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Abstract

Class-Incremental Learning (CIL) requires a learning
system to continually learn new classes without forget-
ting. Despite the strong performance of Pre-Trained Mod-
els (PTMs) in CIL, a critical issue persists: learning new
classes often results in the overwriting of old ones. Exces-
sive modification of the network causes forgetting, while
minimal adjustments lead to an inadequate fit for new
classes. As a result, it is desired to figure out a way of effi-
cient model updating without harming former knowledge.
In this paper, we propose ExpAndable Subspace Ensem-
ble (EASE) for PTM-based CIL. To enable model updat-
ing without conflict, we train a distinct lightweight adapter
module for each new task, aiming to create task-specific
subspaces. These adapters span a high-dimensional feature
space, enabling joint decision-making across multiple sub-
spaces. As data evolves, the expanding subspaces render
the old class classifiers incompatible with new-stage spaces.
Correspondingly, we design a semantic-guided prototype
complement strategy that synthesizes old classes’ new fea-
tures without using any old class instance. Extensive exper-
iments on seven benchmark datasets verify EASE’s state-
of-the-art performance. Code is available at: https:
//github.com/sun-hailong/CVPR24-Ease

1. Introduction
The advent of deep learning leads to the remarkable per-
formance of deep neural networks in real-world applica-
tions [7, 9, 11, 41, 66]. While in the open world, data of-
ten come in the stream format, requiring a learning system
to incrementally absorb new class knowledge, denoted as
Class-Incremental Learning (CIL) [46]. CIL faces a major
hurdle: learning new classes tends to overwrite previously
acquired knowledge, leading to catastrophic forgetting of
existing features [18, 19]. Correspondingly, recent ad-
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Figure 1. Parameter-performance comparison of different methods
on ImageNet-R B100 Inc50. All methods utilize the same PTM as
initialization. EASE requires the same scale parameters as other
prompt-based methods [49, 61, 62] while performing best among
all competitors without using exemplars.

vances in pre-training [24] inspire the community to utilize
pre-trained models (PTMs) to alleviate forgetting [61, 62].
PTMs, pre-trained with vast datasets and substantial re-
sources, inherently produce generalizable features. Conse-
quently, PTM-based CIL has shown superior performance,
opening avenues for practical applications [44, 49, 54, 60].

With a generalizable PTM as initialization, algorithms
tend to freeze the pre-trained weight and append minimal
additional parameters (e.g., prompts [31]) to accommodate
incremental tasks [49, 60–62]. Since pre-trained weights
are frozen, the network’s generalizability will be preserved
along the learning process. Nevertheless, to capture new
tasks’ features, selecting and optimizing instance-specific
prompts from the prompt pool inevitably rewrites prompts
of former tasks. Hence, it results in the conflict between old
and new tasks, triggering catastrophic forgetting [32].

In CIL, the conflict between learning new knowledge and
retaining old information is known as the stability-plasticity
dilemma [23]. Hence, learning new classes should not dis-
rupt existing ones. Several non-PTM-based methods, i.e.,
expandable networks [10, 17, 56, 64], address this by learn-
ing a distinct backbone for each new task, thereby creating
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a task-specific subspace. It ensures that optimizing a new
backbone does not impact other tasks, and when concate-
nated, these backbones facilitate comprehensive decision-
making across a high-dimensional space incorporating all
task-specific features. To map the concatenated features to
corresponding classes, a large classifier is optimized using
exemplars i.e., instances of former classes.

Expandable networks resist the cross-task feature con-
flict, while they demand high resource allocation for back-
bone storage and necessitate the use of exemplars for uni-
fied classifier learning. In contrast, prompt learning enables
CIL without exemplars but struggles with the forgetting of
former prompts. This motivates us to question if it is pos-
sible to construct low-cost task-specific subspaces to over-
come cross-task conflict without the reliance on exemplars.

There are two main challenges to achieving this goal.
1) Constructing low-cost, task-specific subspaces. Since
tuning PTMs requires countless resources, we need to cre-
ate and save task-specific subspaces with lightweight mod-
ules instead of the entire backbone. 2) Developing a classi-
fier that can map continuously expanding features to corre-
sponding classes. Since exemplars from former stages are
unavailable, the former stages’ classifiers are incompatible
with continual-expanding features. Hence, we need to uti-
lize the class-wise relationship as semantic guidance to syn-
thesize the classifiers of formerly learned classes.

