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Abstract

With recent video object segmentation (VOS) bench-
marks evolving to challenging scenarios, we revisit a sim-
ple but overlooked strategy: restricting the size of mem-
ory banks. This diverges from the prevalent practice of ex-
panding memory banks to accommodate extensive histor-
ical information. Our specially designed “memory deci-
phering” study offers a pivotal insight underpinning such a
strategy: expanding memory banks, while seemingly bene-
ficial, actually increases the difficulty for VOS modules to
decode relevant features due to the confusion from redun-
dant information. By restricting memory banks to a lim-
ited number of essential frames, we achieve a notable im-
provement in VOS accuracy. This process balances the im-
portance and freshness of frames to maintain an informa-
tive memory bank within a bounded capacity. Additionally,
restricted memory banks reduce the training-inference dis-
crepancy in memory lengths compared with continuous ex-
pansion. This fosters new opportunities in temporal reason-
ing and enables us to introduce the previously overlooked
“temporal positional embedding.” Finally, our insights are
embodied in “RMem” (“R” for restricted), a simple yet
effective VOS modification that excels at challenging VOS
scenarios and establishes new state of the art for object
state changes (on the VOST dataset) and long videos (on
the Long Videos dataset). Our code and demos are avail-
able at https://restricted-memory.github.io/.

1. Introduction
The rapid progress of video object segmentation (VOS) al-
gorithms has motivated the creation of more challenging
benchmarks, as exemplified by VOST [34] on more com-
plicated videos with significant object state changes and
the Long Videos dataset [25] featuring extremely long du-
ration. These benchmarks elevate the spatio-temporal mod-
eling and prompt us to reassess conventional VOS designs:
can learning-based VOS modules effectively decipher his-
torical information in such challenging scenarios?

To delve into this issue, it is essential to focus on memory
banks, which are central to storing past features and feed-
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Figure 1. In light of challenging object state changes [34, 41, 47],
we rethink the conventional approach of continuously accumulat-
ing the features into memory banks: despite capturing all the infor-
mation, it complicates the deciphering of relevant features. Con-
versely, restricting the memory significantly enhances VOS.

ing input to VOS modules, and are fundamental in memory-
based VOS framework [9, 11, 45]. Typically, the memory
banks are managed via the simple intuition of expansion,
continuously appending newly sampled frames as the video
progresses. While this approach is intended to encompass
all historical information, thereby enhancing VOS, we real-
ize its potential limitation: as videos become longer or more
complex, these expanding memory banks may overwhelm
the capability of VOS modules to discern reliable features.

We investigate this hypothesis by conducting a pilot
study, named “memory deciphering,” to quantify the decod-
ing capability of VOS modules. In our analysis, we con-
tinue to use object segmentation as the proxy to VOS, but
shift the prediction target to decoding the object mask at
the initial frame (frame 0) from the memory bank. This
choice is deliberate based on the principle of controlling
variables: (1) In the VOS framework, the information of
frame 0 is implicitly propagated to subsequent frames, en-
suring the presence of relevant information for decoding;
(2) This prediction target is consistent across frames and al-
lows for a fair comparison of decoding efficacy under vary-
ing memory sizes. Intuitively, the later frames have rigor-
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ously richer information than the earlier frames because of
a larger memory bank, and are thus expected to produce
better decoding results. However, our observation shows
the opposite: the effectiveness of VOS modules in decipher-
ing information diminishes with increasingly large memory
banks. Intriguingly, this degradation can be mitigated by
selecting a small number of relevant frames in the memory
bank, and we observe a significantly better concentration of
attention scores on relevant frames and regions. Therefore,
our systematic study reveals a pivotal insight: the expan-
sion of memory banks complicates the deciphering of VOS
modules primarily due to redundant information.

Inspired by such an insight, we validate its practical sig-
nificance through a simple approach: restricting memory
banks to a fixed number of frames. Our concise memory
bank facilitates better spatio-temporal modeling and adap-
tation to object transformation according to the analysis of
complex object state changes [34], as illustrated in Fig. 1.
The effectiveness of our method stems from a curated mem-
ory concisely focusing the attention of VOS modules on rel-
evant information. Based on this, we delve into the updating
process when new features arrive. Our strategy balances the
relevance and freshness of frame features, drawing inspira-
tion from the upper confidence bound (UCB) algorithm [3]
from multi-arm bandit problems.

In addition to enhancing the accuracy, restricted mem-
ory banks also reduce discrepancies in memory lengths
between training and inference when compared with con-
ventional methods. Typically, VOS modules are trained
on short clips with a few memory frames, so our restricted
memory better aligns with this setup, even when handling
significantly longer videos during inference. This alignment
opens up opportunities to revisit techniques relying on tem-
poral synchronization between training and inference. As a
compelling example, we introduce temporal positional em-
bedding to explicitly capture the ordering of memory fea-
tures – a critical aspect often overlooked by previous meth-
ods – leading to superior temporal reasoning.

