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Abstract

In this paper, we present a novel sequence generation-
based framework for lane detection, called Lane2Seq. It
unifies various lane detection formats by casting lane de-
tection as a sequence generation task. This is different from
previous lane detection methods, which depend on well-
designed task-specific head networks and corresponding
loss functions. Lane2Seq only adopts a plain transformer-
based encoder-decoder architecture with a simple cross-
entropy loss. Additionally, we propose a new multi-format
model tuning based on reinforcement learning to incorpo-
rate the task-specific knowledge into Lane2Seq. Experimen-
tal results demonstrate that such a simple sequence gen-
eration paradigm not only unifies lane detection but also
achieves competitive performance on benchmarks. For ex-
ample, Lane2Seq gets 97.95% and 97.42% F1 score on
Tusimple and LLAMAS datasets, establishing a new state-
of-the-art result for two benchmarks.

1. Introduction
Lane detection is a fundamental task in computer vi-

sion [31, 36, 40]. It aims to predict the location of the lane
in a given image. Lane detection plays a crucial role in
many applications, such as adaptive cruise control and lane
keeping. Existing lane detection methods generally adopt
a divide-and-conquer strategy, which decomposes the lane
detection into multiple subtasks. Each subtask is accom-
plished by a task-specific head network. For instance, as
shown in Fig. 1, segmentation-based methods [28,49] adopt
a head network along with a task-specific module, such
as the message-passing module [28], to predict per-pixel
masks. Anchor-based methods [17, 36] utilize a classifi-
cation head network for distinguishing lane instances and
an anchor refinement network for regressing accurate lanes.
Parameter-based methods [13, 23] use a network to predict
the parameters of lanes and a vertical offset prediction net-
work to locate the start points of lanes.

Although divide-and-conquer strategy has been proved
an effectively way to address the certain subtask in the ex-

Figure 1. Comparison of different lane detection frameworks.

isting methods, there still exist several limitations. (1) Each
subtask needs a customized task-specific head network, re-
sulting in a complicated lane detection model. (2) Each
task-specific head requires one or more loss functions, e.g.,
cross-entropy loss and Line-IOU loss [17], bringing out ex-
tra hyper-parameters.

In this paper, we present a novel sequence generation-
based lane detecton (Lane2Seq) framework to tackle the
aforementioned issues. By formulating the lane detection
as a sequence generation task, Lane2Seq gets rid of cus-
tomized head networks and task-specific loss function. It
is based on the intuition that if the detection model knows
where the target lane is, model can be simply teached how
to read the location of lane out, instead of designing addi-
tional classification head or regression head by the divide-
and-conquer strategy.

Therefore, we convert the outputs of different lane de-
tection formats, i.e., segmentation-based, anchor-based, and
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parameter-based, into a sequence of discrete tokens and the
model learns to generate this sequence token-by-token. As
shown in Fig. 1 (d), to achieve a specific lane detection for-
mat, Lane2Seq uses a prompt to specify the detection for-
mat and the generated sequence adapts to the prompt so the
model can produce format-specific output. By the format-
specific prompt, Lane2Seq unifies different lane detection
formats into a model.

While Lane2Seq does not contain task-specific compo-
nents, task-specific knowledge contained in these compo-
nents can help the model learn the features of lanes bet-
ter. We propose a Multi-Format model tuning method
based on Reinforcement Learning (MFRL) to incorporate
the task-specific knowledge into the model without chang-
ing model’s architecture. Inspired by Task-Reward [30],
MFRL takes the evaluation metrics, which naturally in-
tegrates task-specific knowledge, as the reward and tunes
Lane2Seq using REINFORCE [41] algorithm. However,
evaluation metrics like F1 score cannot be used as the re-
ward directly due to undecomposable as a sum of per-
example rewards. In this paper, we propose three new eval-
uation metric-based rewards for segmentation, anchor, and
parameter format, based on their task-specific knowledge.

Experimental results demonstrate that our Lane2Seq
achieves competitive performance on three public datasets,
Tusimple, CULane, and LLAMAS. For instance, Lane2Seq
with ViT-Base encoder obtains 97.95% and 97.42% F1
score on Tusimple and LLAMAS, setting a new state-of-
the-art result for two datasets. It should be noted that all ex-
isting lane detection methods heavily rely on well-designed
task-specific head networks and the corresponding compli-
cated loss functions. Instead, our Lane2Seq utilizes a plain
transformer-based encoder-decoder architecture with a sim-
ple cross-entropy loss.

The main contributions of this paper are as follows.

• We propose a sequence generation-based method for
lane detection, which casts the lane detection as a se-
quence generation task. To the best of our knowledge,
we are the first to unify the lane detection through the
sequence generation, which offers a new perspective
on lane detection.