In this paper, we propose ExpAndable Subspace En-
semble (EASE) to tackle the above challenges. To alle-
viate cross-task conflict, we learn task-specific subspace
for each incremental task, making learning new classes not
harm former ones. These subspaces are learned by adding
lightweight adapters based on the frozen PTM, so the train-
ing and memory costs are negligible. Hence, we can con-
catenate the features of PTM with every adapter to aggre-
gate information from multiple subspaces for a holistic de-
cision. Moreover, to compensate for the dimensional mis-
match between existing classifiers and expanding features,
we utilize class-wise similarities in the co-occurrence space
to guide the classifier mapping in the target space. Thus,
we can synthesize classifiers of former stages without using
exemplars. During inference, we reweight the prediction
result via the compatibility between features and prototypes
and build a robust ensemble considering the alignment of
all subspaces. As shown in Figure 1, EASE shows state-of-
the-art performance with limited memory cost.

2. Related Work
Class-Incremental Learning (CIL): requires a learning
system to continually absorb new class knowledge with-
out forgetting existing ones [13, 14, 20, 22, 38, 57, 59, 74,
80, 81], which can be roughly divided into several cate-
gories. Data rehearsal-based methods [3, 6, 37, 45, 75] se-
lect and replay exemplars from former classes when learn-

ing new ones to recover former knowledge. Knowledge
distillation-based methods [12, 16, 36, 46, 48, 52, 71] build
the mapping between the former stage model and the cur-
rent model via knowledge distillation [27]. The mapped
logits/features help the incremental model to reflect former
characteristics during updating. Parameter regularization-
based methods [1, 2, 34, 68] exert regularization terms on
the drift of important parameters during model updating
to maintain former knowledge. Model rectification-based
methods [5, 43, 47, 63, 67, 73] correct the inductive bias
of incremental models for unbiased prediction. Recently,
expandable networks [10, 17, 29, 30, 56, 64] show strong
performance among other competitors. Facing a new incre-
mental task, they keep the previous backbone in the mem-
ory and initialize a new backbone to capture these new fea-
tures. As for prediction, they concatenate all the backbones
for a large feature map and learn a corresponding classifier
with extra exemplars to calibrate among all classes. There
are two main reasons that hinder the deployment of model
expansion-based methods in pre-trained model-based CIL,
i.e., the huge memory cost for large pre-trained models and
the requirement of exemplars.
Pre-Trained Model-Based CIL: is now a hot topic in to-
day’s CIL field [39, 58, 78]. With the prosperity of pre-
training techniques, it is intuitive to introduce PTMs into
CIL for better performance. Correspondingly, most meth-
ods [49, 60–62] learn a prompt pool to adaptively select
the instance-specific prompt [31] for model updating. With
the pre-trained weights frozen, these methods can encode
new features into the prompt pool. DAP [32] further ex-
tends the prompt selection process with a prompt genera-
tion module. Apart from prompt tuning, LAE [21] proposes
EMA-based model updating with online and offline mod-
els. SLCA [70] extends the Gaussian modeling of previous
classes in [79] to rectify classifiers during model updating.
Furthermore, ADAM [77] shows that prototypical classi-
fier [50] is a strong baseline, and RanPAC [40] explores the
application of random projection in this setting.

3. Preliminaries
In this section, we introduce the background of class-
incremental learning and pre-trained model, baselines, and
their limitations.

3.1. Class-Incremental Learning

CIL is the learning scenario where a model continually
learns to classify new classes to build a unified classi-
fier [46]. Given a sequence of B training sets, denoted as{
D1,D2, · · · ,DB

}
, where Db = {(xi, yi)}nb

i=1 is the b-th
training set with nb instances. An instance xi ∈ RD is
from class yi ∈ Yb. Yb is the label space of task b, and
Yb ∩ Yb′ = ∅ for b 6= b′, i.e., non-overlapping classes
for different tasks. We follow the exemplar-free setting
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in [49, 61, 62], where we save no exemplars from old
classes. Hence, during the b-th incremental stage, we can
only access data from Db for training. In CIL, we aim to
build a unified classifier for all seen classes Yb = Y1∪· · ·Yb
as data evolves. Specifically, we hope to find a model
f(x) : X → Yb that minimizes the expected risk:

f∗ = argmin
f∈H

E(x,y)∼D1
t∪···Db

t
I (y 6= f(x)) . (1)

H is the hypothesis space and I(·) denotes the indica-
tor function. Dbt represents the data distribution of task
b. Following typical PTM-based CIL works [49, 61, 62],
we assume that a pre-trained model (e.g., Vision Trans-
former [15]) is available as the initialization for f(x). We
decouple the PTM into the feature embedding φ(·) : RD →
Rd and a linear classifier W ∈ Rd×|Yb|. The embedding
function φ(·) refers to the final [CLS] token in ViT, and the
model output is denoted as f(x) = W>φ(x). For clarity,
we decouple the classifier into W = [w1,w2, · · · ,w|Yb|],
and the classifier weight for class j is wj .

