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Figure 1. Multi-Instance Generation (MIG) with our MIGC. MIGC enables precise position control while ensuring the correctness
of various attributes like color, shape, material, texture, and style in Multi-Instance Generation tasks. It can also control the number
of instances and improve interaction between instances. We label the instance with a corresponding color box, while the black box
represents that the instance does not have a specified color.

Abstract

We present a Multi-Instance Generation (MIG) task, si-
multaneously generating multiple instances with diverse
controls in one image. Given a set of predefined coordi-
nates and their corresponding descriptions, the task is to
ensure that generated instances are accurately at the desig-
nated locations and that all instances’ attributes adhere to
their corresponding description. This broadens the scope
of current research on Single-instance generation, elevat-
ing it to a more versatile and practical dimension. Inspired
by the idea of divide and conquer, we introduce an innova-
tive approach named Multi-Instance Generation Controller
(MIGC) to address the challenges of the MIG task. Ini-
tially, we break down the MIG task into several subtasks,
each involving the shading of a single instance. To ensure
precise shading for each instance, we introduce an instance
enhancement attention mechanism. Lastly, we aggregate all
the shaded instances to provide the necessary information
for accurately generating multiple instances in stable dif-

†Yi Yang is the corresponding author.

fusion (SD). To evaluate how well generation models per-
form on the MIG task, we provide a COCO-MIG bench-
mark along with an evaluation pipeline. Extensive experi-
ments were conducted on the proposed COCO-MIG bench-
mark, as well as on various commonly used benchmarks.
The evaluation results illustrate the exceptional control ca-
pabilities of our model in terms of quantity, position, at-
tribute, and interaction. Code and demos will be released
at https://migcproject.github.io/.

1. Introduction

Stable diffusion [40] has exhibited extraordinary capabili-
ties in wild scenarios, including photography, painting, and
others [11, 28, 37, 54, 57, 58]. The current research mainly
focuses on Single-Instance Generation, where the generated
content is only required to align with the single description,
including image editing, personalized image generation, 3D
generation [8, 12, 19–21, 23, 28, 41, 45, 46, 51], etc. How-
ever, more practical cases where multiple instances are si-
multaneously generated in one image with diverse controls

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Overview of our MIGC. Stable diffusion’s UNet inputs text description and image features into the Cross-Attention layer to
obtain the residual feature and then adds it to the image features to determine generated content, which is like a shading process (i.e.,
coloring with parallel pencil lines or a block of color). In this view, MIG can be considered multi-instance shading on image features, and
MIGC comprises three steps: (a) Divide MIG into single-instance shading subtasks. (b) Conquer single-instance shading with Enhancement
Attention. (c) Combine shading results through Layout Attention and Shading Aggregation Controller.

have been rarely explored. This paper delves into a more
general task, i.e., Multi-Instance Generation (MIG), incor-
porating all factors such as quantity, position, attribute, and
interaction control into one-time generation.

Challenges in MIG. MIG not only requires the instance
to comply with the user-given description and layout but
also ensures global alignment among all instances. In-
corporating this information directly into the stable diffu-
sion [40] often leads to failure. On the one hand, the cur-
rent text encoder, like CLIP [38], struggles to differenti-
ate each singular attribute from prompts containing multi-
ple attributes [14]. On the other hand, Cross-Attention [47]
layers in stable diffusion lack the ability to control posi-
tion [6, 26, 32], resulting in difficulties when generating
multiple instances within a specified region.

