dilemma [23]. Hence, learning new classes should not dis-
rupt existing ones. Several non-PTM-based methods, i.e.,
expandable networks [10, 17, 56, 64], address this by learn-
ing a distinct backbone for each new task, thereby creating

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

23554

a task-specific subspace. It ensures that optimizing a new
backbone does not impact other tasks, and when concate-
nated, these backbones facilitate comprehensive decision-
making across a high-dimensional space incorporating all
task-specific features. To map the concatenated features to
corresponding classes, a large classifier is optimized using
exemplars i.e., instances of former classes.

Expandable networks resist the cross-task feature con-
flict, while they demand high resource allocation for back-
bone storage and necessitate the use of exemplars for uni-
fied classifier learning. In contrast, prompt learning enables
CIL without exemplars but struggles with the forgetting of
former prompts. This motivates us to question if it is pos-
sible to construct low-cost task-specific subspaces to over-
come cross-task conflict without the reliance on exemplars.

There are two main challenges to achieving this goal.
1) Constructing low-cost, task-specific subspaces. Since
tuning PTMs requires countless resources, we need to cre-
ate and save task-specific subspaces with lightweight mod-
ules instead of the entire backbone. 2) Developing a classi-
fier that can map continuously expanding features to corre-
sponding classes. Since exemplars from former stages are
unavailable, the former stages’ classifiers are incompatible
with continual-expanding features. Hence, we need to uti-
lize the class-wise relationship as semantic guidance to syn-
thesize the classifiers of formerly learned classes.

In this paper, we propose ExpAndable Subspace En-
semble (EASE) to tackle the above challenges. To alle-
viate cross-task conflict, we learn task-specific subspace
for each incremental task, making learning new classes not
harm former ones. These subspaces are learned by adding
lightweight adapters based on the frozen PTM, so the train-
ing and memory costs are negligible. Hence, we can con-
catenate the features of PTM with every adapter to aggre-
gate information from multiple subspaces for a holistic de-
cision. Moreover, to compensate for the dimensional mis-
match between existing classifiers and expanding features,
we utilize class-wise similarities in the co-occurrence space
to guide the classifier mapping in the target space. Thus,
we can synthesize classifiers of former stages without using
exemplars. During inference, we reweight the prediction
result via the compatibility between features and prototypes
and build a robust ensemble considering the alignment of
all subspaces. As shown in Figure 1, EASE shows state-of-
the-art performance with limited memory cost.

2. Related Work
Class-Incremental Learning (CIL): requires a learning
system to continually absorb new class knowledge with-
out forgetting existing ones [13, 14, 20, 22, 38, 57, 59, 74,
80, 81], which can be roughly divided into several cate-
gories. Data rehearsal-based methods [3, 6, 37, 45, 75] se-
lect and replay exemplars from former classes when learn-

ing new ones to recover former knowledge. Knowledge
distillation-based methods [12, 16, 36, 46, 48, 52, 71] build
the mapping between the former stage model and the cur-
rent model via knowledge distillation [27]. The mapped
logits/features help the incremental model to reflect former
characteristics during updating. Parameter regularization-
based methods [1, 2, 34, 68] exert regularization terms on
the drift of important parameters during model updating
to maintain former knowledge. Model rectification-based
methods [5, 43, 47, 63, 67, 73] correct the inductive bias
of incremental models for unbiased prediction. Recently,
expandable networks [10, 17, 29, 30, 56, 64] show strong
performance among other competitors. Facing a new incre-
mental task, they keep the previous backbone in the mem-
ory and initialize a new backbone to capture these new fea-
tures. As for prediction, they concatenate all the backbones
for a large feature map and learn a corresponding classifier
with extra exemplars to calibrate among all classes. There
are two main reasons that hinder the deployment of model
expansion-based methods in pre-trained model-based CIL,
i.e., the huge memory cost for large pre-trained models and
the requirement of exemplars.
Pre-Trained Model-Based CIL: is now a hot topic in to-
day’s CIL field [39, 58, 78]. With the prosperity of pre-
training techniques, it is intuitive to introduce PTMs into
CIL for better performance. Correspondingly, most meth-
ods [49, 60–62] learn a prompt pool to adaptively select
the instance-specific prompt [31] for model updating. With
the pre-trained weights frozen, these methods can encode
new features into the prompt pool. DAP [32] further ex-
tends the prompt selection process with a prompt genera-
tion module. Apart from prompt tuning, LAE [21] proposes
EMA-based model updating with online and offline mod-
els. SLCA [70] extends the Gaussian modeling of previous
classes in [79] to rectify classifiers during model updating.
Furthermore, ADAM [77] shows that prototypical classi-
fier [50] is a strong baseline, and RanPAC [40] explores the
application of random projection in this setting.

3. Preliminaries
In this section, we introduce the background of class-
incremental learning and pre-trained model, baselines, and
their limitations.

3.1. Class-Incremental Learning

CIL is the learning scenario where a model continually
learns to classify new classes to build a unified classi-
fier [46]. Given a sequence of B training sets, denoted as{
D1,D2, · · · ,DB

}
, where Db = {(xi, yi)}nb

i=1 is the b-th
training set with nb instances. An instance xi ∈ RD is
from class yi ∈ Yb. Yb is the label space of task b, and
Yb ∩ Yb′ = ∅ for b 6= b′, i.e., non-overlapping classes
for different tasks. We follow the exemplar-free setting

23555

in [49, 61, 62], where we save no exemplars from old
classes. Hence, during the b-th incremental stage, we can
only access data from Db for training. In CIL, we aim to
build a unified classifier for all seen classes Yb = Y1∪· · ·Yb
as data evolves. Specifically, we hope to find a model
f(x) : X → Yb that minimizes the expected risk:

f∗ = argmin
f∈H

E(x,y)∼D1
t∪···Db

t
I (y 6= f(x)) . (1)

H is the hypothesis space and I(·) denotes the indica-
tor function. Dbt represents the data distribution of task
b. Following typical PTM-based CIL works [49, 61, 62],
we assume that a pre-trained model (e.g., Vision Trans-
former [15]) is available as the initialization for f(x). We
decouple the PTM into the feature embedding φ(·) : RD →
Rd and a linear classifier W ∈ Rd×|Yb|. The embedding
function φ(·) refers to the final [CLS] token in ViT, and the
model output is denoted as f(x) = W>φ(x). For clarity,
we decouple the classifier into W = [w1,w2, · · · ,w|Yb|],
and the classifier weight for class j is wj .

