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Abstract 

This paper addresses the challenge of example- based 

non- stationary texture synthesis. We introduce a novel two-  

step approach wherein users first modify a reference tex-  

ture using standard image editing tools, yielding an initial 

rough target for the synthesis. Subsequently, our proposed 

method, termed “self- rectification", automatically refines 

this target into a coherent, seamless texture, while faithfully 

preserving the distinct visual characteristics of the refer-  

ence exemplar. Our method leverages a pre- trained diffu-  

sion network, and uses self- attention mechanisms, to grad-  

ually align the synthesized texture with the reference, en-  

suring the retention of the structures in the provided tar-  

get. Through experimental validation, our approach ex-  

hibits exceptional proficiency in handling non- stationary 

textures, demonstrating significant advancements in texture 

synthesis when compared to existing state- of- the- art tech-  

niques. Code is available at https://github.com/  

xiaorongjun000/Self- Rectification  

1. Introduction 

Example-based texture synthesis aims to generate a tex- 

ture that faithfully captures all the visual characteristics 

of a provided reference texture exemplar. The key chal- 

lenge is to generate a texture that visually mimics the refer- 

ence, while avoiding exact replication and without produc- 

ing conspicuous, unnatural artifacts. 

Over the past decades, numerous methods have emerged 

for synthesizing textures from examples, and many have 

demonstrated impressive results, particularly for homoge- 

neous textures that can be accurately captured by stationary 

models [45]. Nonetheless, a significant challenge remains 

when dealing with real-world textures that are inherently 

inhomogeneous, and non-stationary. 

Non-stationary textures exhibit distinctive attributes, 

such as sprawling irregular large-scale structures or varia- 

tions in attributes such as color, local orientation, and local 

scale. Fig. 1 (left) shows two examples. Mimicking such
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Figure 1. Our method takes as input a reference texture (left), and a 

crude target texture provided by the user (middle column), which 

may lack coherence and completeness. Self-rectification is used 

to transform the target into a visually coherent texture (right) that 

complies with the structure of the crude target, while exhibiting 

the visual characteristics of the reference texture. 

complex structures and variations through example-based 

synthesis is a long-standing challenging task [31]. 

The emergence of neural networks has provided pow- 

erful means to deal with non-stationary textures. Zhou et 

al . [51] introduced a method that involves overfitting a 

GAN, where the encoder extracts structural guidance for the 

decoder. This approach provides a viable means of spatially 

extending non-stationary textures while preserving the vi- 

sual characteristics of the reference. However, this tech- 

nique requires an extremely long optimization process for 

a single texture examplar, and moreover, it fails to provide 

any controllability or editability. 

In this paper, we introduce a two-step lazy-editing tech- 

nique where the user first edits the given reference texture 

using conventional image editing tools, to obtain an ex- 

tremely rough initial result, which may be incomplete and 

incoherent, as demonstrated in Fig. 1 (middle). Next, our 

technique automatically rectifies the edited texture into a 

regularized, coherent and seamless texture that follows the 

rough target, while retaining the local characteristics of the 

reference; see, e.g ., Fig. 1 (right). We term this regulariza-
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tion process self- rectification , since the texture is rectified 

based on the input texture itself. 

To self-rectify the crude target, we use a pre-trained 

diffusion network, and synthesize the final rectified re- 

sult while utilizing the intermediate byproducts obtained 

by inverting both the initial target and the reference ex- 

emplar. Inspired by editing approaches that leverage self- 

attention [1, 6, 20], we extract certain self-attention features 

of the diffusion model during the inversion of the rough tar- 

get, as well as the reference. These features are then in- 

jected into various steps in the inversion and denoising of 

the generated texture. Such feature injection forms “cross- 

attention” between the reference and target features [1, 6], 

and thereby, in the course of the diffusion process, the tar- 

get texture is progressively refined to be increasingly locally 

similar to the reference, while retaining the global structure 

prescribed by the provided target. This self-rectification oc- 

curs in two passes, first addressing the larger scale structure 

and subsequently focusing on finer local details. 