Motivated by the divide and conquer strategy, we pro-
pose the Multi-Instance Generation Controller (MIGC) ap-
proach. This approach aims to decompose MIG into mul-
tiple subtasks and then combines the results of those sub-
tasks. Although the direct application of stable diffusion
in MIG is still a challenge, the outstanding capacity of sta-
ble diffusion in Single-Instance Generation could facilitate
this task. Illustrated in Fig. 2, MIGC comprises three steps:
1) Divide: MIGC decomposes MIG into multiple instance-
shading subtasks only in the Cross-Attention layers of SD
to speed up the resolution of each subtask and make the gen-
erated images more harmonious. 2) Conquer: MIGC em-
ploys an Enhancement Attention Layer to enhance the shad-
ing results obtained through the frozen Cross-Attention, en-

suring successful shading for each instance. 3) Combine:
MIGC obtains the shading template through a Layout At-
tention layer and then inputs it, together with the shading
background and shading instances, into a Shading Aggre-
gation Controller to obtain the final shading result.

Benchmark for MIG. To evaluate how well generation
models perform on the MIG task, we propose a COCO-
MIG benchmark based on the COCO dataset [27], and this
benchmark requires generation models to achieve strong
control on position, attribute, and quantity simultaneously.

We conducted comprehensive experiments on the pro-
posed COCO-MIG and the widely recognized COCO [27]
and DrawBench [43] benchmarks. When applied to
the COCO-MIG benchmark, our method substantially en-
hanced the Instance Success Rate, increasing it from
32.39% to 58.43%. Transitioning to the COCO benchmark,
our approach exhibited noteworthy improvements in Aver-
age Precision (AP), elevating it from 40.68/68.26/42.85 to
54.69/84.17/61.71. Similarly, on DrawBench, our method
demonstrated advancements across position, attribute, and
count, particularly elevating the attribute success rate from
48.20% to 97.50%. Moreover, MIGC maintains an infer-
ence speed close to the original stable diffusion.

Our contributions are summarized as follows:
1) To advance the development of vision generation, we

present the MIG task to address prevailing challenges in
both academic and industrial domains. Meanwhile, we
propose the COCO-MIG benchmark to evaluate the in-
herent MIG capabilities of generative models.
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Figure 3. Three main modules in MIGC. (a) Architecture of Enhancement Attention Layer. (b) Architecture of Layout Attention Layer.
(c) Architecture of Shading Aggregation Controller.

2) Inspired by the principle of divide and conquer, we intro-
duce a novel MIGC approach that enhances pre-trained
stable diffusion with improved MIG capabilities.

3) We conducted extensive experiments on three bench-
marks, indicating that our MIGC significantly surpassed
the previous SOTA method while ensuring the inference
speed was close to the original stable diffusion.

2. Related work
2.1. Text-to-Image Generation

Text-to-image (T2I) Generation aims to generate high-
quality images based on text descriptions. Conditional
GANs [39, 50, 56] were initially used for T2I Generation,
while diffusion models [2, 7, 13, 17, 30, 31, 34, 40, 43,
59, 60, 62] and autoregressive models [4, 10, 55] gradually
replaced GANs as the foundational generator due to their
more stable training and higher image quality.

2.2. Layout-to-Image Generation

As text cannot precisely control the position of generated in-
stances. Some Layout-to-Image methods [6, 32, 34, 49, 61]
extend the pre-trained T2I model [40] to integrate layout
information into the generation and achieve control of in-
stances’ position. However, they struggle to isolate the at-
tributes of multiple instances, thus generating images with
mixed attributes. This paper proposes a novel MIGC ap-
proach to achieve precise position-and-attribute control.

3. Method
3.1. Preliminaries

Stable diffusion [40] is one of the most popular T2I mod-
els, and it uses the CLIP [38] text encoder to project texts

into sequence embedding and integrate textual conditions
into the generation process via Cross-Attention [47] layers.
Attention layers. Attention mechanisms [47, 53] play key
roles in the interaction of multi-modal features. Omitting
the reshape operation, our attention layers are expressed as:

R = Softmax(
QKT

√
d

)V,R ∈ R(H,W,C) (1)

where R represents the output residual, and Q,K,V sep-
arately represents the Query, Key, and Value in attention
layers, which are projected by linear layers.