3.2. Baselines in Class-Incremental Learning

Learning with PTMs: In the era of PTMs, many
works [32, 49, 60–62] seek to modify the PTM slightly, in
order to maintain the pre-trained knowledge. The general
idea is to freeze the pre-trained weights and train the learn-
able prompt pool (denoted as Pool) to influence the self-
attention process and encode task information. Prompts are
learnable tokens with the same dimension as image patch
embedding [15, 31]. The target is formulated as:

min
Pool∪W

∑
(x,y)∈Db

`
(
W>φ̄ (x;Pool) , y

)
+ LPool , (2)

where `(·, ·) is the cross-entropy loss that measures the dis-
crepancy between prediction and ground truth. LPool de-
notes the prompt selection [62] or regularization [49] term
for prompt training. Optimizing Eq. 2 encodes the task in-
formation into these prompts, enabling the PTM to capture
more class-specific information as data evolves.
Learning with expandable backbones: Eq. 2 enables the
continual learning of a pre-trained model, while training
prompts for new classes will conflict with old ones and lead
to forgetting. Before introducing PTMs to CIL, methods
consider model expansion [56, 64] to tackle cross-task con-
flict. Specifically, when facing an incoming task, the model
freezes the previous backbone φ̄old and keeps it in memory,
and initializes a new backbone φnew. Then it aggregates
the embedding functions [φ̄old(·), φnew(·)] and initializes a
larger fully-connected layer WE ∈ R2d×|Yb|. During up-
dating, it optimizes the cross-entropy loss to train the new
embedding and classifier:

min
φnew∪WE

∑
(x,y)∈Db∪E

`(W>E [φ̄old(x), φnew(x)], y) , (3)

where E is the exemplar set containing instances of former
classes (which is unavailable in the current setting). Eq. 3
depicts a way to learn new features for new classes. As-
suming the first task contains ‘cats,’ the old embedding will
be tailored for extracting features like beards and stripes
due to limited model capacity. If the incoming task con-
tains ‘birds,’ instead of erasing the former features in φold,
Eq. 3 resorts to a new backbone φnew to capture features
like beaks and feathers. The concatenated features enable
the model to learn new features without harming old ones,
and the model calibrates among all seen classes by tuning a
classifier with the exemplar set.
Learning expandable subspaces for PTM: Eq. 2 encodes
the task information into the prompts while optimizing
prompts for new tasks will result in conflict with old ones.
By contrast, expanding backbones reveal a promising way
to alleviate cross-task overwriting while the model scale and
computational cost of PTMs hinder the application of Eq. 3
in PTM-based CIL. Additionally, since we do not have any
exemplars E , optimizing Eq. 3 also fails to achieve a well-
calibrated classifier for all seen classes. Hence, this inspires
us to explore whether it is possible to achieve low-cost sub-
space expansion without using exemplars.

4. EASE: Expandable Subspace Ensemble
Observing that subspace expansion can potentially mitigate
cross-task conflict in CIL, we aim to achieve this goal with-
out exemplars. Hence, we first create lightweight subspaces
for sequential tasks to control the total budget and computa-
tional cost. The adaptation modules should reflect the task
information to provide task-specific features so that learn-
ing new tasks will not harm former knowledge. On the other
hand, since we do not have exemplars, we are unable to train
a classifier for the ever-expanding features. Hence, we need
to synthesize and complete the expanding classifier and cal-
ibrate the predictions among different tasks without using
historical instances. Correspondingly, we attempt to utilize
semantic-guided mapping to complete former classes in the
latter subspace. Afterward, the model can enjoy the strong
generalization ability of the pre-trained model and various
task-specific features in a unified high-dimensional decision
space and make the predictions holistically without forget-
ting existing ones.

We first introduce the subspace expansion process and
then discuss how to complete the classifiers. We summarize
the inference function with pseudo-code in the last part.

4.1. Subspace Expansion with Adapters

In Eq. 3, new embedding functions are obtained through
fully finetuning the previous model. However, it requires
a large computational cost and memory budget to fine-
tune and save all these backbones. By contrast, we sug-
gest achieving this goal through lightweight adapter tun-

23556

𝒟𝒟1

Pre-Trained
Backbone 𝒜𝒜1

Class 1

Class 2

𝑷𝑷𝟏𝟏,𝟏𝟏

𝒟𝒟2

Pre-Trained
Backbone 𝒜𝒜1

Class 3

Class 4

𝒜𝒜2

𝑷𝑷𝟏𝟏,𝟏𝟏

𝑷𝑷𝟐𝟐,𝟏𝟏 𝑷𝑷𝟐𝟐,𝟐𝟐

�𝑷𝑷𝟏𝟏,𝟐𝟐

Semantic
Mapping

First Incremental Stage Second Incremental Stage

Subspace
of 𝒜𝒜1

Subspace
of 𝒜𝒜𝟐𝟐

Mapping

Semantic Mapping

Extract
Prototypes

Similar
Dissimilar

Recombination

Figure 2. Illustration of EASE. Left: In the first task, we learn an adapter A1 to encode task specific features, and extract class prototypes
P1,1. Middle: In the second task, we initialize a new adapter A2 to encode new features, and extract prototypes P2,1 and P2,2. Without
exemplars, we need to synthesize P1,2 (old class prototypes in the new subspace) for prediction. Right: Semantic mapping process. We
extract class-wise similarity in the co-occurrence subspace and utilize it to synthesize old class prototypes in the target space.

ing [8, 28]. Denote there are L transformer blocks in the
pre-trained model, each containing a self-attention module
and an MLP layer. Following [8], we learn an adapter mod-
ule as a side branch for the MLP. Specifically, an adapter is
a bottleneck module that contains a down-projection layer
Wdown ∈ Rd×r, a non-linear activation function σ, and an
up-projection layer Wup ∈ Rr×d. It adjusts the output of
the MLP as:

xo = σ(xiWdown)Wup + MLP(xi) , (4)

where xi and xo represent the input and output of MLP,
respectively. Eq. 4 reflects the task information by adding
the residual term to the original output. We denote the set
of adapters among all L transformer blocks as A and the
adapted embedding function with adapter A as φ(x;A).
Hence, facing a new incremental task, we can freeze the
pre-trained weights and only optimize the adapter by:

min
A∪W

∑
(x,y)∈Db

`
(
W>φ̄ (x;A) , y

)
. (5)