To enhance the synthesis quality, we augment the refer- 

ence texture with several transformed copies of it, which 

increases the diversity of the reference patterns, thereby 

improving the compatibility between the reference and the 

synthesized result. The augmented source features are in- 

jected into the corresponding target layers as well. Fur- 

thermore, we show that our method can also be applied 

to lazy editing of natural images, using the same means of 

synthesizing highly non-stationary textures. Experiments 

show that our method can deal with a large scope of non- 

stationary textures, with unprecedented flexibility and qual- 

ity, compared to the state-of-the-art. 

2. Related Work 

Non-stationary texture synthesis. Early methods in 

example-based texture synthesis mainly focused on syn- 

thesizing textures with stationary characteristics [8, 9, 19, 

21, 22, 43, 44]. To cope with non-stationary textures, re- 

searchers typically involve additional guidance for the con- 

trol of distinctive attributes, e.g ., using label maps to guide 

the layout synthesis of composite textures [15, 24, 31], rep- 

resenting the spatial variations of weathering textures with 

age/progression maps [3, 42], and describing the local ori- 

entations of directional textures with vector fields [26, 50]. 

Although the aforementioned methods have shown success, 

the guidance required from the user is tedious to provide, 

yet still limited. 

In the deep learning era, neural methods for texture 

generation have rapidly emerged, either through new tex- 

ture losses for texture optimization [12, 13, 49] or via 

training generative networks [4, 5, 10, 18, 23, 29, 32, 35– 

37, 40, 51]. Among these methods, Sendik and Cohen- 

Or [35] attempted to preserve the non-local structures of 

non-stationary textures by regularizing the feature correla-

Figure 2. Framework overview. Given a reference texture IR, we 

allow the user to quickly build a target image I tar in a lazy-editing 

manner. A coarse-to-fine synthesis is performed by running self- 

rectification twice. The coarse stage synthesizes  a coarse yet com- 

plete overall structure, and the fine stage refines its output I  

∗  

coarse 

with finer and more accurate details, producing the final result I  

∗. 

tion between different locations. Zhou et al . [51] proposed 

overfitting a GAN to learn the expansion from a small tex- 

ture block to a larger one containing it. Their approach in- 

volves the GAN’s encoder extracting the global structure of 

an input texture, duplicated by bottleneck residual blocks 

before decoding. Although these trained models can effec- 

tively extend non-stationary textures, their overfitting nature 

severely restricts their generalization and controllability. 

Diffusion-based image synthesis. The emergence of 

large-scale generative diffusion models, such as Stable Dif- 

fusion (SD) [30] and DALLE-2 [28], has revolutionized im- 

age synthesis due to their unprecedented generation power. 

To make the pre-trained diffusion models synthesize on 

image conditions, many solutions are proposed, includ- 

ing optimizing prompt tokens [2, 11], fine-tuning the entire 

model [33], or training an additional adapter [17,34,46–48]. 

Recently, researchers have investigated the role of the 

intermediate attention maps and features in the diffuser [7, 

14,27,39], finding them crucial for layout/structure synthe- 

sis. The method we present in this paper, builds upon the 

mechanism of injecting keys and values from attention lay- 

ers of one diffusion process into another, as a means for 

transfering visual features between images [1, 6, 20]. We 

use such injection to “copy” the local patterns from a source 

texture to a target one. In addition to the injection we also 

incorporate coarse-to-fine and data augmentation schemes, 

forming the self-rectification framework for generating non- 

stationary textures. 