• We present a novel reinforcement learning-based
multi-format model tuning, including three new evalu-
ation metric-based reward functions, to incorporate the
task-specific knowledge into the model.

• Experimental results show that our method achieves
competitive performance on lane detection bench-
marks. Remarkably, we establish a new state-of-the-
art result on Tusimple and LLAMAS.

2. Related Work
Lane detection. Existing lane detection methods can

be divided into three categories based on the represen-
tation of the lane: segmentation-based method, anchor-
based method and parameter-based method. Segmentation-
based methods [28, 47, 49] consider lane detection as a
semantic segmentation task and performs pixel-wise pre-
diction. SCNN [28] enhances the visual evidence by a
message-passing module, which can capture spatial depen-
dency for lanes. Anchor-based methods [20,31,36,51] pre-
dict the accurate lanes by refining the predefined lane an-
chors. UFLD [31] proposes a novel row anchor-based ap-
proach to detect lanes. Different from the segmentation-
based and anchor-based methods, parameter-based meth-
ods [13, 23, 37] regard the lane detection as the paramet-
ric modeling and regress the parameters of the lane. Poly-
LaneNet [37] models a lane curve as a polynomial and re-
gresses the parameters of the polynomial. In this paper, we
treat the segmentation-based, anchor-based methods, and
parameter-based metohds uniformly as the sequence gener-
ation task, getting rid of the complicate structure and task-
specific modules, e.g., head network. It only adopts the
cross-entropy loss and plain transformer architecture.

Sequence generation for vision tasks. Recently,
sequence-to-sequence (seq2seq) method used in the natu-
ral language processing (NLP) has been applied for vision
tasks. Seq2seq utilizes a basic transformer encoder and de-
coder architecture and accomplishes the task by making se-
quence predictions, rather than designing a model tailored
to the vision task. Pix2seq [8] is the pioneering work to
cast the object detection as the sequence generation task.
It shows that object can be detected well without any task-
specific modules like label assignment. Besides object de-
tection, seq2seq has been extended to other vision tasks
such as instance segmentation [9], keypoint detection [9],
text spotting [19,29] and object tracking [10]. UniTAB [45]
adopts the task prompt [33] to perform multi-task learn-
ing. Unified-IO [25] jointly trains various vision tasks by
setting the unified input/output formats for all tasks. Be-
sides, seq2seq becomes increasingly popular in the multi-
modal model. Text-to-image models like DALL-E [34] and
vision-language models like Flamingo [2] all use seq2seq to
unify the multi-modal tasks. Nevertheless, how to perform
the seq2seq in the lane detection to unify different detection
formats is still unexplored.

Lane2Seq has a similar spirit with the Pix2seq and its
successors [9, 10, 19, 29]. All of them view the vision tasks
as the sequence generation. The main difference between
these methods and Lane2Seq is the sequence format. Pre-
vious works use coordinates and category to construct the
sequence, while Lane2Seq also adopts the parameter of the
lane to construct the sequence.

Reinforcement learning in the computer vision. Many
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Figure 2. Inference pipeline of Lane2Seq. The model perceives input image, prompt and generates format-specific tokens, which can be
detokenized into required detection format for visualization.

previously researches introduce the reinforcement learn-
ing for the vision tasks, such as object detection [27], ob-
ject tracking [26], image segmentation [21] and lane detec-
tion [48]. They generally focus on learning different parts
of an image and refine the outputs iteratively. DQLL [48]
localizes the lanes as a group of lanemarks and refine the
location of lanemarks with the deep Q-learning. Recently,
Task Reward [30] adopts a novel task risk-based reinforce-
ment learning to tune the vision model without changing the
model architecture. Reward functions in Task-Reward are
designed for object detection, instance segmentation, col-
orization, and image captioning but not for lane detection.
Our MFRL is the first attempt to design effective evaluation
metric-based reward functions for different lane detection
formats.

3. Method

In this section, we present the proposed sequence
generation-based lane detection method, named Lane2Seq,
in detail. The overall pipeline of Lane2Seq is illustrated in
Fig. 2. Sec 3.1 depicts the unified interface for lane detec-
tion, Sec 3.2 details the model architecture and objective
function, and Sec 3.3 introduces the proposed multi-format
model tuning based on reinforcement learning.

3.1. Unified Interface for Lane Detection

As presented in Figure 1, lane detection formats in the
existing method are diverse and have been formulated quite
differently. Considering differences in the form of outputs,
customized models with specialized head networks and loss

functions are designed for different lane detection formats.
To integrate different lane detection formats into a

model, we propose an unified sequence interface for lane
detection, where both format transcription like segmenta-
tion and outputs are treated as sequences of discrete tokens.
As shown in Fig. 2, the generated sequence is composed
of four parts, a starting token <starting>, a format tran-
scription token like <Segmentation>, a format-specific se-
quence, and an ending token <end>. The format-specific
sequence for three detection formats can be constructed as
follows.