Optimizing Eq. 5 enables us to encode task-specific in-
formation in these lightweight adapters and create task-
specific subspaces. Correspondingly, we share the frozen
pre-trained backbone and learn expandable adapters for
each new task. During the learning process of task b, we
initialize a new adapter Ab and optimize Eq. 5 to learn
task-specific subspaces. This results in a list of b adapters:
{A1,A2, · · · ,Ab}. Hence, we can easily get the concate-
nated features in all subspaces by concatenating the pre-
trained backbone with every adapter:

Φ(x) = [φ(x;A1), · · · , φ(x;Ab)] ∈ Rbd . (6)

Effect of expandable adapters: Figure 2 (left and mid-
dle) illustrates the adapter expansion process. Since we only
tune the task-specific adapter with the corresponding task,

training the new task will not harm the old knowledge (i.e.,
former adapters). Moreover, in Eq. 6, we combine the pre-
trained embedding with various task-specific adapters to get
the final presentation. The embedding contains all task-
specific information in various subspaces that can be fur-
ther integrated for a holistic prediction. Furthermore, since
adapters are only lightweight branches, they require much
fewer parameters than fully finetuning the backbone. The
parameter cost for saving these adapters is (B × L× 2dr),
where B is the number of tasks, L is the number of trans-
former blocks, and 2dr denotes the parameter number of
each adapter (i.e., linear projections).

After getting the holistic embedding, we discuss how to
build the mapping from bd dimensional features to classes.
We utilize a prototype-based classifier [50] for prediction.
Specifically, after the training process of each incremen-
tal stage, we extract the class prototype of the i-th class in
adapter Ab’s subspace:

pi,b = 1
N

∑|Db|
j=1 I(yj = i)φ(xj ;Ab) , (7)

whereN is the instance number of class i. Eq. 7 denotes the
most representative pattern of the corresponding class in the
corresponding embedding space, and we can utilize the con-
catenation of prototypes in all adapters’ embedding spaces
Pi = [pi,1,pi,2, · · · ,pi,b] ∈ Rbd to serve as class i’s classi-
fier. Hence, the classification is based on the similarity of a
corresponding embedding Φ(x) and the concatenated pro-
totype, i.e., p(y|x) ∝ sim〈Py,Φ(x)〉. We utilize a cosine
classifier for prediction.

4.2. Semantic Guided Prototype Complement

Eq. 7 builds classifiers with representative prototypes.
However, when a new task arrives, we need to learn a new
subspace with a new adapter. It requires recalculating all
class prototypes in the latest subspace to align the pro-
totypes with the increasing embeddings, while we do not

23557

have any exemplars to estimate that of old classes. For
example, we train A1 with the first dataset D1 in the first
stage and extract prototypes for classes in D1, denoted as
P1,1 = Concat[p1,1; · · ·p|Y1|,1] ∈ R|Y1|×d. The former
subscript in P1,1 stands for the task index, and the latter for
the subspace. In the following task, we expand an adapter
A2 with D2. Since we only have D2, we can only calcu-
late prototypes of D2 in A1 and A2’s subspaces, i.e., P2,1,
P2,2. In other words, we cannot calculate the prototypes of
old classes in the new embedding space, i.e., P1,2. This re-
sults in the inconsistent dimension between prototypes and
embeddings, and we need to find a way to complete and
synthesize prototypes of old classes in the latest subspace.

Without loss of generality, we formulate the above prob-
lem as: given two subspaces (old and new) and two class
sets (old and new), the target is to estimate old class pro-
totypes in the new subspace P̂o,n using Po,o, Pn,o, Pn,n.
Among them, Po,o and Pn,o represent prototypes of old
and new classes in the old subspace (which we call co-
occurrence space), and Pn,n represents new classes proto-
types in the new subspace.

Since related classes rely on similar features to deter-
mine the label, it is intuitive to reuse similar classes’ pro-
totypes to synthesize a prototype of a related class. For ex-
ample, essential features representing a ‘lion’ can also help
define a ‘cat.’ We consider such semantic similarity can be
shared among different embedding spaces, i.e., the similar-
ity between ‘cat’ and ‘lion’ should be shared across differ-
ent adapters’ subspaces. Hence, we can extract such seman-
tic information in the co-occurrence space and restore the
prototypes by recombining related prototypes. Specifically,
we measure the similarity between old and new classes in
the old subspace (where all classes co-occur) and utilize it
to reconstruct prototypes in the new embedding space. The
class-wise similarity among classes is calculated via proto-
types in the co-occurrence subspace:

Simi,j =
Po,o[i]

‖Po,o[i]‖2
Pn,o[j]

>

‖Pn,o[j]‖2
, (8)

where the index i denotes the i-th class’s prototype. In
Eq. 8, we measure the semantic similarity of an old class
prototype to a new class prototype in the same subspace
and get the similarity matrix. We further normalize the sim-
ilarities via softmax: Simi,j = expSimi,j∑

j expSimi,j
. The normalized

similarity denotes the local relative relationship of an old
class to new classes in the co-occurrence space, which is
supposed to be shared across different subspaces.

After getting the similarity matrix, we further utilize the
relative similarity to reconstruct old class prototypes in the
new subspace. Since the relationship between classes can
be shared among different subspaces, the value of old class
prototypes can be measured by the weighted combination

of new class prototypes:

P̂o,n[i] =
∑
j Simi,j ×Pn,n[j] . (9)

Effect of prototype complement: Figure 2 (right) depicts
the prototype synthesis process. With Eq. 9, we can restore
the old class prototypes in the latest subspace without any
former exemplars. After learning each new adapter, we uti-
lize Eq. 9 to reconstruct all old class prototypes in the latest
subspace. The complement process is training-free, making
the learning process efficient.

4.3. Subspace Ensemble via Subspace Reweight

So far, we have introduced subspace expansion with new
adapters and prototype complement to restore old class pro-
totypes. After adapter expansion and prototype comple-
ment, we can get a full classifier (prototype matrix) as:

P1,1 P̂1,2 · · · P̂1,B

P2,1 P2,2 · · · P̂2,B

...
...

. . .
...