3. Method 

Our method employs a two-step process for synthesizing 

a new texture I  

∗  resembling a provided non-stationary ref- 

erence texture IR, while guided by a user-provided rough 

target I tar, as depicted in Fig. 2. Initially, the user rapidly 

creates I tar, by assembling patches from the source refer-
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Figure 3. Our self-rectification synthesizes an output texture I  

∗  via structure-preserving inversion from a rough target image I tar and fine 

texture sampling using the reference IR. Both processes require the injection of self-attention features ( K  V  ) from the DDIM inversion of 

a corresponding reference. More specifically, for structure-preserving inversion, the reference is the target image itself, denoted as I IR. For 

fine texture sampling, the input exemplar IR is used to inject features that help to synthesize a plausible output with fine texture details. 

ence texture. Such a lazy-edit forms a basic layout for the 

output image, I*. However, this initial sketch may be inco- 

herent or incomplete, hence necessitating rectification. Sub- 

sequently, the texture undergoes self-rectification to align 

with both the user’s coarse layout and the reference im- 

age’s detailed texture characteristics. This self-rectification 

process is depicted in Fig. 2 and is executed in two stages: 

coarse rectification, followed by a finer one. 

Considering that the rough target I tar comprises patches 

derived from the reference texture IR, we implement a pro- 

cess of self-rectification, detailed below. In a broad sense, 

we utilize a pre-trained latent diffusion model to invert both 

the target image and the reference image into an initial latent 

noise. This is followed by employing feature injection dur- 

ing the sampling process of I*. The features from I tar guide 

the structural synthesis and the features from IR guide the 

fine texture details. 

Below, we first briefly review diffusion models and their 

self-attention and the cross-KV-injection mechanisms, and 

then proceed to present our self-rectification technique. 

3.1. DDIM Sampling and Inversion 

Denoising diffusion models [16, 38] involve two pro- 

cesses: a noising process that gradually transforms an input 

image into Gaussian noise, and a denoising/sampling pro- 

cess that generates images from Gaussian samples. Using 

DDIM sampling [38], starting from a noise sample zT, one 

can generate a clean sample z0  
via T deterministic steps:

zt  −  1  
=  

√
¯ αt  −  1  

fθ  
(  zt  

,  t  ) +  

√
1 −  ¯ αt  −  1  

εθ  
(  zt  

,  t  )  , (1) 

where εθ  
is a noise prediction network conditioned on the 

current noisy sample zt  
and timestamp t  . ¯ αt  

is the noise 

scaling factor defined in [38], and fθ  
(  zt  

,  t  )  is

fθ  
(  zt  

,  t  )  =  

zt  
−  

√
1 −  ¯ αt  

εθ  
(  zt  

,  t  )√
¯ αt  

. (2)  

In the opposite direction, DDIM inversion [38] of a given 

image z0  
is the process of incrementally adding determinis- 

tic noise, until obtaining zT:

zt  +1  
=  

√
¯ αt  +1  

fθ  
(  zt  

,  t  ) +  

√
1 −  ¯ αt  +1  

εθ  
(  zt  

,  t  )  . (3)  

Such inversion leads to a nearly faithful reconstruction [38]. 

3.2. Stable Diffusion and Self-Attention. 

We base our texture synthesis framework on Stable Dif- 

fusion (SD) [30], which is a pretrained latent diffusion 

model consisting of an encoder E  that maps an input im- 

age into the latent space, and a decoder D  that reconstructs 

a latent code back into image space. Both DDIM sampling 

and DDIM inversion are performed in the SD latent space. 

The noise predictor εθ  
of SD is a large-scale U-Net that 

contains multiple self-attention modules [41]. Each self- 

attention layer transforms its input intermediate feature map 

(also called spatial features) into an attended representation 

by the following equation:

Att (  Q,  K  ,  V  )  =  Softmax 

(  

QK 

T

√
d  

)  

V  , (4)  

where Q,  K  , and V  are the queries, keys, and values, re- 

spectively, obtained by learned linear projections of the 

same input spatial features, having dimension d  . The 

self-attention mechanism uses the similarities between the 

queries and keys as attention scores to weigh the importance 

or relevance of the values. Relevant info is thus aggregated 

as the attended representation. 