3.2. Baselines in Class-Incremental Learning

Learning with PTMs: In the era of PTMs, many
works [32, 49, 60–62] seek to modify the PTM slightly, in
order to maintain the pre-trained knowledge. The general
idea is to freeze the pre-trained weights and train the learn-
able prompt pool (denoted as Pool) to influence the self-
attention process and encode task information. Prompts are
learnable tokens with the same dimension as image patch
embedding [15, 31]. The target is formulated as:

min
Pool∪W

∑
(x,y)∈Db

`
(
W>φ̄ (x;Pool) , y

)
+ LPool , (2)

where `(·, ·) is the cross-entropy loss that measures the dis-
crepancy between prediction and ground truth. LPool de-
notes the prompt selection [62] or regularization [49] term
for prompt training. Optimizing Eq. 2 encodes the task in-
formation into these prompts, enabling the PTM to capture
more class-specific information as data evolves.
Learning with expandable backbones: Eq. 2 enables the
continual learning of a pre-trained model, while training
prompts for new classes will conflict with old ones and lead
to forgetting. Before introducing PTMs to CIL, methods
consider model expansion [56, 64] to tackle cross-task con-
flict. Specifically, when facing an incoming task, the model
freezes the previous backbone φ̄old and keeps it in memory,
and initializes a new backbone φnew. Then it aggregates
the embedding functions [φ̄old(·), φnew(·)] and initializes a
larger fully-connected layer WE ∈ R2d×|Yb|. During up-
dating, it optimizes the cross-entropy loss to train the new
embedding and classifier:

min
φnew∪WE

∑
(x,y)∈Db∪E

`(W>E [φ̄old(x), φnew(x)], y) , (3)

where E is the exemplar set containing instances of former
classes (which is unavailable in the current setting). Eq. 3
depicts a way to learn new features for new classes. As-
suming the first task contains ‘cats,’ the old embedding will
be tailored for extracting features like beards and stripes
due to limited model capacity. If the incoming task con-
tains ‘birds,’ instead of erasing the former features in φold,
Eq. 3 resorts to a new backbone φnew to capture features
like beaks and feathers. The concatenated features enable
the model to learn new features without harming old ones,
and the model calibrates among all seen classes by tuning a
classifier with the exemplar set.
Learning expandable subspaces for PTM: Eq. 2 encodes
the task information into the prompts while optimizing
prompts for new tasks will result in conflict with old ones.
By contrast, expanding backbones reveal a promising way
to alleviate cross-task overwriting while the model scale and
computational cost of PTMs hinder the application of Eq. 3
in PTM-based CIL. Additionally, since we do not have any
exemplars E , optimizing Eq. 3 also fails to achieve a well-
calibrated classifier for all seen classes. Hence, this inspires
us to explore whether it is possible to achieve low-cost sub-
space expansion without using exemplars.

4. EASE: Expandable Subspace Ensemble
Observing that subspace expansion can potentially mitigate
cross-task conflict in CIL, we aim to achieve this goal with-
out exemplars. Hence, we first create lightweight subspaces
for sequential tasks to control the total budget and computa-
tional cost. The adaptation modules should reflect the task
information to provide task-specific features so that learn-
ing new tasks will not harm former knowledge. On the other
hand, since we do not have exemplars, we are unable to train
a classifier for the ever-expanding features. Hence, we need
to synthesize and complete the expanding classifier and cal-
ibrate the predictions among different tasks without using
historical instances. Correspondingly, we attempt to utilize
semantic-guided mapping to complete former classes in the
latter subspace. Afterward, the model can enjoy the strong
generalization ability of the pre-trained model and various
task-specific features in a unified high-dimensional decision
space and make the predictions holistically without forget-
ting existing ones.