PB,1 PB,1 · · · PB,B

 . (10)

Note that items above the main diagonal are estimated via
Eq. 9. During inference, the logit of task b is calculated by:

[Pb,1,Pb,2, · · · ,Pb,B]>Φ(x) =
∑
iP
>
b,iφ(x;Ai) , (11)

which equals the ensemble of multiple (prototype-
embedding) matching logit in different subspaces. Among
the items in Eq. 11, only adapter Ab is especially learned
to extract task-specific features for the b-th task. Hence, we
think these prototypes are more suitable for classifying the
corresponding task and should take a greater part in the final
inference. Hence, we transform Eq. 11 by assigning higher
weights to the matching subspace:

P>b,bφ(x;Ab) + α
∑
i 6=bP

>
b,iφ(x;Ai) , (12)

where α is the trade-off parameter, which is set to 0.1 in our
experiments. Reweighting the logits enables us to highlight
the contributions of core features in the decision.
Summary of EASE: We summarize the training pipeline
of EASE in the supplementary. We initialize and train an
adapter for each incoming task to encode the task-specific
information. Afterward, we extract the prototypes of the
current dataset for all adapters and synthesize the prototypes
of former classes. Finally, we construct the full classifier
and reweight the logit for prediction. Since we are using the
prototype-based classifier for inference, the classifier W in
Eq. 5 will be dropped after each learning stage.

23558

Table 1. Average and last performance comparison on seven datasets with ViT-B/16-IN21K as the backbone. ‘IN-R/A’ stands for
‘ImageNet-R/A,’ ‘ObjNet’ stands for ‘ObjectNet,’ and ‘OmniBench’ stands for ‘OmniBenchmark.’ We report all compared methods
with their source code. The best performance is shown in bold. All methods are implemented without using exemplars.

Method CIFAR B0 Inc5 CUB B0 Inc10 IN-R B0 Inc5 IN-A B0 Inc20 ObjNet B0 Inc10 OmniBench B0 Inc30 VTAB B0 Inc10
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

Finetune 38.90 20.17 26.08 13.96 21.61 10.79 24.28 14.51 19.14 8.73 23.61 10.57 34.95 21.25
Finetune Adapter [8] 60.51 49.32 66.84 52.99 47.59 40.28 45.41 41.10 50.22 35.95 62.32 50.53 48.91 45.12
LwF [36] 46.29 41.07 48.97 32.03 39.93 26.47 37.75 26.84 33.01 20.65 47.14 33.95 40.48 27.54
SDC [67] 68.21 63.05 70.62 66.37 52.17 49.20 29.11 26.63 39.04 29.06 60.94 50.28 45.06 22.50
L2P [62] 85.94 79.93 67.05 56.25 66.53 59.22 49.39 41.71 63.78 52.19 73.36 64.69 77.11 77.10
DualPrompt [61] 87.87 81.15 77.47 66.54 63.31 55.22 53.71 41.67 59.27 49.33 73.92 65.52 83.36 81.23
CODA-Prompt [49] 89.11 81.96 84.00 73.37 64.42 55.08 53.54 42.73 66.07 53.29 77.03 68.09 83.90 83.02
SimpleCIL [77] 87.57 81.26 92.20 86.73 62.58 54.55 59.77 48.91 65.45 53.59 79.34 73.15 85.99 84.38
ADAM + Finetune [77] 87.67 81.27 91.82 86.39 70.51 62.42 61.01 49.57 61.41 48.34 73.02 65.03 87.47 80.44
ADAM + VPT-S [77] 90.43 84.57 92.02 86.51 66.63 58.32 58.39 47.20 64.54 52.53 79.63 73.68 87.15 85.36
ADAM + VPT-D [77] 88.46 82.17 91.02 84.99 68.79 60.48 58.48 48.52 67.83 54.65 81.05 74.47 86.59 83.06
ADAM + SSF [77] 87.78 81.98 91.72 86.13 68.94 60.60 61.30 50.03 69.15 56.64 80.53 74.00 85.66 81.92
ADAM + Adapter [77] 90.65 85.15 92.21 86.73 72.35 64.33 60.47 49.37 67.18 55.24 80.75 74.37 85.95 84.35

EASE 91.51 85.80 92.23 86.81 78.31 70.58 65.34 55.04 70.84 57.86 81.11 74.85 93.61 93.55

20 40 60 80 100
Number of Classes

70

80

90

A
cc

ur
ac

y
(%

)

1.28

L2P
DualPrompt
SimpleCIL
ADAM+Finetune
ADAM+VPT-S

ADAM+VPT-D
ADAM+SSF
ADAM+Adapter
CODA-Prompt
EASE

(a) CIFAR B0 Inc20

50 100 150 200
Number of Classes

20

40

60

80

A
cc

ur
ac

y
(%

) 4.55

L2P
DualPrompt
SimpleCIL
ADAM+Finetune
ADAM+VPT-S

ADAM+VPT-D
ADAM+SSF
ADAM+Adapter
CODA-Prompt
EASE

(b) ImageNet-A B0 Inc20

50 100 150 200
Number of Classes

40

50

60

70

80

90

A
cc

ur
ac

y
(%

) 5.11

L2P
DualPrompt
SimpleCIL
ADAM+Finetune
ADAM+VPT-S

ADAM+VPT-D
ADAM+SSF
ADAM+Adapter
CODA-Prompt
EASE

(c) ImageNet-R B0 Inc10

50 100 150 200
Number of Classes

40

60

80

A
cc

ur
ac

y
(%

) 4.25

L2P
DualPrompt
SimpleCIL
ADAM+Finetune
ADAM+VPT-S

ADAM+VPT-D
ADAM+SSF
ADAM+Adapter
CODA-Prompt
EASE

(d) ObjectNet B0 Inc20

50 100 150 200 250 300
Number of Classes

40

50

60

70

80

90

A
cc

ur
ac

y
(%

) 0.38

L2P
DualPrompt
SimpleCIL
ADAM+Finetune
ADAM+VPT-S

ADAM+VPT-D
ADAM+SSF
ADAM+Adapter
CODA-Prompt
EASE

(e) Omnibenchmark B0 Inc30

10 20 30 40 50
Number of Classes

60

70

80

90

100

A
cc

ur
ac

y
(%

)

7.49

L2P
DualPrompt
SimpleCIL
ADAM+Finetune
ADAM+VPT-S

ADAM+VPT-D
ADAM+SSF
ADAM+Adapter
CODA-Prompt
EASE

(f) VTAB B0 Inc10

Figure 3. Performance curve of different methods under different settings. All methods are initialized with ViT-B/16-IN1K. We annotate
the relative improvement of EASE above the runner-up method with numerical numbers at the last incremental stage.

5. Experiments

In this section, we conduct experiments on seven bench-
mark datasets and compare EASE to other state-of-the-art
algorithms to show the incremental learning ability. Addi-
tionally, we provide an ablation study and parameter anal-
ysis to investigate the robustness of our proposed method.
We also analyze the effect of prototype synthesis and pro-
vide visualization to show EASE’s effectiveness. More ex-
perimental results can be found in the supplementary.