3.3. KV-Injection 

The self-attention features contain rich information 

about both the large-scale structures and local fine details 

of an input image [1, 6, 39]. Tumanyan et al . [39] demon- 

strate that by injecting the spatial features and the queries
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Figure 4. Visualization of the intermediate latent codes in the in- 

version. For the standard DDIM inversion (top), the U-Net pre- 

dicts noise to diffuse the distinctive structures so as to transform 

the input into Gaussian noise. In contrast, our structure-preserving 

inversion (bottom) reserves the distinctive patterns from user edits 

along the inversion process. See texts in Sec. 3.4 for more details. 

and keys ( QK ) from the self-attention layers of a source 

(guidance) image into the corresponding layer of the gen- 

erated target image during the sampling process, one can 

preserve the layout of the source while modifying its ap- 

pearance. Injecting only the K V features of a source ref- 

erence, instead, transfers its appearance, including textures, 

to the generated target [1, 6]. 

In our case, the target image is a rough and incomplete 

guidance, typically containing only a few source patches 

rotated and placed freely by the user. A complete overall 

structure needs to be synthesized reasonably yet conform- 

ing to user’s constraints. Locally, however, the resulting tex- 

ture should resemble the reference. To achieve these goals, 

we adapt the K V -injection into both the DDIM inversion 

and sampling, bringing a novel self-rectification operation. 

3.4. Self-rectification 

As shown in Fig. 3, our self-rectification consists of two 

parts: structure-preserving inversion and fine texture sam- 

pling. Both are performed in the SD latent space. The last 

latent code of inversion is used as the starting code of the 

sampling. The core modification to both processes is the 

K V -injection of self-attention features. 

Structure-preserving inversion. The standard DDIM in- 

version (Eq. (3)) progressively transforms an input image 

(SD latent code) into pure Gaussian noise. At each time 

step, the noise to be added is predicted by the U-Net. As 

visualized in Fig. 4, for a given target image, the noise pre- 

dicted by the U-Net for early time steps ( e.g ., t ≤ 20 ) is 

mainly distributed to “diffuse” the prominent structures so 

that the distinctive patterns from user edits get scattered and 

random. As the inversion progresses, the magnitude of the 

noise added in each step becomes smaller and similar for

 

Figure 5. Visualization of the intermediate latent codes in the fine 

texture sampling. Here, for the first 20 steps (from t = 50 to 

30 ), we perform the standard DDIM sampling to reconstruct the 

target layout. Next, we perform K V -injection in the remaining 

sampling steps ( t = 30 to 0), to synthesize fine textures for the 

output image. The rightmost shows the result produced by simply 

performing standard DDIM sampling for all steps, i.e ., S = 50 . 

No additional structure is synthesized to complete the user edits. 

all latent pixels, since the “diffusion” is getting close to 

done. As no text prompt is involved, the noise prediction 

in each inversion step is dominantly determined by the self- 

attention mechanism in the U-Net. Our key observation is 

that if we inject the K V features from a large time step 

t1 

( ≫ T / 2 ) into an early time step t2 

( ≪ T / 2 ), the noise 

predicted at t2 

will be smaller and more spatially uniform. 

The distinctive patterns of I tar, reflecting the user’s edits, 

are thus better preserved. Hence, we refer to this process as 

structure-preserving inversion . 

Specifically, given a rough target image I tar, we invert 

it twice. The first inversion is a standard DDIM inversion. 

The produced self-attention features along the noising steps 

are regarded as the inversion reference (IR) for the second 

inversion. The self-attention during the second inversion, at 

time step t , is now given by:

  \label {eq:structure-preserving} \textup {Att}\left (Q_t^{\tar },K_{\T -t}^\textit {IR},V_{\T -t}^\IR \right )=\textup {Softmax}\left (\frac {Q_t^{\tar }\left (K_{\T -t}^\IR \right )^T}{\sqrt {d}}\right )V_{\T -t}^\IR , 








 












































 

(5) 

where T denotes the total number of steps (we use T = 50). 

Here K V features are injected in a reverse order in the sec- 

ond round. We would like to stress that we have also ex- 

perimented with using an offset, i.e ., replacing T − t with 

t + offset in the above equation, but found no advantage (see 

supplementary for more analysis and comparisons). 