3.2. Overview

Problem Definition. In the Multi-Instance Generation
(MIG), users will give generation models the global prompt
P , instance layout bounding boxes B = {b1, ...,bN},
where bi = [xi

1, y
i
1, x

i
2, y

i
2], and corresponding descriptions

D = {d1, ...,dN}. According to user-provided inputs, the
model needs to generate an image I, in which the instance
within the box bi should adhere to the instance description
di, and global alignment is ensured in all instances.
Difficulties in MIG. When dealing with Multi-Instance
prompts, stable diffusion struggles with attribute leakage,
i.e., 1) Textual Leakage. Due to the causal attention masks
used in the CLIP encoder, the latter instance tokens may
exhibit semantic confusion [14]. 2) Spatial Leakage. The
Cross-Attention lacks precise position control [6], and in-
stances will affect the generation of each others’ region.
Motivation. Divide and conquer is an ancient but wise idea.
It first divides a complex task into several simpler subtasks,
then conquers these subtasks respectively, and finally ob-
tains the solution to the original task by combining the solu-
tions of the subtasks. This idea is highly applicable to MIG.
For example, MIG is a complex task for most T2I models,
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while Single-Instace Generation is a simpler subtask that
T2I models can solve well [8, 33, 41, 46, 52]. Based on
this idea, we proposed our MIGC, which extends the sta-
ble diffusion with stronger MIG ability. We will introduce
the technology details by telling “how to divide,” “how to
conquer,” and “how to combine.”

3.3. Divide MIG into Instance Shading Subtasks

Instance shading subtasks in Cross-Attention space.
Cross-Attention is the only way for text and image features
to interact in stable diffusion, and the output determines the
generated content, which looks like a shading operation on
image features. In this view, the MIG task can be defined
as performing correct Multi-Instance shading on image fea-
tures, and subtaski can be defined as finding a single in-
stance shading result Ri to satisfy the following:

Ri = argmin
Ri

(
∥∥Ri −Rcorrect

∥∥
2
· Mi), (2)

where Rcorrect represents an objectively existing correct
feature, and Mi is an instance mask generated according
to the box bi, with the values inside the box region are set
to 1, and the rest of the positions are set to 0. That is to
say, each shading instance should have the correct textual
semantic in its corresponding area.
Two benefits of division in the Cross-Attention space.
i.e., 1) Conquer more efficiently: For N-instance genera-
tion, MIGC conquers N subtasks solely on Cross-Attention
layers instead of the entire Unet network, which will be
more efficient; 2) Combine more harmoniously: Combin-
ing subtasks in the middle layer enhances the overall cohe-
siveness of the generated image compared to combining at
the final output of the network.

3.4. Conquer Instance Shading

Shading stage 1: shading results of Cross-Attention. The
pre-trained Cross-Attention will notice regions with high at-
tention weight and perform shading according to the tex-
tual semantics [9, 48]. As shown in Fig. 2, MIGC uses the
masked Cross-Attention output as the first shading results:

Ri
f = Softmax(

QKiT

√
d

)Vi · Mi, (3)

where Ki and Vi are obtained from text embedding of di,
and Q is obtained from the image feature map.
Two issues of Cross-Attention shading results. 1) In-
stance Merge. According to Eq. (3), for two instances with
the same description, they will get the same K and V in the
Cross-Attention layer. If their boxes are close or even over-
lap, the network will easily merge the two instances; 2) In-
stance Missing. The initial edit method [32] shows that the
initial noise of SD largely determines the layout of the gen-
erated image, i.e., specific regions prefer to generate spe-
cific instances or nothing. If the initial noise does not tend

to generate an instance according to description di in box
bi, the Ri

f will be weak, leading to the instance missing.
Grounded phrase token for solving instance merge. To
identify instances with the same description but different
boxes, MIGC extends the text tokens of each instance to
a combination of text and position tokens. As shown in
Fig. 3(a), MIGC first projects the bounding box informa-
tion to the Fourier embedding, then uses a MLP layer to get
position tokens. MIGC concatenates the text tokens with
position tokens to obtain the grounded phrase tokens:

Gi = [CLIP(di),MLP(Fourier(bi))], (4)

where [·] represents the concatenation.
Shading stage 2: Enhancement Attention for solving in-
stance missing. Illustrated in Fig. 2, MIGC uses a trainable
Enhancement-Attention (EA) Layer to enhance the shading
result. Specifically, as shown in Fig. 3(a), after obtaining
the grounded phrase token, EA uses a new trainable Cross-
Attention layer to obtain an enhanced shading result and
adds it to the first shading result Ri

f :

Ri
s = Ri

f + softmax(
QeaK

i
ea

T

√
d

)Vi
ea · Mi, (5)

where Ki
ea and Vi

ea are obtained from the grounded phrase
token Gi, and Qea is obtained from the image feature map.
During the training period, since Mi ensures precise spatial
positioning, the instance shading result output by EA exclu-
sively impacts the correct region, so the EA can easily learn:
no matter what the image feature is, the EA should perform
enhanced shading to satisfy the textual semantic of di and
solve the issue of instance missing. Finally, MIGC treats
the enhanced result Ri

s as the solution of the subtaski.

3.5. Combine Shading Results

Global prompt residual as shading background. Obtain-
ing N-instance shading results as shading foreground, the
next step of MIGC is to get the shading background. Illus-
trated in Fig. 2(c), MIGC utilizes global prompt P to obtain
the shading background result Rbg in a manner similar to
Eq.(3), with the background mask Mbg , in which positions
containing the instance are assigned a value of 0, while all
other positions are marked as 1.
Layout Attention residuals as shading template. A cer-
tain gap exists between shading instances {R1

s, . . . ,R
N
s }

and the shading background Rbg , as their shading process
is independent. To bridge these shading results and mini-
mize the gap, MIGC needs to learn a shading template ac-
cording to the image feature maps’ information. As shown
in Fig. 2(c), a Layout Attention layer is used in MIGC to
achieve the above goal. Illustrated in Fig. 3(b), Layout
Attention performs similarly to the Self-Attention [42, 44]
while instance masks Minst = {Mbg,M1, . . . ,MN} are
used to construct attention masks:
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Method Instance Success Rate(%)↑ mIoU↑ Time(s)↓
Level L2 L3 L4 L5 L6 Avg L2 L3 L4 L5 L6 Avg

Stable Diffusion 6.87 5.01 3.45 3.27 2.21 3.61 18.92 17.44 15.85 15.17 14.42 15.80 9.18
TFLCG 20.47 12.71 8.36 6.72 4.36 8.62 29.34 25.06 20.82 18.81 17.86 20.92 19.92

BOX-Diffusion 24.61 19.22 14.20 11.92 9.31 13.96 32.64 29.88 25.39 23.81 21.19 25.14 44.17
Multi Diffusion 24.88 22.14 19.88 18.97 18.60 20.12 29.41 28.06 25.59 24.83 24.71 25.89 25.15

GLIGEN 42.30 35.55 32.66 28.18 30.84 32.39 37.58 32.34 29.95 26.60 27.70 32.25 22.00

Ours 67.70 59.61 58.09 56.16 56.88 58.43 59.39 52.73 51.45 49.52 49.89 51.48 15.61
Table 1. Quantitative results in our proposed COCO-MIG benchmark. According to the count of generated instances, COCO-MIG is
divided into five levels: L2, L3, L4, L5, and L6. Li means that the count of instances needed to generate in the image is i.

GLIGEN Ours (w/o anno.)Box-DiffusionAnnotation Multi-DiffusionTFLCGStable Diffusion Ours (w/ anno.)

Figure 4. Qualitative comparison of our MIGC and other baselines on COCO-MIG. We use a yellow bounding box labeled “Obj” to
indicate a position-wrongly generated instance and a blue bounding box labeled “Attr” to indicate an attribute-wrongly generated instance.
Experimental results show that MIGC can achieve better attribute (i.e., color) control while precisely controlling the positions of instances.