We first introduce the subspace expansion process and
then discuss how to complete the classifiers. We summarize
the inference function with pseudo-code in the last part.

4.1. Subspace Expansion with Adapters

In Eq. 3, new embedding functions are obtained through
fully finetuning the previous model. However, it requires
a large computational cost and memory budget to fine-
tune and save all these backbones. By contrast, we sug-
gest achieving this goal through lightweight adapter tun-
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Figure 2. Illustration of EASE. Left: In the first task, we learn an adapter A1 to encode task specific features, and extract class prototypes
P1,1. Middle: In the second task, we initialize a new adapter A2 to encode new features, and extract prototypes P2,1 and P2,2. Without
exemplars, we need to synthesize P1,2 (old class prototypes in the new subspace) for prediction. Right: Semantic mapping process. We
extract class-wise similarity in the co-occurrence subspace and utilize it to synthesize old class prototypes in the target space.

ing [8, 28]. Denote there are L transformer blocks in the
pre-trained model, each containing a self-attention module
and an MLP layer. Following [8], we learn an adapter mod-
ule as a side branch for the MLP. Specifically, an adapter is
a bottleneck module that contains a down-projection layer
Wdown ∈ Rd×r, a non-linear activation function σ, and an
up-projection layer Wup ∈ Rr×d. It adjusts the output of
the MLP as:

xo = σ(xiWdown)Wup + MLP(xi) , (4)

where xi and xo represent the input and output of MLP,
respectively. Eq. 4 reflects the task information by adding
the residual term to the original output. We denote the set
of adapters among all L transformer blocks as A and the
adapted embedding function with adapter A as φ(x;A).
Hence, facing a new incremental task, we can freeze the
pre-trained weights and only optimize the adapter by:

min
A∪W

∑
(x,y)∈Db

`
(
W>φ̄ (x;A) , y

)
. (5)

Optimizing Eq. 5 enables us to encode task-specific in-
formation in these lightweight adapters and create task-
specific subspaces. Correspondingly, we share the frozen
pre-trained backbone and learn expandable adapters for
each new task. During the learning process of task b, we
initialize a new adapter Ab and optimize Eq. 5 to learn
task-specific subspaces. This results in a list of b adapters:
{A1,A2, · · · ,Ab}. Hence, we can easily get the concate-
nated features in all subspaces by concatenating the pre-
trained backbone with every adapter:

Φ(x) = [φ(x;A1), · · · , φ(x;Ab)] ∈ Rbd . (6)

Effect of expandable adapters: Figure 2 (left and mid-
dle) illustrates the adapter expansion process. Since we only
tune the task-specific adapter with the corresponding task,

training the new task will not harm the old knowledge (i.e.,
former adapters). Moreover, in Eq. 6, we combine the pre-
trained embedding with various task-specific adapters to get
the final presentation. The embedding contains all task-
specific information in various subspaces that can be fur-
ther integrated for a holistic prediction. Furthermore, since
adapters are only lightweight branches, they require much
fewer parameters than fully finetuning the backbone. The
parameter cost for saving these adapters is (B × L× 2dr),
where B is the number of tasks, L is the number of trans-
former blocks, and 2dr denotes the parameter number of
each adapter (i.e., linear projections).

After getting the holistic embedding, we discuss how to
build the mapping from bd dimensional features to classes.
We utilize a prototype-based classifier [50] for prediction.
Specifically, after the training process of each incremen-
tal stage, we extract the class prototype of the i-th class in
adapter Ab’s subspace:

pi,b = 1
N

∑|Db|
j=1 I(yj = i)φ(xj ;Ab) , (7)

whereN is the instance number of class i. Eq. 7 denotes the
most representative pattern of the corresponding class in the
corresponding embedding space, and we can utilize the con-
catenation of prototypes in all adapters’ embedding spaces
Pi = [pi,1,pi,2, · · · ,pi,b] ∈ Rbd to serve as class i’s classi-
fier. Hence, the classification is based on the similarity of a
corresponding embedding Φ(x) and the concatenated pro-
totype, i.e., p(y|x) ∝ sim〈Py,Φ(x)〉. We utilize a cosine
classifier for prediction.