During the second inversion, we do not perform K V in- 

jections for all time steps. We set a parameter P that defines 

the time step beyond which we continue with standard in- 

version. Fig. 4 shows the effect of our structure-preserving 

inversion, where P = 30 . Since the final latent code after 

the second inversion still contains rich information about 

the distinctive structures from I tar, the subsequent sampling 

that starts from this latent code is guided to synthesize a 

global structure that complies with I tar. 

Fine texture sampling. We start the DDIM sampling 

from the final structure-preserving latent code. The sam- 

pling uses the U-Net to predict the noise to be removed, as 

defined in Eq. (1). However, simply performing standard
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DDIM sampling for all denoising steps results in a nearly 

reconstructed target image since DDIM sampling is deter- 

ministic. Therefore, we set the first S steps ( i.e ., from time 

step T to T − S) to reconstruct the target layout to a certain 

extent. For the remaining T − S denoising steps, we synthe- 

size the output image I 

∗ by matching fine textures from the 

reference via K V -injection from the reference IR. 

To this end, we first DDIM-invert the reference texture 

IR. At denoising time step t ( t > T − S), the K V features 

extracted during the inversion are injected into the corre- 

sponding self-attention layers of the synthesized texture:

  \label {eq:texture-matching} \textup {Att}\left (Q_t^{*},K_{t}^{\R },V_{t}^{\R }\right )=\textup {Softmax}\left (\frac {Q_t^{*}\left (K_{t}^{\R }\right )^T}{\sqrt {d}}\right )V_{t}^{\R }. 





















































 

(6) 

This forms a cross-image attention, where corresponding 

fine local patterns in the reference are transferred to the out- 

put image in a plausible manner. Fig. 5 visualizes the inter- 

mediate process of our texture sampling, where S = 20 . 

3.5. Implementation details and data augmentation 

In the user editing phase, we fill the background of the 

target canvas with pixels randomly drawn from the source 

texture, such that the encoding of the target image would 

not deviate too far from the source in the SD latent space. 

As the self-rectification is performed twice, the output of 

coarse stage I 

∗
coarse, will be used as the input target image 

of fine stage to produce the final output I 

∗. In contrast, for 

the inversion reference I IR involved in structure-preserving 

inversion of the two self-rectifications, we use the same ini- 

tial target image that contains the original user edits. See 

the supplementary for the full algorithm pseudo-code. 

Considering the parameter settings: since the coarse 

stage aims for structure synthesis, relatively large P and 

S are required in self-rectification, and vice versa in the 

fine stage. More specifically, let P1, P2, S1, and S2, de- 

note the parameters used in the two rounds of structure- 

preserving inversion and fine texture sampling. We typi- 

cally set P1 

= 20 , P2 

= 5 , S1 

= 20 , and S2 

= 5 . Follow- 

ing [6], we choose the K V features from the 10th to 15th 

self-attention layers of the U-Net decoder part. 

To further improve the synthesis quality, especially when 

dealing with textures containing a dominant directional 

structure, such as the leaf shown in Fig. 1, we can intro- 

duce a few transformed images (flips and rotations) to aug- 

ment the reference texture. We concatenate the new atten- 

tion features from the augmentation to the original reference 

feature. For example, when we have n augmented source 

textures, the K 

R and V 

R in Eq. (6) is now given by

  \label {eq:augmentation} \begin {cases} K^{R} & =\textup {Concat}\left ( K_{(0)}^R, K_{(1)}^R, \ldots ,K_{(n)}^R \right )\\ V^{R} & =\textup {Concat}\left ( V_{(0)}^R, V_{(1)}^R, \ldots ,V_{(n)}^R \right ) \end {cases}, 





 















    









 















    







 

(7) 

where K 

R 

( i ) 

, and V 

R 

( i ) 

are the self-attention features acquired 

from the DDIM inversion of the augmented references. 

