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Abstract

Sampling from diffusion models can be treated as solving
the corresponding ordinary differential equations (ODEs),
with the aim of obtaining an accurate solution with as few
number of function evaluations (NFE) as possible. Re-
cently, various fast samplers utilizing higher-order ODE
solvers have emerged and achieved better performance than
the initial first-order one. However, these numerical meth-
ods inherently result in certain approximation errors, which
significantly degrades sample quality with extremely small
NFE (e.g., around 5). In contrast, based on the geometric
observation that each sampling trajectory almost lies in a
two-dimensional subspace embedded in the ambient space,
we propose Approximate MEan-Direction Solver (AMED-
Solver) that eliminates truncation errors by directly learn-
ing the mean direction for fast diffusion sampling. Be-
sides, our method can be easily used as a plugin to further
improve existing ODE-based samplers. Extensive experi-
ments on image synthesis with the resolution ranging from
32 to 512 demonstrate the effectiveness of our method. With
only 5 NFE, we achieve 6.61 FID on CIFAR-10, 10.74 FID
on ImageNet 64×64, and 13.20 FID on LSUN Bedroom.
Our code is available at https://github.com/zju-
pi/diff-sampler.

1. Introduction

Diffusion models have been attracting growing attentions
in recent years due to their impressive generative capabil-
ity [9, 34, 36, 38]. Given a noise input, they are able to
generate a realistic output by performing iterative denoising
steps with the score function [15, 42, 45]. This process can
be interpreted as applying a certain numerical discretization
on a stochastic differential equation (SDE), or more com-
monly, its corresponding probability flow ordinary differen-
tial equation (PF-ODE) [45]. Comparing to other generative
models such as GANs [12] and VAEs [19], diffusion mod-
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Figure 1. Synthesized images by Stable-Diffusion [34] with a de-
fault classifier-free guidance scale 7.5 and a text prompt “A Corgi
on the grass surrounded by a cluster of colorful balloons”. Our
method improves DPM-Solver++(2M) [26] in sample quality.

els have the advantages in high sample quality and stable
training, but suffer from slow sampling speed, which poses
a great challenge to their applications.

Existing methods for accelerating diffusion sampling fall
into two main streams. One is designing faster numerical
solvers to increase step size while maintaining small trun-
cation errors [10, 18, 23, 25, 43, 51]. They can be further
categorized as single-step solvers and multi-step solvers [2].
The former computes the next step solution only using in-
formation from the current time step, while the latter uses
multiple past time steps. These methods have successfully
reduced the number of function evaluations (NFE) from
1000 to less than 20, almost without affecting the sample
quality. Another kind of methods aim to build a one-to-one
mapping between the data distribution and the pre-specified
noise distribution [4, 24, 27, 39, 46], based on the idea of
knowledge distillation. With a well-trained student model
in hand, high-quality generation can be achieved with only
one NFE. However, training such a student model either
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(a) DDIM solver. (b) Multi-step solvers. (c) Generalized DPM-Solver-2. (d) AMED-Solver (ours).

Figure 2. Comparison of various ODE solvers. Red dots depict the actual sampling step of different solvers. (a) DDIM solver [43] applies
Euler discretization on PF-ODEs. In every sampling step, it follows the gradient direction to give the solution for next time step. (b) Multi-
step solvers [23, 26, 51, 52] require current gradient and several records of history gradients and then follow the combination of these
gradients to give the solution. (c) In generalized DPM-Solver-2 [25], there is a hyper-parameter r controlling the location of intermediate
time step. r = 0.5 recovers the default DPM-Solver-2 and r = 1 recovers Heun’s second method [18]. The gradient for sampling step is
given by the combination of gradients at intermediate and current time steps (see Tab. 1). (d) Our proposed AMED-Solver seeks to find the
intermediate time step and the scaling factor that gives nearly optimal gradient directing to the ground truth solution. This gradient used
for sampling step is adaptively learned instead of the heuristic assigned as DPM-Solver-2.

requires pre-generation of millions of images [24, 27], or
huge training cost with carefully modified training proce-
dure [4, 39, 46]. Besides, distillation-based models cannot
guarantee the increase of sample quality given more NFE
and they have difficulty in likelihood evaluation.

In this paper, we further boost ODE-based sampling
for diffusion models in around 5 steps. Based on the
geometric property that each sampling trajectory approx-
imately lies in a two-dimensional subspace embedded in
the high-dimension space, we propose Approximate MEan-
Direction Solver (AMED-Solver), a single-step ODE solver
that learns to predict the mean direction in every sampling
step. A comparison of various ODE solvers is illustrated in
Fig. 2. We also extend our method to any ODE solvers as
a plugin. When applying AMED-Plugin on the improved
PNDM solver [51], we achieve FID of 6.61 on CIFAR-10,
10.74 on ImageNet 64×64, and 13.20 on LSUN Bedroom.
Our main contributions are as follows:

• We introduce AMED-Solver, a new single-step ODE
solver for diffusion models that eliminates truncation
errors by design.

• We propose AMED-Plugin that can be applied to any
ODE solvers with a small training overhead and a neg-
ligible sampling overhead.