5.1. Implementation Details

Dataset: Since pre-trained models may possess extensive
knowledge of upstream tasks, we follow [62, 77] to eval-
uate the performance on CIFAR100 [35], CUB200 [55],
ImageNet-R [25], ImageNet-A [26], ObjectNet [4], Om-
nibenchmark [72] and VTAB [69]. These datasets contain
typical CIL benchmarks and out-of-distribution datasets
that have large domain gap with ImageNet (i.e., the pre-
trained dataset). There are 50 classes in VTAB, 100 classes

23559

Table 2. Comparison to traditional exemplar-based CIL methods.
EASE does not use any exemplars. All methods are based on the
same pre-trained model (ViT-B/16-IN21K).

Method Exemplars ImageNet-R B0 Inc20 CIFAR B0 Inc10
Ā AB Ā AB

iCaRL [46] 20 / class 72.42 60.67 82.46 73.87
DER [64] 20 / class 80.48 74.32 86.04 77.93
FOSTER [56] 20 / class 81.34 74.48 89.87 84.91
MEMO [76] 20 / class 74.80 66.62 84.08 75.79

EASE 0 81.73 76.17 92.35 87.76

100 120 140 160 180 200
Number of Classes

30

40

50

60

70

80

A
cc

ur
ac

y
(%

)

3.65

L2P
DualPrompt
SimpleCIL
ADAM+Finetune
ADAM+VPT-S

ADAM+VPT-D
ADAM+SSF
ADAM+Adapter
CODA-Prompt
EASE

(a) ImageNet-R B100 Inc50

100 120 140 160 180 200
Number of Classes

30

40

50

60

70

A
cc

ur
ac

y
(%

)

2.5

L2P
DualPrompt
SimpleCIL
ADAM+Finetune
ADAM+VPT-S

ADAM+VPT-D
ADAM+SSF
ADAM+Adapter
CODA-Prompt
EASE

(b) ImageNet-A B100 Inc50

Figure 4. Experimental results with large base classes. All meth-
ods are based on the same pre-trained model (ViT-B/16-IN21K)

in CIFAR100, 200 classes in CUB, ImageNet-R, ImageNet-
A, ObjectNet, and 300 classes in OmniBenchmark. More
details are reported in the supplementary.
Dataset split: Following the benchmark setting [46, 62],
we use ‘B-m Inc-n’ to denote the class split. m indicates
the number of classes in the first stage, and n represents that
of every incremental stage. For all compared methods, we
follow [46] to randomly shuffle class orders with random
seed 1993 before data split. We keep the training and testing
set the same as [77] for all methods for a fair comparison.
Comparison methods: We choose state-of-the-art PTM-
based CIL methods for comparison, i.e., L2P [62], Du-
alPrompt [61], CODA-Prompt [49], SimpleCIL [77] and
ADAM [77]. Additionally, we also compare our method
to typical CIL methods by equipping them with the same
PTM, e.g., LwF [36], SDC [67], iCaRL [46], DER [64],
FOSTER [56] and MEMO [76]. We report the baseline
method, which sequentially finetunes the PTM as Finetune.
We implement all methods with the same PTM.
Training details: We run experiments on NVIDIA 4090
and reproduce other compared methods with PyTorch [42]
and Pilot [51]. Following [62, 77], we consider two rep-
resentative models, i.e., ViT-B/16-IN21K and ViT-B/16-
IN1K as the pre-trained model. They are obtained by pre-
training on ImageNet21K, while the latter is further fine-
tuned with ImageNet1K. In EASE, we train the model using
SGD optimizer, with a batch size of 48 for 20 epochs. The
learning rate decays from 0.01 with cosine annealing. We
set the projection dim r in the adapter to 16 and the trade-off
parameter α to 0.1.
Evaluation metric: Following the benchmark proto-
col [46], we use Ab to represent the model’s accuracy after

50 100 150 200
Number of Classes

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Vanilla PTM
w/ Task-Specific Adapters
w/ Prototype Complement
w/ Subspace Reweight

Figure 5. Ablation Study of different components in EASE. We
find every component in EASE can improve the performance.

the b-th stage. Specifically, we adopt AB (the performance
after the last stage) and Ā = 1

B

∑B
b=1Ab (average perfor-

mance along incremental stages) as measurements.

5.2. Benchmark Comparison

In this section, we compare EASE to other state-of-the-art
methods on seven benchmark datasets and different back-
bone weights. Table 1 reports the comparison of differ-
ent methods with ViT-B/16-IN21K. We can infer that EASE
achieves the best performance among all seven benchmarks,
substantially outperforming the current SOTA methods, i.e.,
CODA-Prompt, and ADAM. We also report the incremen-
tal performance trend of different methods in Figure 3 with
ViT-B/16-IN1K. As annotated at the end of each image, we
find EASE outperforms the runner-up method by 4%∼7.5%
on ImageNet-R/A, ObjectNet, and VTAB.

Apart from the B0 settings in Table 1 and Figure 3, we
also conduct experiments with vase base classes. As shown
in Figure 4, EASE still works competitively given various
data split settings. Additionally, we also compare EASE to
traditional CIL methods by implementing them based on
the same pre-trained model in Table 2. It must be noted
that traditional CIL methods require saving exemplars to re-
cover former knowledge, while ours do not. We follow [46]
to set the exemplar number to 20 per class for these meth-
ods. Surprisingly, we find EASE still works competitively
in comparison to these exemplar-based methods.

Finally, we investigate the parameter number of differ-
ent methods and report the parameter-performance compar-
ison on ImageNet-R B100 Inc50 in Figure 1. As shown in
the figure, EASE uses the same scale of parameters as other
prompt-based methods, e.g., L2P and DualPrompt, while
achieving the best performance among all competitors. Ex-
tensive experiments validate the effectiveness of EASE.