4. Experiments 

We apply our method with Stable Diffusion with pub- 

licly available checkpoints v1.4. All experiments were con- 

ducted on a single Quadro P6000 24G GPU. The inference 

time synthesizing an image of 512 × 512 pixels takes about 

three minutes for our coarse-to-fine self-rectification. 

4.1. Evaluations and Comparisons 

We evaluate our method with non-stationary textures re- 

leased by [51]. Each example is resized to 512 × 512 pixels 

as the reference, and we quickly built several different tar- 

get images for each in PhotoShop with just a few lazy edits. 

Fig. 6 shows a gallery of results generated by our method. 

As can be seen our method faithfully reproduces the deli- 

cate textures of the exemplar, their global structure and yet 

respecting the sparse edits of the target image. More results 

are included in the supplementary. 

To compare with state-of-the-art texture synthesis meth- 

ods, we fed the target images we sketched to the models 

trained by adversarial expansion (TexExp) [51]. As can be 

seen in Fig. 6, TexExp failed to reproduce the fine textures 

of the reference, as the edited target images are unseen data 

to its training. We also tested the texture optimization based 

on a recently proposed textural loss (GCD Loss) [49], where 

the target images are down-scaled as the initialization in its 

multi-resolution synthesis. Although plausible local tex- 

tures are synthesized, the output of this method does not 

always conform to the user-edited layout (see Fig. 6). 

We have also applied our method on nearly homoge- 

neous textures of stationary statistics. Since such textures 

do not have a prominent global structure, we can simply 

reshuffle patches of the reference to serve as the target. This, 

however, might cut some local elements in the example. Al- 

ternatively, we can use the reference image as the target and 

shuffle its inversion code before the sampling, which bet- 

ter preserves the local texture elements. Fig. 7 shows a few 

examples, demonstrating promising quality. 

4.2. Ablation Studies 

In this section, we analyze the effect of the key compo- 

nents in our method through ablation studies. 

KV-Injection in sampling. As K V -Injection is applied 

both in the inversion and sampling process, we applied two 

ablations to study its effect. First, we set P1 

= P2 

= 0 , and 

explore the full parameter space for S1 

and S2, to study the 

effect of K V -Injection in texture sampling without being 

affected by the inversion. 

Fig. 8 shows a matrix of results of this parameter study. 

A smaller value of S (S1 

& S2) means performing more time
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Figure 6. We sketch two targets for each reference, denoted as Edit 1 and Edit 2, respectively. Our self-rectification method generates 

textures with global structures that faithfully respect the user edits of the target images, while still producing high-quality texture details. 

In contrast, adversarial expansion (TexExp) [51] does not capture the fine details well. Optimization by GCD Loss [49] reproduces the 

local textures, but does not always conform to the target image. Note that Edit 2 is used as the input for TexExp, and as the initialization in 

texture optimization of GCD Loss. More results are included in the supplementary.
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Figure 7. For nearly homogeneous textures (left), we can use patch 

shuffle of the reference to define a random target layout, where the 

shuffling could be performed in image space before applying self- 

rectification (middle), or in latent space after the inversion in the 

first self-rectification (right). 

steps of K V -Injection in sampling, and thus, the target im- 

age is rectified to be closer to the reference texture. On the 

contrary, a larger S reserves more of the target image’s lay- 

out, however, at the same time, it introduces more structural 

errors or conflicts, yielding artifacts. None of these results 

reaches a good trade-off between synthesizing a reasonable 

global layout (especially considering the user edits) and re- 

producing local textures of the reference. Nevertheless, we 

can find a proper parameter setting for S, which is 10 ∼ 20 

for S1, and 5 for S2. Hence we set the default values of S1 

and S2 

to be 20 and 5, and use it for all experiments. 

KV-Injection in inversion. Next, we investigate the ef- 

fect of K V -Injection in our structure-preserving inversion. 