• Extensive experiments on various datasets validate the
effectiveness of our method in fast image generation.

2. Background

2.1. Diffusion Models

The forward diffusion process can be formalized as a SDE:

dx = f(x, t)dt+ g(t)dwt, (1)

where f(·, t) : Rd → Rd, g(·) : R → R are drift and diffu-
sion coefficients, respectively, and wt ∈ Rd is the standard
Wiener process [31]. This forward process forms a contin-
uous stochastic process {xt}Tt=0 and the associated proba-
bility density {pt(x)}Tt=0, to make the sample x0 from the
implicit data distribution pd = p0 approximately distribute
as the pre-specified noise distribution, i.e., pT ≈ pn. Given
an encoding xT ∼ pn, generation is then performed with
the reversal of Eq. (1) [1, 11]. Remarkably, there exists a
probability flow ODE (PF-ODE)

dx =

[
f(x, t)− 1

2
g(t)2∇x log pt(x)

]
dt, (2)

sharing the same marginals with the reverse SDE [29, 45],
and ∇x log pt(x) is known as the score function [16, 28].
Generally, this PF-ODE is preferred in practice for its con-
ceptual simplicity, sampling efficiency and unique encod-
ing [45]. Throughout this paper, we follow the configura-
tion of EDM [18] by setting f(x, t) = 0, g(t) =

√
2t and

σ(t) = t. In this case, the reciprocal of t2 equals to the
signal-to-noise ratio [20] and the perturbation kernel is

pt(x|x0) = N (x;x0, t
2I). (3)

To simulate the PF-ODE, we usually train a U-Net [15,
35] predicting sθ(x, t) to approximate the intractable
∇x log pt(x). There are mainly two parameterizations in
the literature. One uses a noise prediction model ϵθ(x, t)
predicting the Gaussian noise added to x at time t [15, 43],
and another uses a data prediction model Dθ(x, t) predict-
ing the denoising output of x from time t to 0 [6, 18, 26].
They have the following relationship in our setting:

sθ(x, t) = −
ϵθ(x, t)

t
=

Dθ(x, t)− x

t2
. (4)
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The training of diffusion models in the noise prediction no-
tation is performed by minimizing a weighted combination
of the least squares estimations:

Ex∼pd,z∼N (0,t2I)∥ϵθ(x+ z; t)− ϵ∥22. (5)

We then plug the learned score function Eq. (4) into Eq. (2)
to obtain a simple formulation for the PF-ODE

dx = ϵθ(x, t)dt. (6)

The sampling trajectory {xtn}Nn=1 is obtained by first draw
xtN ∼ pn = N (0, T 2I) and then solve Eq. (6) with N − 1
steps following time schedule Γ = {t1 = ϵ, · · · , tN = T}.

2.2. Categorization of Previous Fast ODE Solvers

To accelerate diffusion sampling, various fast ODE solvers
have been proposed, which can be classified into single-step
solvers or multi-step solvers [2]. Single-step solvers includ-
ing DDIM [43], EDM [18] and DPM-Solver [25] which
only use the information from the current time step to com-
pute the solution for the next time step, while multi-step
solvers including PNDM [23] and DEIS [51] utilize multi-
ple past time steps to compute the next time step (see Fig. 2
for an intuitive comparison). We emphasize that one should
differ single-step ODE solvers from single-step (NFE=1)
distillation-based methods [27, 39, 46].

The advantages of single-step methods lie in the easy im-
plementation and the ability to self-start since no history
record is required. However, as illustrated in Fig. 3, they
suffer from fast degradation of sample quality especially
when the NFE budget is limited. The reason may be that
the actual sampling steps of multi-step solvers are twice as
much as those of single-step solvers with the same NFE, en-
abling them to adjust directions more frequently and flexi-
bly. We will show that our proposed AMED-Solver can
largely fix this issue with learned mean directions.

3. Our Proposed AMED-Solver
In this section, we propose AMED-Solver, a single-step
ODE solver for diffusion models that releases the poten-
tial of single-step solvers in extremely small NFE, enabling
them to match or even surpass the performance of multi-
step solvers. Furthermore, our proposed method can be gen-
eralized as a plugin on any ODE solver, yielding promis-
ing improvement across various datasets. Our key obser-
vation is that the sampling trajectory generated by Eq. (6)
nearly lies in a two-dimensional subspace embedded in
high-dimensional space, which motivates us to minimize
the discretization error with the mean value theorem.

3.1. The Sampling Trajectory Almost Lies in a Two-
Dimensional Subspace

The sampling trajectory generated by solving Eq. (6) ex-
hibits an extremely simple geometric structure and has an

Figure 3. The sample quality degradation of multi-step and single-
step ODE solvers. The quality of images generated by single-
step solvers, especially higher-order ones including DPM-Solver-
2 [25] and EDM [18], rapidly decreases as NFE decreases, while
our proposed AMED-Solver largely mitigates such degradation.
Examples are from FFHQ 64×64 [17] and ImageNet 64×64 [37].

implicit connection to annealed mean shift, as revealed in
the previous work [6]. Each sample starting from the noise
distribution approaches the data manifold along a smooth,
quasi-linear sampling trajectory in a monotone likelihood
increasing way. Besides, all trajectories from different ini-
tial points share the similar geometric shape, whether in the
conditional or unconditional generation case [6].