Segmentation sequence. Instead of performing pixel-
wise mask prediction, we predict the polygon [5] corre-
sponding to the mask as a sequence of coordinates con-
ditioned on a given lane instance. Then, we convert the
polygon into a sequence by quantizing the coordinates of
its points into discrete tokens. Specifically, x, y coordi-
nates of a point are normalized to the width and height of
the image, and then quantized to [1, nbins], where nbins is
the size of the vocabulary. Vocabulary will be described
subsequently. A polygon sequence can be expressed as
[x1, y1, x2, y2, ..., x28, y28,<Lane>], where <Lane> is the
category token. If there are multiple lanes in an image,
we concatenate the all polygon sequences. The segmen-
tation sequence consists of a starting point and all polygon
sequences, where starting point is the left-top point of the
image x0 = 0, y0 = 0.

Anchor sequence. Since the essence of anchor-
based methods is regressing the location of keypoints
of lane anchors, we treat the anchor prediction as
the keypoint sequence generation. Specifically, the
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Figure 3. Training pipeline of Lane2Seq. The input sequence can
be the segmentation sequence or anchor sequence or parameter
sequence.

keypoint sequence of a lane can be expressed as
[x1, y1, x2, y2, ..., x14, y14,<Lane>]. The normalization
and quantization of keypoint coordinates are same to that
of polygon point. The anchor sequence contains a starting
point and all keypoint sequences, where starting point is still
the left-top point of the image.

Parameter sequence. the sequence of the lane includes
two parts: the parameter of polynomial function and verti-
cal offsets. We set the polynomial degree as 5th. Specifi-
cally, the parameter sequence of a lane can be represented
as [a1, a2, a3, a4, a5, s, <Lane>], where s is the vertical
offset. s is normalized to the height of the image and quan-
tized to [1, nbins]. We use sigmoid to normalize ai by
ai = Sigmoid(ai). Then ai is quantized to [1, nbins]. Pa-
rameter sequence does not require the starting point.

Vocabulary. We use a shared vocabulary for all for-
mats and each integer between [1, nbins] can be regarded
as a word in the vocabulary. Each word in the vocabulary
corresponds to a learnable embedding.

3.2. Unified Architecture and Objective Function

We follow [10] and use a transformer-based encoder-
decoder architecture to deal with image input and sequence
output flexibly. As shown in Fig. 3, the image encoder
takes the pixels as the input and outputs the corresponding
image representations. We utilize the Vision Transformer
(ViT) [11] to instantiate the image encoder. We adopt a
transformer-based sequence decoder, which is widely used
in the language modeling [32, 33], to generate the out-
put sequence. The decoder generates one token at a time
based on the preceding tokens and the image representa-
tions. Sequence decoder removes the well-designed task-
specific heads for different detection formats.

Training Pipeline. We first tokenize annotation of each
format into the corresponding sequence. Then, we construct
a training batch using images and sequences from all detec-
tion formats. Finally, we compute loss between generated
sequence and target sequence for each format. For a certain
detection format, the input sequence is [<starting>, format
transcription token, format-specific sequence] and the target
sequence is [format transcription token, format-specific se-
quence, <end>]. For example, in the anchor format, the in-

put sequence is [<starting>, <Anchor>, x0, y0, x1, y1,...,
<Lane>, <end>] and the target sequence is [<Anchor>,
x0, y0, x1, y1,..., <Lane>, <end>]. The starting token
<starting> and ending token <end> are learnable embed-
dings, which tell the decoder when to begin and end the
sequence generation. The sequence decoder perceives the
image representations and input sequence and reconstructs
the target sequence.

Objective Function. Similar to Pix2seq [8], we train
the Lane2Seq with a simple cross-entropy loss. At each
time stamp j, Lane2Seq aims to maximize the likehood of
the target tokens conditioned on the image representations
I and previously generated tokens y1:j−1,

  Loss_{obj}=-\sum _{j=1}^{N}w_{j}\text {log}P(\hat {m}_{j}|I,m_{1:j-1}), \label {eq:eq1} \vspace {-0.2cm}  



     (1)

where m and m̂ denote the input and target sequence, re-
spectively. N is the length of sequence. wj represents the
weight for the j-th token, 0 is assigned to the format tran-
scription token and 1 is assigned to other tokens to ensure
the model is trained to predict the desired tokens but not the
format transcription tokens.