5.3. Ablation Study

In this section, we conduct an ablation study to investigate
the effectiveness of each component in EASE. Specifically,

23560

(a) Subspace of A1 (b) Subspace of A2

Figure 6. t-SNE [53] visualizations of different adapters’ sub-
spaces, which are learned to discriminate the corresponding task.

we report the incremental performance of different varia-
tions on ImageNet-R B0 Inc20 in Figure 5. In the figure,
‘Vanilla PTM’ denotes classifying with prototype classi-
fier of the pre-trained image encoder, which stands for the
baseline. To enhance feature diversity, we aim to equip the
PTM with expandable adapters (Eq. 6). Since we do not
have exemplars, we report the performance of ‘w/ Task-
Specific Adapters’ by only using the diagonal components
in Eq. 10. When comparing it to ‘Vanilla PTM,’ we find
although a pre-trained model possesses generalizable fea-
tures, the adaptation to downstream tasks to extract task-
specific features is also an essential step in CIL. Further-
more, we can complete the classifier by semantic mapping
(Eq. 9) and use a full classifier instead of diagonal compo-
nents for classification. We denote such format as ‘w/ Pro-
totype Complement.’ As shown in the figure, prototype
complement further improves the performance, indicating
that cross-task semantic information from other tasks can
help the inference. Finally, we adjust the logit with Eq. 12
by reweighting the importance of different components (de-
noted as ‘w/ Subspace Reweight’), which further improves
the performance. Ablations verify that every component in
EASE boosts the CIL performance.

5.4. Further Analysis

Visualizations: In this paper, we expect different adapters
to learn task-specific features. To verify this hypothesis,
we conduct experiments with ImageNet-R B0 Inc5 and vi-
sualize the embeddings in different adapter spaces in Fig-
ure 6 using t-SNE [53]. We consider two incremental stages
(each containing five classes) and learn two adaptersA1,A2

for these tasks. We represent classes of the first task with
dots and classes of the second task with triangles. As shown
in Figure 6a, in adapter A1’s embedding space, classes of
the first task (dots) are clearly separated, while classes of
the second task (triangles) are not. We can observe a similar
phenomenon in Figure 6b, where adapter A2 can discrim-
inate classes in the second task. Hence, we should mainly
resort to the adapter to classify classes of the corresponding
task, as formulated in Eq. 12.
Parameter robustness: There are two hyperparameters
in EASE, i.e., the projection dim r in the adapter and

128 64 32 16 8
Projection dimension r

0.5

0.3

0.1

5e-2

1e-2

Tr
ad

e-
of

f P
ar

am
et

er

81.6

82.2

82.5

82.5

82.4

81.5

82.2

82.5

82.5

82.5

81.5

82.2

82.5

82.5

82.4

81.7

82.4

82.9

82.8

82.7

81.3

82.1

82.5

82.6

82.5 81.5

82.0

82.5

(a) Robustness of hyperparameters

ImageNet-R ImageNet-A ObjectNet

40

50

60

70

80

90

La
st

 A
cc

ur
ac

y
(%

)

77.3 76.0 76.1

58.5 57.3 56.5
61.4 60.9

58.3

Similarity
OT
LR

(b) Variations of Eq. 9

Figure 7. Further analysis on parameter robustness and prototype
complement strategy.

the trade-off parameter α in Eq. 12. We conduct ex-
periments on ImageNet-R B0 Inc20 to investigate the
robustness by changing these parameters. Specifically,
we choose r among {8, 16, 32, 64, 128}, and α among
{0.01, 0.05, 0.1, 0.3, 0.5}. We report the average perfor-
mance in Figure 7a. As shown in the figure, the perfor-
mance is robust with the change of these parameters, and
we suggest r = 16, α = 0.1 as default for other datasets.
Prototype complement: Apart from similarity-based map-
ping in Eq. 9, there are other ways to learn the mapping and
complete the prototype matrix, e.g., Linear Regression (LR)
and Optimal Transport (OT) [33, 65]. Hence, we also com-
pare the similarity-based complement to these variations in
Figure 7b. With other settings the same, we find the current
complement strategy the best among these variations.

6. Conclusion

Incremental learning is a desired ability of real-world learn-
ing systems. This paper proposes expandable subspace en-
semble (EASE) for class-incremental learning with a pre-
trained model. Specifically, we equip a PTM with diverse
subspaces through lightweight adapters. Aggregating his-
torical features enables the model to extract holistic embed-
dings without forgetting. Besides, we utilize semantic in-
formation to synthesize the prototypes of former classes in
latter subspaces without the help of exemplars. Extensive
experiments verify EASE’s effectiveness.
Limitations and future works: Although adapters are
lightweight modules that only consume limited parameters
(0.3% of the total backbone), possible limitations include
the extra model size for saving these adapters. Future works
include designing algorithms to compress adapters.

Acknowledgments

This work is partially supported by National Science
and Technology Major Project (2022ZD0114805), NSFC
(62376118, 62006112, 62250069, 61921006), Collabora-
tive Innovation Center of Novel Software Technology and
Industrialization.

23561

References
[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,

Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In ECCV, pages
139–154, 2018. 2

[2] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars.
Task-free continual learning. In CVPR, pages 11254–11263,
2019. 2

[3] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Ben-
gio. Gradient based sample selection for online continual
learning. In NeurIPS, pages 11816–11825, 2019. 2

[4] Andrei Barbu, David Mayo, Julian Alverio, William Luo,
Christopher Wang, Dan Gutfreund, Josh Tenenbaum, and
Boris Katz. Objectnet: A large-scale bias-controlled dataset
for pushing the limits of object recognition models. NeurIPS,
32, 2019. 6

[5] Eden Belouadah and Adrian Popescu. Il2m: Class incremen-
tal learning with dual memory. In ICCV, pages 583–592,
2019. 2

[6] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,
and Mohamed Elhoseiny. Efficient lifelong learning with a-
gem. In ICLR, 2018. 2

[7] Shuo Chen, Gang Niu, Chen Gong, Jun Li, Jian Yang, and
Masashi Sugiyama. Large-margin contrastive learning with
distance polarization regularizer. In ICML, pages 1673–
1683, 2021. 1

[8] Shoufa Chen, GE Chongjian, Zhan Tong, Jiangliu Wang,
Yibing Song, Jue Wang, and Ping Luo. Adaptformer: Adapt-
ing vision transformers for scalable visual recognition. In
NeurIPS, 2022. 4, 6

[9] Shuo Chen, Chen Gong, Jun Li, Jian Yang, Gang Niu, and
Masashi Sugiyama. Learning contrastive embedding in low-
dimensional space. NeurIPS, 35:6345–6357, 2022. 1

[10] Xiuwei Chen and Xiaobin Chang. Dynamic residual classi-
fier for class incremental learning. In ICCV, pages 18743–
18752, 2023. 1, 2

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255, 2009. 1

[12] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng,
Ziyan Wu, and Rama Chellappa. Learning without mem-
orizing. In CVPR, pages 5138–5146, 2019. 2