In this paper, we further point out that the sampling
trajectory generated by ODE solvers almost lies in a two-
dimensional plane embedded in a high-dimensional space.
We experimentally validate this claim by performing Prin-
cipal Component Analysis (PCA) for 1k sampling trajecto-
ries on different datasets including CIFAR10 32×32 [21],
FFHQ 64×64 [17], ImageNet 64×64 [37] and LSUN Bed-
room 256×256 [50]. As illustrated in Fig. 4, the relative
projection error using two principal components is no more
than 8% and always stays in a small level. Besides, the
sample variance can be fully explained using only two prin-
cipal components. Given the vast image space with dimen-
sions of 3072 (3×32×32), 12288 (3×64×64), or 196608
(3×256×256), the sampling trajectories show intriguing
property that their dynamics can almost be described using
only two principal components.

3.2. Approximate Mean-Direction Solver

With the geometric intuition, we next explain our methods
in more detail. The exact solution of Eq. (6) is:

xtn = xtn+1 +

∫ tn

tn+1

ϵθ(xt, t)dt. (7)
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Method Gradient term Source of sn Source of cn

DDIM [43] cnϵθ(xtn+1
, tn+1) - 1

EDM [18] cn
(
1
2ϵθ(xsn , sn) +

1
2ϵθ(xtn+1 , tn+1)

)
tn 1

Generalized DPM-Solver-2 [25] cn
(

1
2rϵθ(xsn , sn) + (1− 1

2r )ϵθ(xtn+1
, tn+1)

)
trnt

1−r
n+1, r ∈ (0, 1] 1

AMED-Solver (ours) cnϵθ(xsn , sn) Learned Learned

Table 1. Comparison of various single-step ODE solvers.

(a) Relative deviation. (b) Variance explained by top PCs.

Figure 4. We perform PCA to each sampling trajectory {xt}Tt=ϵ.
(a) These trajectories are projected into a 2D subspace spanned by
the top 2 principal components to get {x̃t}Tt=ϵ and the relative pro-
jection error is calculated as ∥xt − x̃t∥2 / ∥xt∥2. (b) We progres-
sively increase the number of principal components and calculate
the cumulative percent variance as Var({x̃t}Tt=ϵ)/Var({xt}Tt=ϵ).
The results are obtained by averaging 1k sampling trajectories us-
ing EDM solver [18] with 80 NFE.

Various numerical approximations to the integral above cor-
respond to different types of fast ODE-based solvers. For
instance, direct explicit rectangle method gives DDIM [43],
linear multi-step method yields PNDM [23], Taylor expan-
sion yields DPM-Solver [25] and polynomial extrapolation
recovers DEIS [51]. Different from these works, we derive
our method more directly by expecting that the mean value
theorem holds for the integral involved so that we can find
an intermediate time step sn ∈ (tn, tn+1) and a scaling fac-
tor cn ∈ R that satisfy

ϵθ(xsn , sn) =
cn

tn − tn+1

∫ tn

tn+1

ϵθ(xt, t)dt (8)

Although the well-known mean value theorem for real-
valued functions does not hold in vector-valued case [7], the
remarkable geometric property that the sampling trajectory
{xt}Tt=ϵ almost lies in a two-dimensional subspace guaran-
tees our use. By properly choosing sn and cn, we are able
to achieve an approximation of Eq. (7) by

xtn ≈ xtn+1 + cn(tn − tn+1)ϵθ(xsn , sn). (9)

This formulation gives a single-step ODE solver. The DPM-
Solver-2 [25] can be recovered by setting sn =

√
tntn+1

and cn = 1. In Tab. 1, we compare various single-step
solvers by generalizing cnϵθ(xsn , sn) as the gradient term.

For the choose of {sn}N−1
n=1 and {cn}N−1

n=1 , we train a
shallow neural network gϕ (named as AMED predictor)
based on distillation with small training and negligible sam-
pling costs. Briefly, given samples ytn ,ytn+1

on the teacher
sampling trajectory and xtn+1 on the student sampling tra-
jectory, gϕ gives sn and cn that minimizes d (xtn ,ytn)
where xtn is given by Eq. (9) and d(·, ·) is a distance metric.
Since we seek to find a mean-direction that best approxi-
mates the integral in Eq. (8), we name our proposed single-
step ODE solver Eq. (9) as Approximate MEan-Direction
Solver, dubbed as AMED-Solver. Before specifying the
training and sampling details, we proceed to generalize our
idea as a plugin to the existing fast ODE solvers.

3.3. AMED as A Plugin

The idea of AMED can be used to further improve exist-
ing fast ODE solvers for diffusion models. Throughout our
analysis, we take the polynomial schedule [18] as example:

tn = (t
1/ρ
1 +

n− 1

N − 1
(t

1/ρ
N − t

1/ρ
1 ))ρ. (10)

Note that another usually used uniform logSNR schedule is
actually the limit of Eq. (10) as ρ approaches +∞.