4.2. Semantic Guided Prototype Complement

Eq. 7 builds classifiers with representative prototypes.
However, when a new task arrives, we need to learn a new
subspace with a new adapter. It requires recalculating all
class prototypes in the latest subspace to align the pro-
totypes with the increasing embeddings, while we do not
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have any exemplars to estimate that of old classes. For
example, we train A1 with the first dataset D1 in the first
stage and extract prototypes for classes in D1, denoted as
P1,1 = Concat[p1,1; · · ·p|Y1|,1] ∈ R|Y1|×d. The former
subscript in P1,1 stands for the task index, and the latter for
the subspace. In the following task, we expand an adapter
A2 with D2. Since we only have D2, we can only calcu-
late prototypes of D2 in A1 and A2’s subspaces, i.e., P2,1,
P2,2. In other words, we cannot calculate the prototypes of
old classes in the new embedding space, i.e., P1,2. This re-
sults in the inconsistent dimension between prototypes and
embeddings, and we need to find a way to complete and
synthesize prototypes of old classes in the latest subspace.

Without loss of generality, we formulate the above prob-
lem as: given two subspaces (old and new) and two class
sets (old and new), the target is to estimate old class pro-
totypes in the new subspace P̂o,n using Po,o, Pn,o, Pn,n.
Among them, Po,o and Pn,o represent prototypes of old
and new classes in the old subspace (which we call co-
occurrence space), and Pn,n represents new classes proto-
types in the new subspace.

Since related classes rely on similar features to deter-
mine the label, it is intuitive to reuse similar classes’ pro-
totypes to synthesize a prototype of a related class. For ex-
ample, essential features representing a ‘lion’ can also help
define a ‘cat.’ We consider such semantic similarity can be
shared among different embedding spaces, i.e., the similar-
ity between ‘cat’ and ‘lion’ should be shared across differ-
ent adapters’ subspaces. Hence, we can extract such seman-
tic information in the co-occurrence space and restore the
prototypes by recombining related prototypes. Specifically,
we measure the similarity between old and new classes in
the old subspace (where all classes co-occur) and utilize it
to reconstruct prototypes in the new embedding space. The
class-wise similarity among classes is calculated via proto-
types in the co-occurrence subspace:

Simi,j =
Po,o[i]

‖Po,o[i]‖2
Pn,o[j]

>

‖Pn,o[j]‖2
, (8)

where the index i denotes the i-th class’s prototype. In
Eq. 8, we measure the semantic similarity of an old class
prototype to a new class prototype in the same subspace
and get the similarity matrix. We further normalize the sim-
ilarities via softmax: Simi,j = expSimi,j∑

j expSimi,j
. The normalized

similarity denotes the local relative relationship of an old
class to new classes in the co-occurrence space, which is
supposed to be shared across different subspaces.

After getting the similarity matrix, we further utilize the
relative similarity to reconstruct old class prototypes in the
new subspace. Since the relationship between classes can
be shared among different subspaces, the value of old class
prototypes can be measured by the weighted combination

of new class prototypes:

P̂o,n[i] =
∑
j Simi,j ×Pn,n[j] . (9)

Effect of prototype complement: Figure 2 (right) depicts
the prototype synthesis process. With Eq. 9, we can restore
the old class prototypes in the latest subspace without any
former exemplars. After learning each new adapter, we uti-
lize Eq. 9 to reconstruct all old class prototypes in the latest
subspace. The complement process is training-free, making
the learning process efficient.

4.3. Subspace Ensemble via Subspace Reweight

So far, we have introduced subspace expansion with new
adapters and prototype complement to restore old class pro-
totypes. After adapter expansion and prototype comple-
ment, we can get a full classifier (prototype matrix) as:

P1,1 P̂1,2 · · · P̂1,B

P2,1 P2,2 · · · P̂2,B

...
...

. . .
...

PB,1 PB,1 · · · PB,B

 . (10)

Note that items above the main diagonal are estimated via
Eq. 9. During inference, the logit of task b is calculated by:

[Pb,1,Pb,2, · · · ,Pb,B ]>Φ(x) =
∑
iP
>
b,iφ(x;Ai) , (11)

which equals the ensemble of multiple (prototype-
embedding) matching logit in different subspaces. Among
the items in Eq. 11, only adapter Ab is especially learned
to extract task-specific features for the b-th task. Hence, we
think these prototypes are more suitable for classifying the
corresponding task and should take a greater part in the final
inference. Hence, we transform Eq. 11 by assigning higher
weights to the matching subspace:

P>b,bφ(x;Ab) + α
∑
i 6=bP

>
b,iφ(x;Ai) , (12)

where α is the trade-off parameter, which is set to 0.1 in our
experiments. Reweighting the logits enables us to highlight
the contributions of core features in the decision.
Summary of EASE: We summarize the training pipeline
of EASE in the supplementary. We initialize and train an
adapter for each incoming task to encode the task-specific
information. Afterward, we extract the prototypes of the
current dataset for all adapters and synthesize the prototypes
of former classes. Finally, we construct the full classifier
and reweight the logit for prediction. Since we are using the
prototype-based classifier for inference, the classifier W in
Eq. 5 will be dropped after each learning stage.
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Table 1. Average and last performance comparison on seven datasets with ViT-B/16-IN21K as the backbone. ‘IN-R/A’ stands for
‘ImageNet-R/A,’ ‘ObjNet’ stands for ‘ObjectNet,’ and ‘OmniBench’ stands for ‘OmniBenchmark.’ We report all compared methods
with their source code. The best performance is shown in bold. All methods are implemented without using exemplars.

Method CIFAR B0 Inc5 CUB B0 Inc10 IN-R B0 Inc5 IN-A B0 Inc20 ObjNet B0 Inc10 OmniBench B0 Inc30 VTAB B0 Inc10
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

Finetune 38.90 20.17 26.08 13.96 21.61 10.79 24.28 14.51 19.14 8.73 23.61 10.57 34.95 21.25
Finetune Adapter [8] 60.51 49.32 66.84 52.99 47.59 40.28 45.41 41.10 50.22 35.95 62.32 50.53 48.91 45.12
LwF [36] 46.29 41.07 48.97 32.03 39.93 26.47 37.75 26.84 33.01 20.65 47.14 33.95 40.48 27.54
SDC [67] 68.21 63.05 70.62 66.37 52.17 49.20 29.11 26.63 39.04 29.06 60.94 50.28 45.06 22.50
L2P [62] 85.94 79.93 67.05 56.25 66.53 59.22 49.39 41.71 63.78 52.19 73.36 64.69 77.11 77.10
DualPrompt [61] 87.87 81.15 77.47 66.54 63.31 55.22 53.71 41.67 59.27 49.33 73.92 65.52 83.36 81.23
CODA-Prompt [49] 89.11 81.96 84.00 73.37 64.42 55.08 53.54 42.73 66.07 53.29 77.03 68.09 83.90 83.02
SimpleCIL [77] 87.57 81.26 92.20 86.73 62.58 54.55 59.77 48.91 65.45 53.59 79.34 73.15 85.99 84.38
ADAM + Finetune [77] 87.67 81.27 91.82 86.39 70.51 62.42 61.01 49.57 61.41 48.34 73.02 65.03 87.47 80.44
ADAM + VPT-S [77] 90.43 84.57 92.02 86.51 66.63 58.32 58.39 47.20 64.54 52.53 79.63 73.68 87.15 85.36
ADAM + VPT-D [77] 88.46 82.17 91.02 84.99 68.79 60.48 58.48 48.52 67.83 54.65 81.05 74.47 86.59 83.06
ADAM + SSF [77] 87.78 81.98 91.72 86.13 68.94 60.60 61.30 50.03 69.15 56.64 80.53 74.00 85.66 81.92
ADAM + Adapter [77] 90.65 85.15 92.21 86.73 72.35 64.33 60.47 49.37 67.18 55.24 80.75 74.37 85.95 84.35

EASE 91.51 85.80 92.23 86.81 78.31 70.58 65.34 55.04 70.84 57.86 81.11 74.85 93.61 93.55
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Figure 3. Performance curve of different methods under different settings. All methods are initialized with ViT-B/16-IN1K. We annotate
the relative improvement of EASE above the runner-up method with numerical numbers at the last incremental stage.

5. Experiments

In this section, we conduct experiments on seven bench-
mark datasets and compare EASE to other state-of-the-art
algorithms to show the incremental learning ability. Addi-
tionally, we provide an ablation study and parameter anal-
ysis to investigate the robustness of our proposed method.
We also analyze the effect of prototype synthesis and pro-
vide visualization to show EASE’s effectiveness. More ex-
perimental results can be found in the supplementary.