[13] Jiahua Dong, Lixu Wang, Zhen Fang, Gan Sun, Shichao Xu,
Xiao Wang, and Qi Zhu. Federated class-incremental learn-
ing. In CVPR, pages 10164–10173, 2022. 2

[14] Jiahua Dong, Duzhen Zhang, Yang Cong, Wei Cong,
Henghui Ding, and Dengxin Dai. Federated incremental se-
mantic segmentation. In CVPR, pages 3934–3943, 2023. 2

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR, 2020. 3

[16] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas
Robert, and Eduardo Valle. Podnet: Pooled outputs distil-
lation for small-tasks incremental learning. In ECCV, pages
86–102, 2020. 2

[17] Arthur Douillard, Alexandre Ramé, Guillaume Couairon,
and Matthieu Cord. Dytox: Transformers for continual learn-
ing with dynamic token expansion. In CVPR, pages 9285–
9295, 2022. 1, 2

[18] Robert M French. Catastrophic forgetting in connectionist
networks. Trends in cognitive sciences, 3(4):128–135, 1999.
1

[19] Robert M French and André Ferrara. Modeling time percep-
tion in rats: Evidence for catastrophic interference in animal
learning. In Proceedings of the 21st Annual Conference of
the Cognitive Science Conference, pages 173–178. Citeseer,
1999. 1

[20] Qiankun Gao, Chen Zhao, Bernard Ghanem, and Jian Zhang.
R-DFCIL: relation-guided representation learning for data-
free class incremental learning. In ECCV, pages 423–439,
2022. 2

[21] Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang,
Bernard Ghanem, and Jian Zhang. A unified continual learn-
ing framework with general parameter-efficient tuning. In
ICCV, pages 11483–11493, 2023. 2

[22] Dipam Goswami, Yuyang Liu, Bartłomiej Twardowski, and
Joost van de Weijer. Fecam: Exploiting the heterogene-
ity of class distributions in exemplar-free continual learning.
NeurIPS, 36, 2023. 2

[23] Stephen T Grossberg. Studies of mind and brain: Neural
principles of learning, perception, development, cognition,
and motor control. Springer Science & Business Media,
2012. 1

[24] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu,
Yuqi Huo, Jiezhong Qiu, Yuan Yao, Ao Zhang, Liang Zhang,
et al. Pre-trained models: Past, present and future. AI Open,
2:225–250, 2021. 1

[25] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-
vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, et al. The many faces of robust-
ness: A critical analysis of out-of-distribution generalization.
In ICCV, pages 8340–8349, 2021. 6

[26] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Stein-
hardt, and Dawn Song. Natural adversarial examples. In
CVPR, pages 15262–15271, 2021. 6

[27] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 2

[28] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In ICML, pages 2790–2799, 2019. 4

[29] Zhiyuan Hu, Yunsheng Li, Jiancheng Lyu, Dashan Gao, and
Nuno Vasconcelos. Dense network expansion for class in-
cremental learning. In CVPR, pages 11858–11867, 2023. 2

[30] Bingchen Huang, Zhineng Chen, Peng Zhou, Jiayin Chen,
and Zuxuan Wu. Resolving task confusion in dynamic
expansion architectures for class incremental learning. In
AAAI, pages 908–916, 2023. 2

[31] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge J. Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. In ECCV, pages 709–727, 2022. 1, 2,
3

23562

[32] Dahuin Jung, Dongyoon Han, Jihwan Bang, and Hwanjun
Song. Generating instance-level prompts for rehearsal-free
continual learning. In ICCV, pages 11847–11857, 2023. 1,
2, 3

[33] Leonid V Kantorovich. Mathematical methods of organizing
and planning production. Management science, 6(4):366–
422, 1960. 8

[34] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. PNAS, 114(13):3521–3526, 2017. 2

[35] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical report, 2009.
6

[36] Zhizhong Li and Derek Hoiem. Learning without forgetting.
TPAMI, 40(12):2935–2947, 2017. 2, 6, 7

[37] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and
Qianru Sun. Mnemonics training: Multi-class incremental
learning without forgetting. In CVPR, pages 12245–12254,
2020. 2

[38] Yaoyao Liu, Bernt Schiele, and Qianru Sun. Rmm: Rein-
forced memory management for class-incremental learning.
NeurIPS, 34:3478–3490, 2021. 2

[39] Mark D. McDonnell, Dong Gong, Ehsan Abbasnejad, and
Anton van den Hengel. Premonition: Using generative mod-
els to preempt future data changes in continual learning.
arXiv preprint arXiv:2403.07356, 2024. 2

[40] Mark D McDonnell, Dong Gong, Amin Parvaneh, Ehsan
Abbasnejad, and Anton van den Hengel. Ranpac: Random
projections and pre-trained models for continual learning.
NeurIPS, 36, 2024. 2

[41] Jingyi Ning, Lei Xie, Chuyu Wang, Yanling Bu, Fengyuan
Xu, Da-Wei Zhou, Sanglu Lu, and Baoliu Ye. Rf-badge:
Vital sign-based authentication via rfid tag array on badges.
IEEE Transactions on Mobile Computing, 22(02):1170–
1184, 2023. 1

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, pages 8026–8037, 2019. 7

[43] Quang Pham, Chenghao Liu, and HOI Steven. Continual
normalization: Rethinking batch normalization for online
continual learning. In ICLR, 2022. 2

[44] Weiguo Pian, Shentong Mo, Yunhui Guo, and Yapeng Tian.
Audio-visual class-incremental learning. In ICCV, pages
7799–7811, 2023. 1

[45] Roger Ratcliff. Connectionist models of recognition mem-
ory: constraints imposed by learning and forgetting func-
tions. Psychological review, 97(2):285, 1990. 2

[46] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. icarl: Incremental classi-
fier and representation learning. In CVPR, pages 2001–2010,
2017. 1, 2, 7

[47] Yujun Shi, Kuangqi Zhou, Jian Liang, Zihang Jiang, Jiashi
Feng, Philip HS Torr, Song Bai, and Vincent YF Tan. Mim-
icking the oracle: An initial phase decorrelation approach for

class incremental learning. In CVPR, pages 16722–16731,
2022. 2

[48] Christian Simon, Piotr Koniusz, and Mehrtash Harandi. On
learning the geodesic path for incremental learning. In
CVPR, pages 1591–1600, 2021. 2