Given a time schedule Γ = {t1 = ϵ, · · · , tN = T},
the AMED-Solver is obtained by performing extra model
evaluations at sn ∈ (tn, tn+1), n = 1, · · · , N − 1. Under
the same manner, we are able to improve any ODE solvers
by predicting {sn}N−1

n=1 and {cn}N−1
n=1 that best aligns the

student and teacher sampling trajectories.
We validate this by an experiment where we fix cn = 1

and first generate a ground truth trajectory {xG
tn}

N
n=1 us-

ing Heun’s second method with 80 NFE and extract sam-
ples at Γ. For every ODE solver, we generate a baseline
trajectory {xB

tn}
N
n=1 by performing evaluations at sn =√

tntn+1 as DPM-Solver-2 [25] does. We then apply a
grid search on rn, giving sn = trnn t1−rn

n+1 and a searched
trajectory {xS

tn}
N
n=1. We define the relative alignment to

be
∥∥xB

tn − xG
tn

∥∥
2
−
∥∥xS

tn − xG
tn

∥∥
2
. Positive relative align-

ment value indicates that the searched trajectory {xS
tn}

N
n=1

is closer to the ground truth trajectory {xG
tn}

N
n=1 than the

baseline trajectory {xB
tn}

N
n=1. As shown in Fig. 5, the rela-

tive alignment value keeps positive in most cases, meaning
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(a) Relative alignment at time tn. (b) Best rn given by grid search.

Figure 5. Effectiveness of searching the intermediate time steps.
Given a time schedule Γ = {t1 = ϵ, · · · , tN = T} where
ϵ = 0.002, T = 80, N = 6, we first generate a ground truth
trajectory. For each ODE solver, we generate a baseline trajectory
by performing evaluations at sn =

√
tntn+1, and a searched tra-

jectory by a greedy grid search on rn which gives sn = trnn t1−rn
n+1 .

that appropriate choose of intermediate time steps can fur-
ther improve fast ODE solvers. Therefore, as described in
Sec. 3.2, we also train an AMED predictor to predict the in-
termediate time steps as well as the direction scaling factor.
As this process still has the meaning of searching for the
direction pointing to the ground truth, we name this method
as AMED-Plugin and apply it on various fast ODE solvers.

Through Fig. 5, we obtain a direct comparison between
DPM-Solver-2 and our proposed AMED-Solver since they
share the same baseline trajectory when r is fixed to 0.5.
Our AMED-Solver aligns better with the ground truth and
the location of searched intermediate time steps is much
more stable than that of DPM-Solver-2. We speculate that
the gradient direction of DPM-Solver-2 restricted by the
fixed r (see Tab. 1) is suboptimal. Instead, the learned coef-
ficients provide AMED-Solver more flexibility to determine
a better gradient direction.

3.4. Training and Sampling

As samples from different sampling trajectories approach
the asymmetric data manifold, their current locations should
contribute to the corresponding trajectory curvatures [6].
To recognize the sample location without extra computa-
tion overhead, we extract the bottleneck feature of the pre-
trained U-Net model every time after its evaluation. We
then take the current and next time step tn+1 and tn along
with the bottleneck feature htn+1

as the inputs to the AMED
predictor gϕ to predict the intermediate time step sn and the
scaling factor cn. Formally, we have

{sn, cn} = gϕ(htn+1 , tn+1, tn). (11)

The network architecture is shown in Fig. 6.
As for sampling from time tn+1 to tn, we first perform

one U-Net evaluation at tn+1 and extract the bottleneck fea-
ture hn+1 to predict sn and cn. For AMED-Solver, we ob-

Figure 6. Network Architecture. Given the bottleneck feature ex-
tracted by the U-Net model at time tn+1, we perform the channel-
wise mean pooling and pass it through two fully connected layers.
It is concatenated with the time embedding and goes through one
extra fully connected layer and a sigmoid function to output rn and
cn. The intermediate time step is then given by sn = trnn t1−rn

n+1 .

tain xsn by an Euler step from tn+1 to sn and then use
Eq. (9) to obtain xtn . When applying AMED-Plugin on
other ODE solvers, we step from tn+1 to sn and sn to tn
following the original solver’s sampling procedure and cn
is used to scale the direction in the latter step. The total
NFE is thus 2(N − 1). We denote such a sampling step
from tn+1 to tn by

xtn = Φ(xtn+1
, tn+1, tn,Λn), (12)

where Λn is the set of intermediate time steps sn ∈
(tn, tn+1) and scaling factors cn introduced in this step.