5.1. Implementation Details

Dataset: Since pre-trained models may possess extensive
knowledge of upstream tasks, we follow [62, 77] to eval-
uate the performance on CIFAR100 [35], CUB200 [55],
ImageNet-R [25], ImageNet-A [26], ObjectNet [4], Om-
nibenchmark [72] and VTAB [69]. These datasets contain
typical CIL benchmarks and out-of-distribution datasets
that have large domain gap with ImageNet (i.e., the pre-
trained dataset). There are 50 classes in VTAB, 100 classes
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Table 2. Comparison to traditional exemplar-based CIL methods.
EASE does not use any exemplars. All methods are based on the
same pre-trained model (ViT-B/16-IN21K).

Method Exemplars ImageNet-R B0 Inc20 CIFAR B0 Inc10
Ā AB Ā AB

iCaRL [46] 20 / class 72.42 60.67 82.46 73.87
DER [64] 20 / class 80.48 74.32 86.04 77.93
FOSTER [56] 20 / class 81.34 74.48 89.87 84.91
MEMO [76] 20 / class 74.80 66.62 84.08 75.79

EASE 0 81.73 76.17 92.35 87.76
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Figure 4. Experimental results with large base classes. All meth-
ods are based on the same pre-trained model (ViT-B/16-IN21K)

in CIFAR100, 200 classes in CUB, ImageNet-R, ImageNet-
A, ObjectNet, and 300 classes in OmniBenchmark. More
details are reported in the supplementary.
Dataset split: Following the benchmark setting [46, 62],
we use ‘B-m Inc-n’ to denote the class split. m indicates
the number of classes in the first stage, and n represents that
of every incremental stage. For all compared methods, we
follow [46] to randomly shuffle class orders with random
seed 1993 before data split. We keep the training and testing
set the same as [77] for all methods for a fair comparison.
Comparison methods: We choose state-of-the-art PTM-
based CIL methods for comparison, i.e., L2P [62], Du-
alPrompt [61], CODA-Prompt [49], SimpleCIL [77] and
ADAM [77]. Additionally, we also compare our method
to typical CIL methods by equipping them with the same
PTM, e.g., LwF [36], SDC [67], iCaRL [46], DER [64],
FOSTER [56] and MEMO [76]. We report the baseline
method, which sequentially finetunes the PTM as Finetune.
We implement all methods with the same PTM.
Training details: We run experiments on NVIDIA 4090
and reproduce other compared methods with PyTorch [42]
and Pilot [51]. Following [62, 77], we consider two rep-
resentative models, i.e., ViT-B/16-IN21K and ViT-B/16-
IN1K as the pre-trained model. They are obtained by pre-
training on ImageNet21K, while the latter is further fine-
tuned with ImageNet1K. In EASE, we train the model using
SGD optimizer, with a batch size of 48 for 20 epochs. The
learning rate decays from 0.01 with cosine annealing. We
set the projection dim r in the adapter to 16 and the trade-off
parameter α to 0.1.
Evaluation metric: Following the benchmark proto-
col [46], we use Ab to represent the model’s accuracy after
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Figure 5. Ablation Study of different components in EASE. We
find every component in EASE can improve the performance.

the b-th stage. Specifically, we adopt AB (the performance
after the last stage) and Ā = 1

B

∑B
b=1Ab (average perfor-

mance along incremental stages) as measurements.

5.2. Benchmark Comparison

In this section, we compare EASE to other state-of-the-art
methods on seven benchmark datasets and different back-
bone weights. Table 1 reports the comparison of differ-
ent methods with ViT-B/16-IN21K. We can infer that EASE
achieves the best performance among all seven benchmarks,
substantially outperforming the current SOTA methods, i.e.,
CODA-Prompt, and ADAM. We also report the incremen-
tal performance trend of different methods in Figure 3 with
ViT-B/16-IN1K. As annotated at the end of each image, we
find EASE outperforms the runner-up method by 4%∼7.5%
on ImageNet-R/A, ObjectNet, and VTAB.

Apart from the B0 settings in Table 1 and Figure 3, we
also conduct experiments with vase base classes. As shown
in Figure 4, EASE still works competitively given various
data split settings. Additionally, we also compare EASE to
traditional CIL methods by implementing them based on
the same pre-trained model in Table 2. It must be noted
that traditional CIL methods require saving exemplars to re-
cover former knowledge, while ours do not. We follow [46]
to set the exemplar number to 20 per class for these meth-
ods. Surprisingly, we find EASE still works competitively
in comparison to these exemplar-based methods.