A(a,b),(c,d) =

{
1, if ∃m ∈ Minst,ma,b = mc,d = 1

−inf, otherwise
(6)

RLA = Softmax(
QLAKLA

T

√
d

⊙A)VLA, (7)

where ⊙ represents the Hadamard product, and A ∈
R((H,W ),(H,W )) represents attention masks, in which
A(a,b)(c,d) determines whether pixel (a, b) should attend to
pixel (c, d). The constructed attention mask A ensures one
pixel can only attend to other pixels in the same instance
region, which avoids attribute leakage between instances.
Shading Aggregation Controller for the final fusion.
To summarize, in all the above operations, MIGC can
get Rs = {R1

s, . . . ,R
N
s ,Rbg,RLA} ∈ R(N+2,C,H,W )

and M = {M1, . . . ,MN ,Mbg,MLA} ∈ R(N+2,1,H,W ),
where MLA is the all-1 guidance mask corresponding to
RLA. In order to dynamically aggregate shading results at
different timesteps of the generation process, we propose
the Shading Aggregation Controller (SAC). As shown in
Fig.3(c), SAC sequentially performs instance intra-attention
and inter-attention, and aggregation weights summing to 1
are assigned to shading results on each spacial pixel through
the softmax function, resulting in the final shading.

Rfinal = SAC(Rs,M),Rfinal ∈ RH,W,C (8)

3.6. Summary

Training Loss. We use the original denoising loss [18, 40]:

min
θ′

LLDM = Ez,ϵ∼N (0,I),t[||ϵ− fθ,θ′(zt, t,P,B,D)||22],
(9)

where θ represents the frozen parameters of the pre-trained
stable diffusion, and θ′ means the parameter of our MIGC.

Besides, to constrain generated instances within their re-
gions and prevent the generation of additional objects in the
background, we design an inhibition loss to avoid high at-
tention weight in the background region:

min
θ′

Lihbt =

i=N∑
i=1

∣∣Ai
c − DNR(Ai

c)
∣∣⊙Mbg, (10)

where Ai
c denotes the attention maps for the ith instance in

the frozen 16 × 16 Cross-Attention layer of the Unet de-
coder [32], and DNR(·) means the denoising (e.g., we use
the average operation) of the background region. The final
training loss is designed as follows:

min
θ′

L = LLDM + λLihbt, (11)

we set the loss weight λ as 0.1.

6822



Method Spatial Accuracy(%) Image Text Consistency Image Quality

Success Ratio↑ mIoU↑ AP↑ AP50↑ AP75↑ CLIP↑ Local CLIP↑ FID-6K↓
Real Image 83.75 85.49 65.97 79.11 71.22 24.22 19.74 -

Stable Diffusion 5.95 21.60 0.8 2.71 0.42 25.69 17.34 23.56
TFLCG 13.54 28.01 1.75 6.77 0.56 25.07 17.97 24.65

BOX-Diffusion 17.84 33.38 3.29 12.27 1.08 23.79 18.70 25.15
Multi Diffusion 23.86 38,82 6.72 18.65 3.63 22.10 19.13 33.20

Layout Diffusion 50.53 57.49 23.45 48.10 20.70 18.28 19.08 25.94
GLIGEN 70.52 71.61 40.68 68.26 42.85 24.61 19.69 26.80

Ours 80.29 77.38 54.69 84.17 61.71 24.66 20.25 24.52
Table 2. Quantitative results on the COCO-Position.

GLIGENLayout-DiffusionBox-DiffusionAnnotation Stable Diffusion Multi-Diffusion Ours (w/o anno.) Ours (w/ anno.)

Figure 5. Qualitative comparison of MIGC and other baselines on COCO-Position. Experimental results show that our method can reduce
the problem of instance missing, improve positional control, and alleviate the phenomenon of instance merging.