The training of gϕ is based on knowledge distillation,
where the student and teacher sampling trajectories evalu-
ated at Γ are required, and they are denoted as {xtn}Nn=1

and {ytn}Nn=1, respectively. We then denote the sampling
process that generates student and teacher trajectories by Φs

with Λs
n = {sn, cn} and Φt with Λt

n, respectively. Since
teacher trajectories require more NFE to give reliable refer-
ence, we set the intermediate time steps to be an interpola-
tion of M steps between tn and tn+1 following the original
time schedule. Taking the polynomial schedule as example,
we set Λt

n = {s1n · · · , sMn , c1n = 1 · · · , cMn = 1}, where

sin = (t1/ρn +
i

M + 1
(t

1/ρ
n+1 − t1/ρn ))ρ. (13)

We train gϕ using a distance metric d(·, ·) between sam-
ples on both trajectories with {sn, cn} predicted by gϕ:

Ltn(ϕ) = d(Φs(xtn+1 , tn+1, tn, {sn, cn}),ytn) (14)

In one training loop, we first generate a batch of noise im-
ages at tN and the teacher trajectories. We then calculate the
loss and update gϕ progressively from tN−1 to t1. Hence,
N − 1 backpropagations are applied in one training loop.
Algorithms for training and sampling is provided in Algo-
rithm 1 and Algorithm 2.
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Algorithm 1 Training of gϕ

Input: Model parameter ϕ, time schedule {tn}Nn=1, ODE
solver Φs and Φt.
repeat

Sample xtN = ytN ∼ N (0, t2NI)
Generate a teacher trajectory {ytn}Nn=1 by Φt

for n = N − 1 to 1 do
xtn ← Φs(xtn+1

, tn+1, tn, gϕ(htn+1
, tn+1, tn))

# htn+1
is extracted after U-Net evaluation at tn+1.

Ltn(ϕ) = d(xtn ,ytn)
Update the model parameter ϕ

end for
until convergence

Algorithm 2 AMED Sampling

Input: Trained AMED predictor gϕ, time schedule
{tn}Nn=1, ODE solver Φ.
Sample xtN ∼ N (0, t2NI)
for n = N − 1 to 1 do
xtn ← Φ(xtn+1 , tn+1, tn, gϕ(htn+1 , tn+1, tn))
# htn+1 is extracted after U-Net evaluation at tn+1.

end for
Output: Generated sample xt1

Similar to the previous discovery that the sampling tra-
jectory is nearly straight when t is large [6], we notice that
the gradient term ϵθ(xtN , tN ) at time tN shares almost the
same direction as xtN . We thus simply use xtN as the di-
rection in the first sampling step to save one NFE, which
is important when the NFE budget is limited. This trick is
called analytical first step (AFS) [10]. We find that the ap-
plication of AFS yields little degradation or even increase
of sample quality for datasets with small resolutions.

Inspired by the concurrent work [49], when applying
our AMED-Plugin on DDIM [43], iPNDM [51] and DPM-
Solver++ [26] on datasets with small resolution (32×32 and
64×64), we optionally train additional time scaling factors
{an}N−1

n=1 through gϕ to expand the solution space. Given
an, we use ϵθ(xsn , ansn) instead of ϵθ(xsn , sn) when step-
ping to tn, which improves results in some cases.

3.5. Comparing with Distillation-based Methods

Though being a solver-based method, our proposed AMED-
Solver shares a similar principal with distillation-based
methods. The main difference is that distillation-based
methods finally build a mapping from noise to data dis-
tribution by fine-tuning the pre-trained model or train-
ing a new prediction model from scratch [6, 27, 39, 46],
while our AMED-Solver still follows the nature of solv-
ing an ODE, building a probability flow from noise to im-
age. Distillation-based methods have shown impressive re-

sults of performing high-quality generation by only one
NFE [46]. However, these methods require huge efforts
on training. One should carefully design the training de-
tails and it takes a large amount of time to train the model
(usually several or even tens of GPU days). Moreover, as
distillation-based models directly build the mapping like
typical generative models, they suffer from the inability of
interpolating between two disconnected modes [40].

Additionally, our training goal is to properly predict sev-
eral parameters in the sampling process instead of directly
predicting high-dimensional samples at the next time as
those distillation-based methods. Therefore, our architec-
ture is very simple and is easy to train thanks to the geomet-
ric property of sampling trajectories. Besides, our AMED-
Solver maintains the nature of ODE solver-based methods,
and does not suffer from obvious internal imperfection for
downstream tasks.

4. Experiments

4.1. Settings

Datasets. We employ AMED-Solver and AMED-Plugin
on a wide range of datasets with image resolutions rang-
ing from 32 to 512, including CIFAR10 32×32 [21],
FFHQ 64×64 [17], ImageNet 64×64 [37], LSUN Bedroom
256×256 [50]. We also give quantitative and qualitative re-
sults on stable-diffusion [34] with resolution of 512.
Models. The pre-trained models are pixel-space models
from [18] and [46] and latent-space model from [34].
Solvers. We reimplement several representative fast ODE
solvers including DDIM [43], DPM-Solver-2 [25], multi-
step DPM-Solver++ [26], UniPC [52] and improved PNDM
(iPNDM) [23, 51]. It is worth mentioning that we find
iPNDM achieves very impressive results and outperforms
other ODE solvers in many cases.
Time schedule. We mainly use the polynomial time sched-
ule with ρ = 7, which is the default setting in [18], ex-
cept for DPM-Solver++ and UniPC where we use logSNR
schedule recommended in original papers [26, 52] for
better results. Besides, for AMED-Solver on CIFAR10
32×32 [21], FFHQ 64×64 [17] and ImageNet 64×64 [37],
we use uniform time schedule which is widely used in pa-
pers with a DDPM backbone [15].
Training. The total parameter of the AMED predictor gϕ
is merely 9k. We train gϕ for 10k images, which takes 2-8
minutes on CIFAR10 and 1-3 hours on LSUN Bedroom us-
ing a single NVIDIA A100 GPU. L2 norm is used as the dis-
tance metric in Eq. (14) for all experiments. We use DPM-
Solver-2 [25] or EDM [18] with doubled NFE (M = 1) to
generate teacher trajectories for AMED-Solver, while us-
ing the same solver that generates student trajectories for
AMED-Plugin, with M = 1 for DPM-Solver-2 and M = 2
else. Detailed discussion is provided in Appendix C.2.
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Method NFE