Inference Pipeline. We take the format transcription to-
ken as the prompt to achieve the format-specific detection
and the sequence decoder generates the rest of the sequence
conditioned on the prompt and image representation. Once
the whole sequence is generated, we de-quantize the se-
quence to obtain the location of lane. More details about
de-quantization for each format can be found in the supple-
mentary materials. Inference process is presented in Fig. 2.

3.3. Multi-Format Model Tuning Based on Rein-
forcement Learning

Lane2Seq get rids of the complicated task-specific com-
ponents, such as task-specific head networks, via the se-
quence generation. However, this task-agnostic architec-
ture inevitably lacks the task-specific knowledge of the lane
detection, making the model ineffective in learning the fea-
tures of lane. Exising lane detection methods [17, 49] usu-
ally design the specific modules to incorporate the task-
specific knowledge into the model. But this way makes
the model architecture complicate. We propose a novel
Multi-Format model tuning method based on Reinforce-
ment Learning (MFRL) to learn task-specific knowledge ef-
fectively without changing any components of the model.

Inspired by Task-Reward [30], MFRL takes the eval-
uation metric, which naturally contains the task-specific
knowledge, as the reward function and adopts the reinforce-
ment learning to tune the model, which is common practice
in the modern language model [4, 12]. Specifically, it is
difficult for the model to converge if model is trained with
reinforcement learning method from scratch [30]. Hence,
MFRL consists of two stages: the pretraining stage and
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the model tuning stage. In the pretraining stage, model is
trained on the lane detection dataset with objective function
in Eq. 1 to have a good weight initialization.

In the model tuning stage, we use the REINFORCE al-
gorithm [35] to maximize the objective function as below,

  Obj=E_{c \sim D}\left [E_{t \sim Q(\cdot |c,u)}R(t,g)\right ], \vspace {-0.2cm} \label {eq:eq10}  





 (2)

where c, t, and g represent the input image, generated
format-specific sequences, and ground truths, respectively.
E and u denote the mathematic expectation and the model
parameter. R, D, and Q stand for the reward function, data
distribution of the dataset, and conditional distribution pa-
rameterized by u. REINFORCE algorithm estimates the
gradient of the reward function by

  \triangledown _{u} E_{t \sim Q}[R(t,g)] = E_{t \sim Q}[R(t,g)\triangledown _{u}\text {log}Q(t|c,u)], \label {eq:eq2}       (3)

In practice, Eq. 3 is computed as an average of per-sequence
gradient and reward function of per-sequence is not required
to be differentiable. More details about REINFORCE algo-
rithm can be found in the supplementary materials.

Reward Function. Evaluation metric F1 score and ac-
curacy are unable to adopted as the reward directly, because
thay cannot be decomposable as a sum of per-sequence re-
wards (see Sec 4.2). However, F1 score or accuracy is com-
posed of false positives (FP ), true positives (TP ), and false
negatives (FN ). All three indicators can be computed per-
sequence. We opt to use TP and FP to design the re-
ward. Specifically, reward for three detection formats are
constructed as follows.

Reward for the segmentation format (termed as Rseg).
Segmentation-based lane detection includes two task-
specific knowledge, i.e., knowledge of the segmentation and
lane detection. For the knowledge of lane detection, we
adopt a matched Line-IOU (LIOU) [50], which can demon-
strate the quality of location prediction and shape predic-
tion of the lane. For the knowledge of the segmentation, we
adopt the matched Mean Intersection over Union (mIOU),
which is a widely used metric in the semantic segmenta-
tion to evaluate the quality of segmentation, as the reward.
Finally, we add both of them to compute rseg as below,

  \small \begin {aligned} R_{seg}(t,g)=&\frac {1}{K}\sum _{k=1}^{K}[LIOU(p_{k},g)+mIOU(p_{k},g)] \\ &- \lambda _{1} FP_{seg}(t,g), \end {aligned} \vspace {-0.1cm} \label {eq:eq3}  







  

 

(4)

where K and pk represents the number of true positives in t
and the k-th true positive. FPseg is the false positive rate of
the segmentation format and λ1 is the weight to control the
affect of FPseg . We introduce FPseg to penalize for false
positives.

Reward for the anchor format (termed as Ra). Anchor-
based lane detection contains the knowledge of the keypoint
location and lane detection. For the knowledge of keypoint

location, we simply adopt the matched Euclidean distance
d(pk, g) between true positives and corresponding ground
truths as the reward. Since MFRL needs to maximize the
reward, we rescale the reward as dr(pk, g) = 1 − d(pk,g)

H ,
where H is the height of image. For the knowledge of lane
detection, we also utilize the matched LIOU as the reward.
The formulation of ra is:

  \small R_{a}(t,g)=\frac {1}{K}\sum _{k=1}^{K}[LIOU(p_{k},g)+d_{r}(p_{k},g)]- \lambda _{2} FP_{a}(t,g), \label {eq:eq4}  







     

(5)
where FPa and λ2 stand for the false positives rate of the
anchor format and the weight of FPa.