Finally, we investigate the parameter number of differ-
ent methods and report the parameter-performance compar-
ison on ImageNet-R B100 Inc50 in Figure 1. As shown in
the figure, EASE uses the same scale of parameters as other
prompt-based methods, e.g., L2P and DualPrompt, while
achieving the best performance among all competitors. Ex-
tensive experiments validate the effectiveness of EASE.

5.3. Ablation Study

In this section, we conduct an ablation study to investigate
the effectiveness of each component in EASE. Specifically,
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(a) Subspace of A1 (b) Subspace of A2

Figure 6. t-SNE [53] visualizations of different adapters’ sub-
spaces, which are learned to discriminate the corresponding task.

we report the incremental performance of different varia-
tions on ImageNet-R B0 Inc20 in Figure 5. In the figure,
‘Vanilla PTM’ denotes classifying with prototype classi-
fier of the pre-trained image encoder, which stands for the
baseline. To enhance feature diversity, we aim to equip the
PTM with expandable adapters (Eq. 6). Since we do not
have exemplars, we report the performance of ‘w/ Task-
Specific Adapters’ by only using the diagonal components
in Eq. 10. When comparing it to ‘Vanilla PTM,’ we find
although a pre-trained model possesses generalizable fea-
tures, the adaptation to downstream tasks to extract task-
specific features is also an essential step in CIL. Further-
more, we can complete the classifier by semantic mapping
(Eq. 9) and use a full classifier instead of diagonal compo-
nents for classification. We denote such format as ‘w/ Pro-
totype Complement.’ As shown in the figure, prototype
complement further improves the performance, indicating
that cross-task semantic information from other tasks can
help the inference. Finally, we adjust the logit with Eq. 12
by reweighting the importance of different components (de-
noted as ‘w/ Subspace Reweight’), which further improves
the performance. Ablations verify that every component in
EASE boosts the CIL performance.

5.4. Further Analysis

Visualizations: In this paper, we expect different adapters
to learn task-specific features. To verify this hypothesis,
we conduct experiments with ImageNet-R B0 Inc5 and vi-
sualize the embeddings in different adapter spaces in Fig-
ure 6 using t-SNE [53]. We consider two incremental stages
(each containing five classes) and learn two adaptersA1,A2

for these tasks. We represent classes of the first task with
dots and classes of the second task with triangles. As shown
in Figure 6a, in adapter A1’s embedding space, classes of
the first task (dots) are clearly separated, while classes of
the second task (triangles) are not. We can observe a similar
phenomenon in Figure 6b, where adapter A2 can discrim-
inate classes in the second task. Hence, we should mainly
resort to the adapter to classify classes of the corresponding
task, as formulated in Eq. 12.
Parameter robustness: There are two hyperparameters
in EASE, i.e., the projection dim r in the adapter and
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Figure 7. Further analysis on parameter robustness and prototype
complement strategy.

the trade-off parameter α in Eq. 12. We conduct ex-
periments on ImageNet-R B0 Inc20 to investigate the
robustness by changing these parameters. Specifically,
we choose r among {8, 16, 32, 64, 128}, and α among
{0.01, 0.05, 0.1, 0.3, 0.5}. We report the average perfor-
mance in Figure 7a. As shown in the figure, the perfor-
mance is robust with the change of these parameters, and
we suggest r = 16, α = 0.1 as default for other datasets.
Prototype complement: Apart from similarity-based map-
ping in Eq. 9, there are other ways to learn the mapping and
complete the prototype matrix, e.g., Linear Regression (LR)
and Optimal Transport (OT) [33, 65]. Hence, we also com-
pare the similarity-based complement to these variations in
Figure 7b. With other settings the same, we find the current
complement strategy the best among these variations.

6. Conclusion

Incremental learning is a desired ability of real-world learn-
ing systems. This paper proposes expandable subspace en-
semble (EASE) for class-incremental learning with a pre-
trained model. Specifically, we equip a PTM with diverse
subspaces through lightweight adapters. Aggregating his-
torical features enables the model to extract holistic embed-
dings without forgetting. Besides, we utilize semantic in-
formation to synthesize the prototypes of former classes in
latter subspaces without the help of exemplars. Extensive
experiments verify EASE’s effectiveness.
Limitations and future works: Although adapters are
lightweight modules that only consume limited parameters
(0.3% of the total backbone), possible limitations include
the extra model size for saving these adapters. Future works
include designing algorithms to compress adapters.
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