[49] James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola
Cascante-Bonilla, Donghyun Kim, Assaf Arbelle, Rameswar
Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Contin-
ual decomposed attention-based prompting for rehearsal-free
continual learning. In CVPR, pages 11909–11919, 2023. 1,
2, 3, 6, 7

[50] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. In NIPS, pages 4080–4090,
2017. 2, 4

[51] Hai-Long Sun, Da-Wei Zhou, Han-Jia Ye, and De-Chuan
Zhan. Pilot: A pre-trained model-based continual learning
toolbox. arXiv preprint arXiv:2309.07117, 2023. 7

[52] Xiaoyu Tao, Xinyuan Chang, Xiaopeng Hong, Xing Wei,
and Yihong Gong. Topology-preserving class-incremental
learning. In ECCV, pages 254–270, 2020. 2

[53] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. JMLR, 9(11), 2008. 8

[54] Andrés Villa, Juan León Alcázar, Motasem Alfarra, Kumail
Alhamoud, Julio Hurtado, Fabian Caba Heilbron, Alvaro
Soto, and Bernard Ghanem. Pivot: Prompting for video con-
tinual learning. In CVPR, pages 24214–24223, 2023. 1

[55] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-
port CNS-TR-2011-001, California Institute of Technology,
2011. 6

[56] Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan
Zhan. Foster: Feature boosting and compression for class-
incremental learning. In ECCV, pages 398–414, 2022. 1, 2,
3, 7

[57] Fu-Yun Wang, Da-Wei Zhou, Liu Liu, Han-Jia Ye, Yatao
Bian, De-Chuan Zhan, and Peilin Zhao. BEEF: Bi-
compatible class-incremental learning via energy-based ex-
pansion and fusion. In ICLR, 2023. 2

[58] Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang,
Hang Su, and Jun Zhu. Hierarchical decomposition of
prompt-based continual learning: Rethinking obscured sub-
optimality. NeurIPS, 36, 2023. 2

[59] Qi-Wei Wang, Da-Wei Zhou, Yi-Kai Zhang, De-Chuan
Zhan, and Han-Jia Ye. Few-shot class-incremental learning
via training-free prototype calibration. NeurIPS, 36, 2023. 2

[60] Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts
learning with pre-trained transformers: An occam’s razor
for domain incremental learning. NeurIPS, 35:5682–5695,
2022. 1, 2, 3

[61] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun,
Han Zhang, Chen-Yu Lee, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, et al. Dualprompt: Complementary
prompting for rehearsal-free continual learning. In ECCV,
pages 631–648, 2022. 1, 3, 6, 7

[62] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang,
Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jen-
nifer Dy, and Tomas Pfister. Learning to prompt for continual
learning. In CVPR, pages 139–149, 2022. 1, 2, 3, 6, 7

23563

[63] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-
cremental learning. In CVPR, pages 374–382, 2019. 2

[64] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynam-
ically expandable representation for class incremental learn-
ing. In CVPR, pages 3014–3023, 2021. 1, 2, 3, 7

[65] Han-Jia Ye, De-Chuan Zhan, Yuan Jiang, and Zhi-Hua Zhou.
Rectify heterogeneous models with semantic mapping. In
ICML, pages 5630–5639, 2018. 8

[66] Han-Jia Ye, De-Chuan Zhan, Nan Li, and Yuan Jiang. Learn-
ing multiple local metrics: Global consideration helps. IEEE
transactions on pattern analysis and machine intelligence,
42(7):1698–1712, 2019. 1

[67] Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz,
Kai Wang, Yongmei Cheng, Shangling Jui, and Joost van de
Weijer. Semantic drift compensation for class-incremental
learning. In CVPR, pages 6982–6991, 2020. 2, 6, 7

[68] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-
ual learning through synaptic intelligence. In ICML, pages
3987–3995, 2017. 2

[69] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov,
Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djo-
longa, Andre Susano Pinto, Maxim Neumann, Alexey Doso-
vitskiy, et al. A large-scale study of representation learning
with the visual task adaptation benchmark. arXiv preprint
arXiv:1910.04867, 2019. 6

[70] Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen,
and Yunchao Wei. Slca: Slow learner with classifier align-
ment for continual learning on a pre-trained model. In ICCV,
pages 19148–19158, 2023. 2

[71] Junting Zhang, Jie Zhang, Shalini Ghosh, Dawei Li, Serafet-
tin Tasci, Larry Heck, Heming Zhang, and C-C Jay Kuo.
Class-incremental learning via deep model consolidation. In
WACV, pages 1131–1140, 2020. 2

[72] Yuanhan Zhang, Zhenfei Yin, Jing Shao, and Ziwei Liu.
Benchmarking omni-vision representation through the lens
of visual realms. In ECCV, pages 594–611, 2022. 6

[73] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-
Tao Xia. Maintaining discrimination and fairness in class
incremental learning. In CVPR, pages 13208–13217, 2020.
2

[74] Hanbin Zhao, Yongjian Fu, Mintong Kang, Qi Tian, Fei Wu,
and Xi Li. Mgsvf: Multi-grained slow versus fast framework
for few-shot class-incremental learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 46(3):1576–
1588, 2021. 2

[75] Hanbin Zhao, Hui Wang, Yongjian Fu, Fei Wu, and Xi
Li. Memory-efficient class-incremental learning for image
classification. IEEE Transactions on Neural Networks and
Learning Systems, 33(10):5966–5977, 2021. 2

[76] Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan
Zhan. A model or 603 exemplars: Towards memory-efficient
class-incremental learning. In ICLR, 2023. 7

[77] Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu.
Revisiting class-incremental learning with pre-trained mod-
els: Generalizability and adaptivity are all you need. arXiv
preprint arXiv:2303.07338, 2023. 2, 6, 7

[78] Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and
De-Chuan Zhan. Continual learning with pre-trained mod-
els: A survey. arXiv preprint arXiv:2401.16386, 2024. 2

[79] Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-
Lin Liu. Prototype augmentation and self-supervision for
incremental learning. In CVPR, pages 5871–5880, 2021. 2

[80] Huiping Zhuang, Zhenyu Weng, Hongxin Wei, Renchunzi
Xie, Kar-Ann Toh, and Zhiping Lin. Acil: Analytic class-
incremental learning with absolute memorization and pri-
vacy protection. NeurIPS, 35:11602–11614, 2022. 2

[81] Huiping Zhuang, Zhenyu Weng, Run He, Zhiping Lin, and
Ziqian Zeng. Gkeal: Gaussian kernel embedded analytic
learning for few-shot class incremental task. In CVPR, pages
7746–7755, 2023. 2

23564