Reward for the parameter format (termed as Rp).
Parameter-based detection only has the knowledge of lane
detection, hence we directly use the matched LIOU as the
reward.

  \small R_{p}(t,g)=\frac {1}{K}\sum _{k=1}^{K}LIOU(p_{k},g)- \lambda _{3} FP_{p}(t,g), \label {eq:eq5} \vspace {-0.2cm}  







    (6)

where FPp and λ3 stand for the false positives rate of the
parameter format and the weight of FPp.

Since different detection formats have different contribu-
tions, we weight the objective function of different formats.
The final objective function of MFRL can be computed as,

  \small Obj_{total} = \lambda _{4}Obj_{seg}+\lambda _{5}Obj_{a}+\lambda _{6}Obj_{p}, \label {eq:eq7}        (7)

where Objseg , Obja, and Objp denote the objective func-
tion of segmentation, anchor, and parameter format, respec-
tively. The objective function of three formats is the same
as Eq. 2, except the format-specific sequence and reward
function. λ4, λ5, and λ6 are the scale factor.

4. Experiments
4.1. Datasets

We conduct experiments on three lane detection bench-
marks: CULane [28], Tusimple [1], and LLAMAS [3].

CULane is a widely used large-scale dataset for lane
detection. It contains a lot of challenging scenarios such
as crowded roads. The CULane dataset consists of 88.9K
images for training, 9.7K images in the validation set, and
34.7K images for the test. Image size is 1640×590.

Tusimple is a real highway dataset consisting of 3,626
training images and 2,782 testing images. All images have
1280×720 pixels.

LLAMAS is a recently released large-scale lane de-
tection dataset with over 100K images. All lane mark-
ers are annotated with high-accurate maps. Image size is
1280×717.

4.2. Evaluation Metrics

For CULane and LLAMAS dataset, we adopt
the F1 score to measure the performance: F1 =
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Table 1. Comparison of F1 score and MACs (multiply–accumulate operations) on CULane testing set. We only report the false positives
for “Cross” category following [50]. FPS is tested on a single 2080Ti.

Methods Encoder FPS↑ Normal↑ Crowded↑ Dazzle↑ Shadow↑ No line↑ Arrow↑ Curve↑ Night↑ Cross↓ Total↑ MACs(G)↓
Segmentation based

SCNN [28] ResNet50 12 90.60 69.70 58.50 66.90 43.40 84.10 64.40 66.10 1900 71.60 8.4
RESA [49] ResNet50 42.1 92.10 73.10 69.20 72.80 47.70 88.30 70.30 69.90 1503 75.3 7.6

AtrousFormer [44] ResNet34 - 92.83 75.96 69.48 77.86 50.15 88.66 71.14 73.74 1054 78.08 14.22
LaneAF [44] DLA34 [46] - 91.80 75.61 71.78 79.12 51.38 86.88 72.70 73.03 1360 77.41 12.73

Lane2Seq (segmentation) ViT-Base 19 93.39 77.27 73.45 79.69 53.91 90.53 73.37 74.96 1129 79.64 15.19
Anchor based
LaneATT [36] ResNet122 23 91.74 76.16 69.47 76.31 50.46 86.29 64.05 70.81 1264 77.02 70.5

O2SFormer [51] ResNet50 44 93.09 76.57 72.25 76.56 52.80 89.50 69.60 73.85 3118 77.83 27.51
UFLD [31] ResNet34 192 90.70 70.20 59.50 69.30 44.40 85.70 69.50 66.70 2037 72.30 3.3

CondLaneNet [22] ResNet34 135 93.38 77.14 71.17 79.93 51.85 89.89 73.88 73.92 1387 78.74 19.6
ADNet [43] ResNet34 - 92.90 77.45 71.71 79.11 52.89 89.90 70.64 74.78 1499 78.94 18.6

CLRNet [50] ResNet34 112 93.49 78.06 74.57 79.92 54.01 90.59 72.77 75.02 1216 79.73 17.3
Lane2Seq (anchor) ViT-Base 23 93.11 77.43 73.25 79.46 53.74 90.02 72.44 75.12 1173 79.27 15.19
Parameter based

LSTR [23] ResNet18 - - - - - - - - - - 64.00 5.9
BezierLaneNet [14] ResNet18 - 90.22 71.55 62.49 70.91 45.30 84.09 58.98 68.70 996 73.67 4.7