3 5 7 9

Multi-step solvers

DPM-Solver++(3M) [26] 110.0 24.97 6.74 3.42
UniPC [52] 109.6 23.98 5.83 3.21
iPNDM [23, 51] 47.98 13.59 5.08 3.17

Single-step solvers

DDIM [43] 93.36 49.66 27.93 18.43
EDM [18] 306.2 97.67 37.28 15.76
DPM-Solver-2 [25] 155.7 57.30 10.20 4.98
AMED-Solver (ours) 18.49 7.59 4.36 3.67

AMED-Plugin (ours) 10.81† 6.61† 3.65† 2.63†

(a) Unconditional generation on CIFAR10 32×32. We show the
results of AMED-Plugin applied on iPNDM.

Method NFE

3 5 7 9

Multi-step solvers

DPM-Solver++(3M) [26] 91.52 25.49 10.14 6.48
UniPC [52] 91.38 24.36 9.57 6.34
iPNDM [23, 51] 58.53 18.99 9.17 5.91

Single-step solvers

DDIM [43] 82.96 43.81 27.46 19.27
EDM [18] 249.4 89.63 37.65 16.76
DPM-Solver-2 [25] 140.2 42.41 12.03 6.64
AMED-Solver (ours) 38.10 10.74 6.66 5.44

AMED-Plugin (ours) 28.06 13.83 7.81 5.60

(b) Conditional generation on ImageNet 64×64. We show the
results of AMED-Plugin applied on iPNDM.

Method NFE

3 5 7 9

Multi-step solvers

DPM-Solver++(3M) [26] 86.45 22.51 8.44 4.77
UniPC [52] 86.43 21.40 7.44 4.47
iPNDM [23, 51] 45.98 17.17 7.79 4.58

Single-step solvers

DDIM [43] 78.21 43.93 28.86 21.01
DPM-Solver-2 [25] 266.0 87.10 22.59 9.26
AMED-Solver (ours) 47.31 14.80 8.82 6.31

AMED-Plugin (ours) 26.87 12.49 6.64 4.24†

(c) Unconditional generation on FFHQ 64×64. We show the re-
sults of AMED-Plugin applied on iPNDM.

Method NFE

3 5 7 9

Multi-step solvers

DPM-Solver++(3M) [26] 111.9 23.15 8.87 6.45
UniPC [52] 112.3 23.34 8.73 6.61
iPNDM [23, 51] 80.99 26.65 13.80 8.38

Single-step solvers

DDIM [43] 86.13 34.34 19.50 13.26
DPM-Solver-2 [25] 210.6 80.60 23.25 9.61
AMED-Solver (ours) 58.21 13.20 7.10 5.65

AMED-Plugin (ours) 101.5 25.68 8.63 7.82

(d) Unconditional generation on LSUN Bedroom 256×256. We
show the results of AMED-Plugin applied on DPM-Solver-2.

Table 2. Results of image generation. Our proposed AMED-Solver and AMED-Plugin achieve state-of-the-art results among solver-based
methods in around 5 NFE. †: additional time scaling factors {an}N−1

n=1 are trained.

Sampling. Our AMED-Solver and AMED-Plugin naturally
create solvers with even NFE. Once AFS is used, the total
NFE becomes odd. With the goal of designing fast solvers
with the small NFE, we mainly test our method on NFE
∈ {3, 5, 7, 9} where AFS is applied. More results on NFE
∈ {4, 6, 8, 10} without AFS is provided in Appendix C.4.
Evaluation. We measure the sample quality via Fréchet
Inception Distance (FID) [14] with 50k images. For Stable-
Diffusion, we follow [33] and evaluate the FID value by
30k images generated by 30k fixed prompts sampled from
the MS-COCO [22] validation set.

4.2. Image Generation

In this section, we show the results of image generation.
For datasets with small resolution such as CIFAR10 32×32,
FFHQ 64×64 and ImageNet 64×64, we report the results
of AMED-Plugin on iPNDM solver for its leading results.
For large-resolution datasets like LSUN Bedroom, we re-
port the results of AMED-Plugin on DPM-Solver-2 since
the use of AFS causes inferior results for multi-step solvers
in this case (see Appendix C.4 for a detailed discussion).
We implement DPM-Solver++ and UniPC with order of 3,

Method NFE (1 step = 2 NFE)

8 12 16 20

DPM-Solver++(2M) [26] 21.33 15.99 14.84 14.58
AMED-Plugin (ours) 18.92 14.84 13.96 13.24

Table 3. FID results on Stable-Diffusion [34]. The AMED-Plugin
is applied on DPM-Solver++(2M).

iPNDM with order of 4. To report results of DPM-Solver-2
and EDM with odd NFE, we apply AFS in their first steps.