Implementation Details. We only deploy MIGC on the
mid-layers (i.e., 8 × 8) and the lowest-resolution decoder
layers (i.e., 16 × 16) of UNet, which greatly determine the
generated image’s layout and semantic information [6, 33].
In other Cross-Attention layers, we use the global prompt
for global shading. We use COCO 2014 [27] to train MIGC.
To get the instance descriptions and their bounding boxes,
we use stanza [36] to split the global prompt and detect the
instances with the Grounding-DINO[29] model. We train
our MIGC based on the pre-trained stable diffusion v1.4.
We use AdamW [24] optimizer with a constant learning rate
of 1e−4, and train the model for 300 epochs with batch size
320, which requires 15 hours on 40 V100 GPUs with 16GB
VRAM each. For inference, we use EulerDiscreteSched-
uler [22] with 50 sample steps and use our MIGC in the
first 25 steps. We select the CFG scale[17] as 7.5. For more
details, please refer to supplementary materials.

4. Experiments

4.1. Benchmarks

We evaluate models’ performance on three benchmarks:
COCO-MIG, COCO-Position [27], and DrawBench [43].
We use 8 seeds to generate images for each prompt.

In COCO-MIG, we pay attention to position, color, and
quantity. To construct it, we randomly sampled 800 COCO
images and assigned a color to each instance while keeping
the original layout. Furthermore, We reconstruct the global
prompts in the format of ’ a <attr1><obj1> and a <attr2>
<obj2> and a ... ’, and we divide this benchmark into five
levels based on the number of instances in the generated
image. Each method will generate 6400 images.
In COCO-Position, we sampled 800 images, using the cap-
tions as the global prompts, labels as instance descriptions,
and bounding boxes as layouts to generate 6400 images.
Drawbench is a challenging T2I benchmark. We use GPT4
[15, 35] to extract all instance descriptions and generate the
layouts for each prompt. We use a total of 64 prompts, of
which 25 are related to color, 19 are related to counting, and
20 are related to position, ultimately generating 512 images.

4.2. Evaluation Metrics

Position Evaluation. We use Grounding-DINO [29] to de-
tect each instance and calculate the maximum IoU between
the detection boxes and the Ground Truth box. If the above
IoU is higher than the threshold t=0.5, we mark it as Posi-
tion Correctly Generated.
Attribute Evaluation. For a Position Correctly Generated
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Method Spatial(%) ↑ Attribute(%) ↑ Count(%) ↑
R Human R Human R Human

SD1.4 - 13.30 - 57.52 - 23.70
AAE - 23.13 - 51.50 - 30.92

Struc-D - 13.12 - 56.5 - 30.26

Box-D 11.88 50.00 28.50 57.50 9.21 39.47
TFLCG 9.38 53.13 35.00 60.00 15.79 31.58
Multi-D 10.63 55.63 18.5 65.50 17.76 36.18
GLIGEN 61.25 78.80 51.00 48.20 44.08 55.90

Ours 69.38 93.13 79.00 97.50 67.76 67.50
Table 3. Evaluation on the drawbench.

instance, we use the Grounded-SAM model [25, 29] to seg-
ment it and calculate the percentage of the target color in
the HSV color space. If the above percentage exceeds the
threshold S=0.2, we denote it as Fully Correctly Generated.
Metrics on COCO-MIG. We primarily measure the In-
stance Success Rate and mIoU. The Instance Success Rate
calculates the probability that each instance is Fully Cor-
rectly Generated, and mIoU calculates the mean of the max-
imum IoU for all instances. Note that if the color attribute
is incorrect, we set the IoU value as 0.
Metrics on COCO-Position. We use Success Rate, mIoU
and Grounding-DINO AP score to measure the Spatial Ac-
curacy. The Success Rate represents whether all instances
in one image are Position Correctly Generated. Besides,
we use the Fréchet Inception Distance (FID) [16] to evalu-
ate Image Quality. To measure Image-Text Consistency, we
use CLIP score and Local CLIP score[1].
Metrics on DrawBench. We evaluate the Success Rate
for images related to the position and count by checking
whether all instances in each image are Position Correctly
Generated. For color-related images, we check whether all
instances are Fully Correctly Generated. In addition to au-
tomated evaluations, a manual evaluation is conducted.