BSNet [6] ResNet34 - 93.75 78.01 76.65 79.55 54.69 90.72 73.99 75.28 1445 79.89 17.2
Eigenlanes [18] ResNet50 - 91.70 76.00 69.80 74.10 52.20 87.70 62.90 71.80 1509 77.20 18.7
Laneformer [15] ResNet50 - 91.77 75.74 70.17 75.75 48.73 87.65 66.33 71.04 19 77.06 26.2

Lane2Seq (parameter) ViT-Base 30 93.03 76.42 72.17 78.32 52.89 89.67 72.67 73.98 1319 78.39 15.19

2×Precision×Recall
Precision+Recall , where Precision = TP

TP+FP

and Recall = TP
TP+FN .

For Tusimple dataset, we use F1 score, accuracy, false
positives, and false negatives to evaluate the model perfor-
mance. Accuracy is defined as Accuracy =

∑
clip Cclip∑
clip Sclip

,
where Cclip represents the number of accurately predicted
lane points and Sclip denotes the total number of lane points
of a clip. A lane point is considered as correct if its distance
is smaller than the given threshold tpc =

20
cos(ayl)

, where ayl
denotes the angle of the corresponding ground truth.

4.3. Implementation Details

Model. We adopt the ViT-Base initialized with the
MAE [16] pretrained parameters as the image encoder. The
patch size is 16×16. The decoder is composed of 2 trans-
former blocks and its hidden size is 256. The number of
attention heads is 8 and the hidden size of feed-forward net-
work is 1024. nbins is set to 1000 and the dimension of
word embedding of the vocabulary is 256. Our Lane2Seq is
implemented based on MMDetection toolbox [7]. λ1, λ2,
λ3, λ4, λ5, and λ6 are set to 0.3, 0.3, 0.1, 0.2, 1, and 1.5,
respectively.

Training. All input images are resized to 320×800. We
utilize the AdamW [24] as the optimizer with initial learn-
ing rate 1e-4. The training epochs of the pretraining stage
are 5, 20, and 15 for CULane, Tusimple, and LLAMAS. We
set the training epochs of the model tuning stage to 15, 30,
and 55 for CULane, Tusimple, and LLAMAS, respectively.
For the data augmentation, we use the random horizontal
flips and random affine transformation including scaling,
rotation, and translation. All experiments are conducted on
8 A100 GPUs with total batch size 384.

Table 2. Comparison of the performance of different models on
LLAMAS.

Methods Encoder F1(%)↑
PolyLaneNet [37] EfficientNet-b0 [38] 90.20

BezierLaneNet ResNet34 96.11
LaneATT ResNet34 94.96
LaneATT ResNet122 95.17
LaneAF DLA34 96.90
CLRNet ResNet18 96.96
CLRNet DLA34 97.16

Lane2Seq (segmentation) ViT-Base 97.42
Lane2Seq (anchor) ViT-Base 97.05

Lane2Seq (parameter) ViT-Base 96.74

4.4. Comparison with the State-of-the-art Methods

Performance on LLAMAS. Our Lane2Seq achieves a
new state-of-the-art performance on LLAMAS dataset us-
ing segmentation format. In Table 2, Lane2Seq increases
F1 score from 97.16% to 97.42% compare to the pre-
vious state-of-the-art method CLRNet. Compared with
parameter-based state-of-the-art method BezierLaneNet,
Lane2Seq performs better than BezierLaneNet (96.74%
vs. 96.11%). The results manifest the detection strengths
of Lane2Seq in the multi-lane scenario (The number of
lanes ≥ 5), such as highways. The reason may be that
transformer-based architecture has the advantages in cap-
turing long-range dependency.

Performance on Tusimple. Table 3 presents the per-
formance comparsion with state-of-the-art approaches on
Tusimple. Due to small data scale and single scene, the
performance gap between different models is small. Our
Lane2Seq using segmentation format sets a new state-of-
the-art F1 score of 97.95%. The results also validate the
detection strengths of Lane2Seq in multi-lane scenario.
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Table 3. Comparison of the performance of different models on
Tusimple. Acc denotes accuracy.