By fixing S1 

and S to default values, we search the param- 

eter space defined by P1 

and P2. As shown in Fig. 9, intro- 

ducing K V -Injection significantly improves the synthesis 

result. Both the structural errors and local artifacts are dras- 

tically reduced at the same time. Another important point 

is that, we may have a relatively wide range for setting the 

value of P, which is empirically suggested by the results: 

10 ∼ 30 for P1, and 5 ∼ 15 for P2. We usually set P1 

as 20, 

and P2 

as 5 in production. See supplementary for the full 

exploration results and more examples of this study. 

Data augmentation. In many cases, data augmentation 

may not be necessary, as the pre-trained Stable Diffusion

 

Figure 8. Ablation study of K V -Injection in texture sampling. We 

explore the parameter space for S1 

and S2, with P1 

= P2 

= 0 , and 

adopt the wood texture and its edited target shown in Fig. 1 for 

this test. The coarse self-rectification results are shown in the 1st 

column. We can see that changing the starting time-step of K V - 

Injection in the sampling greatly affects the final output. However, 

none of these settings yields a qualified balance when considering 

both the target layout and the texture details. Note setting S = 50 

( i.e ., no K V -Injection in sampling) only results in an approximate 

layout reconstruction without any details synthesized (see Fig. 5).

 

Figure 9. Ablation study of K V -Injection in structure-preserving 

inversion by exploring the parameter space defined by P1 

and P2. 

Here, we fixed S1 

= 20 and S2 

= 5 according to the test of 

Fig. 8. While compared with Fig. 8, the outputs are significantly 

improved after introducing K V -Injection to the inversion. Many 

of these results can be considered good synthesis regarding the 

target image edited and the source texture of the wood. 

model already has a certain ability to synthesize rotated tex- 

ture patterns, except when the reference has dominant direc- 

tional structures. To allow more free editing for directional 

textures, augmenting the reference is essential to synthesize
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Figure 10. For textures that contain dominant directional struc- 

tures, data augmentation is essential to allow the output to admit 

with user edits. Specifically, we augment each source shown above 

with three images rotated at angles of ± 45◦ and 90◦, respectively.

 

Figure 11. Guided texture synthesis. The user provides a color lay- 

out to guide the output structure. The synthesized outputs follow 

the outlines well and still exhibit the reference texture details. 

a more consistent output structure conforming to user edits; 

see, e.g ., Fig. 10 for a comparison on data augmentation, 

where additional rotated transformations are involved. 

4.3. Additional Applications 

Our self-rectification framework can extend its utility to 

seemingly other applications. For instance, as illustrated in 

Fig. 11, users can input a straightforward target image out- 

lining a layout structure with colors compatible with ref- 

erence textures. To avoid excessive smoothing, random 

noise is introduced to enhance the target image. The self- 

rectification process ensures that the target image incorpo- 

rates texture details from the reference, while adhering to 

the user-provided layout structure. 

Moreover, our self-rectification method can be employed 

for image editing beyond textures. Users can edit a given 

image by employing basic cut-and-paste patch operations,

 

Figure 12. Our method can also be applied to image editing. For 

creating the target image, the user can either loosely sketch a lay- 

out on the target canvas, or directly edit the input image. 

and the resulting crude edits undergo self-rectification. 

Fig. 12 presents several instances of such image editing op- 

erations, presenting two edits for each input image. 

5. Conclusions 

Our work addresses the intricate challenge of synthesiz- 

ing non-stationary textures, offering a method that empow- 

ers users to efficiently design new textures with unprece- 

dented controllability. This stands as a notable improve- 

ment over existing methods, providing a user-friendly pro- 

cess, which consists of two steps: Users begin with an initial 

rough edit using conventional image editing tools, followed 

by an automated self-rectification process. This process 

leverages a pre-trained diffusion network and injections of 

self-attention features, showcasing flexibility in synthesiz- 

ing a diverse range of challenging non-stationary textures. 

In the future, we would like to explore the extension of 

our approach to synthesize large-scale textures. Addition- 

ally, there is a promising avenue to incorporate semantic 

understanding into the self-rectification process, enhancing 

alignment with user intent. The integration of texture se- 

mantics holds the potential to yield contextually relevant 

and visually appealing synthesized textures. 
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