4.3. Baselines

We compare our method with some SOTA layout-to-
image methods: Multi-Diffusion[3], Layout Diffusion[61],
GLIGEN[26], TFLCG[6], and Box-Diffusion[49]. Since
Layout Diffusion cannot control color, we only run it on
COCO-Position. In Drawbench, we also compare our
method with some SOTA T2I methods: stable diffusion
v1.4[40], AAE[5], Structure Diffusion[14]. All methods are
executed using the official code and default configuration.

4.4. Quantitative Results

COCO-MIG. Tab.1 shows results in COCO-MIG. MIGC
improves the Instance Success Rate from 32.39% to 58.43%
and mIoU from 32.25 to 51.48. Improvements are con-
sistently observed across all count-division levels, under-
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green dog 
on the 
street.
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Image

SAC Aggregation 
Weight
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Figure 6. SAC aggregation weight at T=50, 40, and 30. T=50
means the first step, as we generated each image with 50 steps.

scoring the robust control capabilities of MIGC on position,
quantity, and attributes. Furthermore, MIGC runs at almost
the same speed as the original stable diffusion, thanks to
MIGC dividing MIG in the Cross-Attention Space, acceler-
ating the conquering and combing of subtasks.
COCO-Position. Tab.2 shows quantitative results in
COCO-Position, indicating that MIGC brings significant
improvement in Spatial Accuracy: increased the Success
Rate from 70.52% to 80.29%, mIoU from 71.61 to 77.38,
and AP score from 40.68/68.26/42.85 to 54.69/84.17/61.71.
MIGC also achieves similar FID scores compared to the sta-
ble diffusion, highlighting that MIGC can enhance position
control capabilities without destroying image quality.
DrawBench. Tab.3 shows the results in drawbench. MIGC
achieves the best performance in both mechanical metrics
and human evaluation. Human evaluation doesn’t rely on
IoU to determine position correctness.

SAC EA LA R(%)↑ mIoU↑ AP↑ AP50↑ AP75↑ numb.

7.66 22.71 0.91 3.18 0.35 ①
✔ 12.10 29.55 1.89 7.64 0.49 ②
✔ ✔ 34.70 44.08 11.02 28.64 6.83 ③
✔ ✔ 80.16 76.63 53.03 84.05 58.67 ④

✔ ✔ 78.12 75.47 52.05 83.48 57.16 ⑤

✔ ✔ ✔ 80.29 77.38 54.69 84.17 61.71 ⑥

Table 4. Ablation on COCO-Position of Shading Aggregation
Controller(SAC), Enhancement Attention (EA), Layout Atten-
tion (LA).

4.5. Qualitative Results

Fig.4 shows qualitative results in COCO-MIG. MIGC
demonstrates effective position-and-attributes control over
all instances, even in complex scenarios. Fig.5 shows quali-
tative results in COCO-Position. MIGC achieves more pre-
cise control, ensuring all instances are generated strictly
within their designated boxes without instances missing or
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Config R(%)↑ mIoU↑ AP↑ AP50↑ AP75↑ FID↓
w/o loss 80.20 77.03 52.46 82.65 58.05 24.73

w/ loss 1.0 80.61 77.79 55.62 84.48 62.85 26.94
w/ loss 0.1 80.29 77.38 54.69 84.17 61.71 24.52

Table 5. Ablation on COCO-Position of Inhibition loss. We con-
ducted an ablation study on three configurations: w/o loss, loss
weight 1.0, and loss weight 0.1.