Methods Encoder F1(%)↑ Acc(%)↑ FP(%)↓ FN(%)↓
SCNN VGG16 95.97 96.53 6.17 1.80
RESA ResNet34 96.93 96.82 3.63 2.48

PolyLaneNet EfficientNet-bo 90.62 93.36 9.42 9.33
UFLD ResNet34 88.02 95.86 18.91 3.75

LaneATT ResNet122 96.06 96.10 5.64 2.17
GANet [39] ResNet34 97.68 95.87 1.99 2.64

CondLaneNet ResNet34 96.98 95.37 2.20 3.82
CondLaneNet ResNet101 97.24 96.54 2.01 3.50

CLRNet ResNet34 97.82 96.87 2.27 2.08
CLRNet ResNet101 97.62 96.83 2.37 2.38

Lane2Seq (segmentation) ViT-Base 97.95 96.85 2.01 2.03
Lane2Seq (anchor) ViT-Base 97.86 96.72 2.21 2.05

Lane2Seq (parameter) ViT-Base 96.59 96.00 2.23 3.54

Performance on CULane. We compare Lane2Seq
with other state-of-the-art methods on CULane and re-
sults are shown in Table 1. For the segmentation-based
methods, Lane2Seq improves F1 score from 78.08% to
79.64% compared to the previous state-of-the-art meth-
ods AtrousFormer. Compared with anchor-based methods,
Lane2Seq outperforms most previous methods. For exam-
ple, Lane2Seq achieves the better performance than existing
row anchor-based methods, such as CondLaneNet (79.27%
vs. 78.74%). Moreover, Lane2Seq achieves competitive
performance compared to CLRNet (79.27% vs. 79.73%).
One possible reason for the performance gap between CLR-
Net and Lane2Seq is that CLRNet adopts multi-scale detec-
tion, which can notably improve the detection performance,
while Lane2Seq only uses the plain transformer architec-
ture with single-scale detection. For the comparsion of
parameter-based methods, Lane2Seq surpasses the existing
transformer-based methods. For example, Lane2Seq sig-
nificantly increases F1 score from 64.00% to 78.39% com-
pared with LSTR and outperforms Laneformer by 1.33%
(78.39% vs. 77.06%). But Lane2Seq is ranked second af-
ter BSNet. As for the inference speed, we can see that
Lane2Seq does not have a significant advantage in inference
speed. We attribute that token-by-token prediction method
slows the inference speed.

Based on the above results and analysises, we can con-
clude that the unified lane detection via the sequence gener-
ation without any well-designed task-specific components,
combining our reinforcement learning-based multi-format
model tuning, can achieve promising performance.

Qualitative Results. We display the qualitative results
in Fig. 4. The results show that Lane2Seq can effectively
detect lanes in the multi-lane scenario (see Fig 4 (a) and (c)).
Even in the case of the night scene, Lane2Seq successfully
discriminates the lanes (see Fig 4 (b)).

4.5. Ablation Study

We conduct the ablation experiments on CULane dataset
to validate the effectiveness of each component. More abla-
tion studies are in the supplementary materials.

Table 4. Ablation study on the multi-format model tuning based
on reinforcement learning.

Methods F1(%)↑ Precision(%)↑ Recall(%)↑
Lane2Seq (segmentation) 64.27 70.44 52.77

Lane2Seq (segmentation) + MFRL 79.64 (+15.37) 85.26 (+14.82) 69.00 (+16.23)
Lane2Seq (anchor) 66.23 71.36 55.75

Lane2Seq (anchor) + MFRL 79.27 (+13.04) 84.72 (+13.36) 67.28 (+11.53)
Lane2Seq (parameter) 68.14 73.27 57.89

Lane2Seq (parameter) + MFRL 78.39 (+10.25) 83.68 (+10.41) 66.94 (+9.05)

Table 5. Ablation study on the different reward functions. F1 score
is adopted as the indicator.

Rseg Ra Rp Segmentation Anchor Parameter
64.27 66.23 68.14

✓ 77.69 (+13.42) 66.23 (+0.0) 68.14 (+0.0)
✓ 64.27 (+0.0) 76.94 (+10.71) 68.14 (+0.0)

✓ 64.27 (+0.0) 66.23 (+0.0) 77.02 (+8.88)
✓ ✓ 78.72 (+14.45) 78.14 (+11.91) 68.14 (+0.0)
✓ ✓ 78.70 (+14.43) 66.23 (+0.0) 77.90 (+9.76)

✓ ✓ 64.27 (+0.0) 78.20 (+11.97) 77.93 (+9.79)
✓ ✓ ✓ 79.64 (+15.37) 79.27 (+13.04) 78.39 (+10.25)

Multi-Format Model Tuning Based on Reinforcement
Learning. We first ablate the effectiveness of the pro-
posed Multi-Format Model Tuning Based on Reinforce-
ment Learning (MFRL). As shown in Table 4, MFRL
significantly improves the performance of different detec-
tion formats. For the segmentation format, MFRL gains
15.37% F1 score improvement (79.64% vs. 64.27%). For
the anchor and parameter format, MFRL increases 13.04%
(79.27% vs. 66.23%) and 10.25% (78.39% vs. 68.14%) F1
score, respectively. Reasons of performance improvement
can be attributed in two folds: (1) the vanilla Lane2Seq
is a task-agnostic architecture and lacks the task-specific
knowledge, leading to the ineffective feature learning of
lane. MFRL tackles this problem by adopting the evaluation
metric, which is designed based on the lane prior informa-
tion like angle, as the reward to tune the model. (2) MFRL
makes the model’s predictions aligned with their intended
usage, i.e., how to achieve a high performance. Optimiz-
ing the loss function is a common practice in the compute
vision. However, this way indirectly optimizes for model’s
intended usage, because the lower loss does not mean the
higher performance. Instead, MFRL views the maximizing
the evaluation metric as the optimization objective, which is
positively correlated with the model performance.