The results are shown in Tab. 2. Our AMED-Solver out-
performs other single-step methods and can even beat multi-
step methods in many cases. For the AMED-Plugin, we find
it showing large boost when applied on various solvers es-
pecially for DPM-Solver-2 as shown in Tab. 2d. Notably,
the AMED-Plugin on iPNDM improves the FID by 6.98,
4.68 and 5.16 on CIFAR10 32×32, ImageNet 64×64 and
FFHQ 64×64 in 5 NFE. Our methods achieve state-of-the-
art results in solver-based methods in around 5 NFE.

As for Stable-Diffusion [34], we use the v1.4 checkpoint
with default guidance scale 7.5. Samples are generated by
DPM-Solver++(2M) as recommended in the official imple-
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Figure 7. The learned coefficients rn and cn vary in different steps
and the mean values are consistently lower than the default setting.

Teacher Solver NFE

3 5 7 9

AMED-Solver

DPM-Solver++(3M) [26] 35.68 12.34 11.28 9.65
iPNDM [23, 51] 32.38 12.42 10.09 8.54
DPM-Solver-2 [25] 18.49 11.60 11.64 9.23
EDM [18] 28.99 7.59 4.36 3.67

AMED-Plugin on iPNDM

DPM-Solver++(3M) [26] 16.00 7.57 4.28 2.85
iPNDM [23, 51] 10.81 6.61 3.65 2.63
DPM-Solver-2 [25] 12.07 8.19 4.52 2.66
EDM [18] 29.62 10.58 9.36 4.44

Table 4. Comparison of teacher solvers on CIFAR10.

mentation. The quantitative results are shown in Tab. 3.
In Fig. 7, we show the learned parameters of gϕ for

AMED-Solver, where rn and cn are predicted by gϕ and
sn = trnn t1−rn

n+1 . The dashed line denotes the default setting
of DPM-Solver-2. We provide more quantitative as well as
qualitative results in Appendix C.

4.3. Ablation Study

Teacher solvers. In Tab. 4, we test AMED-Solver and
AMED-Plugin on iPNDM with different teacher solvers for
the training of gϕ on CIFAR10. It turns out that the best
results are achieved when teacher solver resembles the stu-
dent solver in the sampling process.
Time schedule. We observe that different fast ODE solvers
have different preference on time schedules. This prefer-
ence even depends on the used dataset. In Tab. 5, we pro-
vide results for DPM-Solver++(3M) [26] on CIFAR10 with
different time schedules and find that this solver prefers
logSNR schedule where the interval between the first and
second time step is larger than other tested schedules. As
a comparison, our AMED-Plugin applied on these cases
largely and consistently improves the results, irrespective
of the specific time schedule.

5. Conclusion
In this paper, we introduce a single-step ODE solver called
AMED-Solver to minimize the discretization error for fast

Time schedule
NFE

3 5 7 9

DPM-Solver++(3M)

Uniform 76.80 26.90 16.80 13.44
Polynomial 70.04 31.66 11.30 6.45
logSNR 110.0 24.97 6.74 3.42

AMED-Plugin on DPM-Solver++(3M)

Uniform 33.61 13.24 8.89 8.24
Polynomial 32.47 19.59 9.60 4.39
logSNR 25.95 7.68 4.51 3.03

Table 5. FID results under different time schedules on CI-
FAR10. The DPM-Solver++(3M) shows preference on the uni-
form logSNR schedule given larger NFE. Our AMED-Plugin con-
sistently improves the results.

diffusion sampling. Our key observation is that each sam-
pling trajectory generated by existing ODE solvers approx-
imately lies in a two-dimensional subspace, and thus the
mean value theorem guarantees the learning of an approx-
imate mean direction. The AMED-Solver effectively mit-
igates the problem of rapid sample quality degradation,
which is commonly encountered in single-step methods,
and shows promising results on datasets with large reso-
lution. We also generalize the idea of AMED-Solver to
AMED-Plugin, a plugin that can be applied on any fast
ODE solvers to further improve the sample quality. We val-
idate our methods through extensive experiments, and our
methods achieve state-of-the-art results in extremely small
NFE (around 5). We hope our attempt could inspire future
works to further release the potential of fast solvers for dif-
fusion models.
Limitation and Future Work. Fast ODE solvers for dif-
fusion models are highly sensitive to time schedules espe-
cially when the NFE budget is limited (See Tab. 5). Through
experiments, we observe that any fixed time schedule fails
to perform well in all situations. In fact, our AMED-Plugin
can be treated as adjusting half of the time schedule to partly
alleviates but not avoids this issue. We believe that a better
designation of time schedule requires further knowledge to
the geometric shape of the sampling trajectory [6]. We leave
this to the future work.
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[5] Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and
Arthur Gretton. Demystifying mmd gans. arXiv preprint
arXiv:1801.01401, 2018. 11