Figure 7. The results of ablation studies on COCO-MIG. (a) shows
the ablation results of three components, and (b) shows the abla-
tion results of inhibition loss.

merging. The qualitative results for DrawBench will be pre-
sented in the supplementary materials.

4.6. Analysis of Shading Aggregation Controller

We generate each image with 50 steps while using MIGC
in the first 25 steps. Fig.6 shows SAC aggregation weights
at T=50, 40, and 30 (i.e., T=50 means the first step). In
the early time steps, the SAC assigns more weight to the
EA layer’s shading instances in the foreground while giving
more weight to the LA layer’s shading template in the back-
ground. In the later time steps, the SAC gradually increases
the attention to the global context in the background.

4.7. Ablation Study

The ablation focuses on four components: (1) Enhancement
Attention Layer. (2) Layout Attention Layer. (3) Shading
Aggregation Controller. (4) The inhibition loss. Experi-
ments are performed on COCO-Position and COCO-MIG.
Shading Aggregation Controller. From Tab.4, we find that
using SAC improves the performance metrics(compare ⑤
with ⑥ and ① with ②), which is also reflected in the ablation
experiments on COCO-MIG in Fig.7(a).
Enhancement Attention Layer. In Tab.4, the EA Layer
significantly improves the Success Rate from 12.10% to
80.16%, mIoU from 29.55 to 76.63, and AP from 1.89 /
7.64 / 0.49 to 53.03 / 84.05 / 58.67 (Compare ② with ④).
We also observe significant improvement in Fig.7(a).
Layout Attention Layer. The results of ④ and ⑥ in Tab.4
show that LA Layer can improve the AP. We find that
SAC+LA, compared to SAC alone, has improved mIoU to

(a) w/o EA (b) w/o LA (c) w/o SAC (d) w/o Loss

(f) Full Mode

(e) w/o pot
MergedOverflowPoor-qualityMissing Missing

Figure 8. The qualitative results of ablation studies. Pot means the
Position Token used in EA Layer. We mark incorrectly generated
instances with red boxes and correctly with green boxes.

some extent in Fig.7(a).
Inhibition Loss. We also conducted the ablation study on
the Inhibition loss, with 0.1 and 1.0 loss weight. We show
the results in Tab.5 and Fig.7(b). Tab.5 indicates that inhibi-
tion loss can significantly improve the AP metric in COCO-
Position. We find that setting the loss function weight to
1.0 can further improve the AP metric, but it comes at the
cost of a slight decrease in image quality (i.e., FID). So
we finally choose loss weight as 0.1. Fig.7 (b) shows the
comparison between w/ loss 0.1 and w/o loss on COCO-
MIG, and we observe that the inhibition loss can improve
the mIoU, especially when generating images with large in-
stance quantity.
Qualitative Results. We show qualitative results in Fig.8.
The first column indicates that the EA Layer can effec-
tively alleviate instance missing. The second column il-
lustrates that the LA Layer can significantly improve gen-
erated image quality. The third column suggests that the
SAC also aids in better aggregation of shading instances.
The fourth column demonstrates that inhibition loss en-
hances the model’s control capabilities. The fifth column
demonstrates that position tokens effectively alleviate in-
stance merging.

5. Conclusion
In this work, we define a practical and challenging MIG task
and propose a MIGC approach to improve the stable diffu-
sion’s MIG ability. We divide the complex MIG task into
simpler Single-Instance shading subtasks, conquer each in-
stance shading with an Enhancement Attention layer, and
combine the final shading result through a Layout Attention
layer and Shading Aggregation Controller. Comprehensive
experiments are conducted on our proposed COCO-MIG
and popular COCO-Position and Drawbench benchmarks.
Experiment results verify the efficiency and effectiveness of
our MIGC. In the future, we will further explore the control
of interactive relationships between instances.
Acknowledgements. This work was supported by the Na-
tional Natural Science Foundation of China (62293554,
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