Effectiveness of Reward Function of Different For-
mats. We ablate the effectiveness of reward function of dif-
ferent formats and results are shwon in Table 5. It can be ob-
served that our reward function can bring consistent perfor-
mance improvement. However, we can also see that the per-
formance will not be improved if the corresponding reward
is not optimized. Besides, we can find that multi-reward
optimization can achieves better results than single-reward
optimization. Reason may be that multi-reward optimiza-
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Figure 4. Visualization results of LaneATT, CLRNet, and Lane2Seq on Tusimple, CULane, and LLAMAS.

Table 6. Comparison between Lane2Seq and YOLOP.

Methods F1(%)↑ Precision(%)↑ Recall(%)↑
YOLOP (segmentation) 75.23 79.46 60.58

Lane2Seq (segmentation) 79.64 (+4.41) 85.26 (+5.8) 69.00 (+8.42)
YOLOP (anchor) 76.44 80.99 62.15

Lane2Seq (anchor) 79.27 (+2.83) 84.72 (+3.73) 67.28 (+5.13)
YOLOP (parameter) 69.43 74.38 58.46

Lane2Seq (parameter) 78.39 (+8.96) 83.68 (+9.30) 66.94 (+8.48)

tion enables model to learn correlations between different
detection formats and provides more supervised signals.

Comparison with other Multi-Task Methods. An al-
ternative method to unify different detection formats is us-
ing different detection heads in a model. YOLOP [42] is a
representative work for this method. We replace the heads
of YOLOP with anchor-based head, segmentation-based
head, and parameter-based head. The segmentation-based
loss, anchor-based loss, parameter-based loss for YOLOP
are same as that in SCNN [28], LaneATT [36], and Poly-
LaneNet [37]. From Table 6, we can observe that Lane2Seq
surpasses YOLOP for all detection formats. It should be
noted that YOLOP contains task-specific modules, such as
detection head and loss function, but Lane2Seq does not.
Results manifest the sequence generation combining with
MFRL is a more simple and effective way to unify lane de-
tection.

Ablation Study on the Scale Factor of Different Ob-
jective Functions. For the limitation of the space, we take
the segmentation format as an example to present the influ-
ence of the scale factor of different objective functions in
MFRL. Results of other two formats can be found in the
supplementary materials. As shown in Table 7, assigning
the same factor to different objective functions causes insu-
perior performance, indicating different detection formats
have different contributions. We set λ4, λ5, and λ6 to 0.2,
1, and 1.5 according to the model performance.

5. Conclusion
This paper presents a novel sequence generation-based

lane detection framework, i.e., Lane2Seq, to unify lane de-

Table 7. Ablation study on different scale factors.

λ4 λ5 λ6 F1(%)↑

1 1 1 73.23

0.7 1 1 74.96
0.4 1 1 76.27
0.2 1 1 77.35
0.1 1 1 77.02

0.2 1.1 1 77.03
0.2 1.2 1 76.75
0.2 0.9 1 77.09
0.2 0.8 1 77.00

0.2 1 0.9 76.87
0.2 1 1.2 77.37
0.2 1 1.4 79.46
0.2 1 1.5 79.64
0.2 1 1.6 79.39

tection, which casts lane detection as a sequence genera-
tion task. Lane2Seq gets rid of complicated task-specific
modules and adopts a simple transformer-based encoder-
decoder architecture. To incorporate the task-specific
knowledge, we employ a multi-format model tuning based
on reinforcement learning (MFRL). Extensive experiments
show Lane2Seq is effective and achieves competitive results
compared to the state-of-the-art methods.

Limitation. One major limitation of Lane2Seq is that
sequence generation model is expensive for long sequence
(mainly for inference). The inference speed is low when
there are more than 5 lanes in an image despite its detec-
tion strength in multi-lane scenario. Therefore, future work
is required to make it faster for real-time lane detection ap-
plications. Another limitation is that MFRL can only be
applied to sequence generation-based model currently. Our
ongoing work is applying MFRL to other vision models.
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