[6] Defang Chen, Zhenyu Zhou, Jian-Ping Mei, Chunhua Shen,
Chun Chen, and Can Wang. A geometric perspective on dif-
fusion models. arXiv preprint arXiv:2305.19947, 2023. 2, 3,
5, 6, 8

[7] Elliott Ward Cheney, EW Cheney, and W Cheney. Analysis
for applied mathematics. Springer, 2001. 4

[8] Giannis Daras, Yuval Dagan, Alexandros G Dimakis, and
Constantinos Daskalakis. Consistent diffusion models: Mit-
igating sampling drift by learning to be consistent. arXiv
preprint arXiv:2302.09057, 2023. 11

[9] Prafulla Dhariwal and Alex Nichol. Diffusion models beat
gans on image synthesis. In Advances in Neural Information
Processing Systems, 2021. 1, 11, 13

[10] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Genie:
Higher-order denoising diffusion solvers. In Advances in
Neural Information Processing Systems, 2022. 1, 6, 11, 13

[11] William Feller. On the theory of stochastic processes, with
particular reference to applications. In Proceedings of the
First Berkeley Symposium on Mathematical Statistics and
Probability, pages 403–432, 1949. 2

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014. 1, 11

[13] Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu, and
Josh Susskind. Boot: Data-free distillation of denois-
ing diffusion models with bootstrapping. arXiv preprint
arXiv:2306.05544, 2023. 11

[14] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs trained by
a two time-scale update rule converge to a local Nash equi-
librium. In Advances in Neural Information Processing Sys-
tems, pages 6626–6637, 2017. 7, 12

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In Advances in Neural Informa-
tion Processing Systems, 2020. 1, 2, 6, 11

[16] Aapo Hyvärinen. Estimation of non-normalized statistical
models by score matching. Journal of Machine Learning
Research, 6:695–709, 2005. 2

[17] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4401–4410, 2019. 3, 6,
11

[18] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. In Advances in Neural Information Processing Sys-
tems, 2022. 1, 2, 3, 4, 6, 7, 8, 11, 12

[19] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 1, 11

[20] Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan
Ho. Variational diffusion models. In Advances in Neural
Information Processing Systems, 2021. 2

[21] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical Report, 2009.
3, 6, 11

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014. 7, 12

[23] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo
numerical methods for diffusion models on manifolds. In In-
ternational Conference on Learning Representations, 2022.
1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14

[24] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow
straight and fast: Learning to generate and transfer data with
rectified flow. arXiv preprint arXiv:2209.03003, 2022. 1, 2,
11

[25] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan
Li, and Jun Zhu. Dpm-solver: A fast ode solver for dif-
fusion probabilistic model sampling in around 10 steps. In
Advances in Neural Information Processing Systems, 2022.
1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14

[26] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongx-
uan Li, and Jun Zhu. Dpm-solver++: Fast solver for guided
sampling of diffusion probabilistic models. arXiv preprint
arXiv:2211.01095, 2022. 1, 2, 6, 7, 8, 11, 12, 13, 14, 15

[27] Eric Luhman and Troy Luhman. Knowledge distillation in
iterative generative models for improved sampling speed.
arXiv preprint arXiv:2101.02388, 2021. 1, 2, 3, 6, 11

[28] Siwei Lyu. Interpretation and generalization of score match-
ing. In Proceedings of the Twenty-Fifth Conference on Un-
certainty in Artificial Intelligence, pages 359–366, 2009. 2

[29] Dimitra Maoutsa, Sebastian Reich, and Manfred Opper.
Interacting particle solutions of fokker–planck equations
through gradient–log–density estimation. arXiv preprint
arXiv:2006.00702, 2020. 2

[30] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In International
Conference on Machine Learning, pages 8162–8171. PMLR,
2021. 11

7785



[31] Bernt Oksendal. Stochastic differential equations: an intro-
duction with applications. Springer Science & Business Me-
dia, 2013. 2

[32] Eckhard Platen and Nicola Bruti-Liberati. Numerical so-
lution of stochastic differential equations with jumps in fi-
nance. Springer Science & Business Media, 2010. 11

[33] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In International confer-
ence on machine learning, pages 8821–8831. Pmlr, 2021. 7,
12

[34] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 1, 6, 7, 11, 13

[35] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015. 2

[36] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 22500–
22510, 2023. 1

[37] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael S. Bernstein, Alexander C. Berg,
and Fei-Fei Li. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision, 115(3):
211–252, 2015. 3, 6, 11, 13

[38] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. In Advances in Neural Information
Processing Systems, pages 36479–36494, 2022. 1

[39] Tim Salimans and Jonathan Ho. Progressive distillation for
fast sampling of diffusion models. In International Confer-
ence on Learning Representations, 2022. 1, 2, 3, 6, 11

[40] Antoine Salmona, Valentin De Bortoli, Julie Delon, and
Agnès Desolneux. Can push-forward generative models fit
multimodal distributions? Advances in Neural Information
Processing Systems, 35:10766–10779, 2022. 6
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