In conclusion, we make the following contributions:
1. We introduce the novel memory deciphering analysis to

systematically reveal the drawbacks of expanding mem-
ory banks for VOS modules in decoding information.

2. Our revisit of restricting memory banks notably en-
hances VOS accuracy for challenging cases, cooperated
with a memory update strategy balancing the relevance
and freshness of frames.

3. Benefiting from smaller training-inference gaps, we in-
troduce the previously overlooked temporal positional
embedding to capture the order of memory frames.

Collectively, our insights lead to a simple yet strong VOS
method: “RMem.” Our extensive experiments show its
strengths and establish new state of the art on VOST [34]
for object state changes and the Long Videos dataset [25].

2. Related Work
VOS benchmarks. VOS has evolved through several
benchmarks. DAVIS [30, 31] is the first exhibiting diver-
sity and quality, surpassing early benchmarks [5, 23, 35].
YoutubeVOS [40] further scales up by collecting more
videos. Although they have enabled great progress in VOS,
their limited difficulty and video lengths have spurred more
challenging datasets. For example, the average duration in
LVOS [20] is more than 500 frames and the Long Videos
dataset [25] further extends it to over 1,000 frames, and
MOSE [15] increases the difficulty by selecting videos with
crowds and occlusions. To evaluate our insight on the most
demanding scenarios, we highlight object state changes
involving noticeable transformations in the existence, ap-
pearance, and shapes. Studies on state changes, e.g., VS-
COS [47], mostly utilize ego-centric datasets [13, 14, 18].
In this paper, we primarily select the recent VOST [34].
It combines multiple datasets and provides accurate an-
notations. Notably, VOST shows greater complexity and
longer duration than previous YoutubeVOS and DAVIS. We
mainly concentrate on the challenging benchmarks.
Memory-based VOS. Memory banks are fundamental for
VOS. Earlier approaches [4, 6, 26, 32, 37] treat VOS as on-
line learning and finetune networks with memorized fea-
tures. Some others [7, 21, 38, 42, 44, 46] approach VOS
as template matching but struggle with occluded or dy-
namically changing objects. Consequently, recent meth-
ods mostly focus on memory reading via either pixel-level
or object-level attention [36]. Object-level memory read-
ing [1, 2, 12], inspired by Mask2Former [8], excels at ef-
ficiency. However, it is less effective for delicate masks
or complex scenarios, e.g., VOST [34], where the objects
are frequently small or cluttered. In comparison, pixel-wise
memory reading [9, 11, 17, 25, 28, 33, 39, 43, 45] is more
adopted for its reliable segmentation and it typically asso-
ciates the current frame to memory features with attention.
Our work differs from previous studies by focusing more
into the general insights of drawbacks of expanding memory
banks and plug-and-play strategies to mitigate such issues,
instead of dedicated memory reading architectures.
Restricted memory banks in VOS. Previous studies ap-
proach restricting memory banks mostly from the efficiency
aspect [9, 24, 25]. A notable representative, XMem [9],
adopts a hierarchical architecture with customized modifi-
cations like similarity computation and memory potentia-
tion. In contrast to these prior efforts, our work stands out
by explicitly revealing and highlighting the accuracy bene-
fits of restricted memory banks through reducing redundant
information, rather than emphasizing efficiency. Moreover,
our RMem demonstrates such an insight with a simple plug-
and-play enhancement to the VOS framework, avoiding any
noticeable increase or reliance on special operators as in
XMem.
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Figure 2. Sketch of Pilot Study. Our memory deciphering analysis emulates decoding the mask on frame 0 from the memory bank features
to quantify the impact of growing memory on VOS modules, where the “desired results” in the figure is the ground truth. For a video
shown in Block (a), we visualize its decoding results in Block (b): the masks degrade both quantitatively (yellow curve) and qualitatively,
deviating from the desired results. However, selecting a set of concise frames mitigates this issue (blue curve in Block (b)). Therefore, we
conjecture the drawback of growing memory lies in confusing the attention of VOS modules. In Block (c), we use red lines to indicate
highly weighted associations in attention, with thickness denoting the attention score values. As illustrated, the query F0 focuses less on its
most relevant frame after the memory bank expands, with the attention score dropping from 0.247 to 0.056. (2nd row shows ground-truth
masks S̃t as context. Jmean is the average Jaccard between St

0 and S̃0 over all videos.)

3. Pilot Study: Memory Deciphering Analysis
This section devises our pilot experiments on how an ex-
panding memory bank influences the decoding capability
of VOS modules. Our design emulates the task of VOS but
makes several modifications guided by the principle of con-
trolling variables: aligned prediction targets and VOS mod-
ules across our pilot experiments, while only the frames in
the memory bank vary. Such a comparison enables a clean
analysis and reveals the core insight: VOS modules have
limited capability to decode a growing memory bank.

Notation and Formulation of VOS. We consider the ex-
isting VOS framework as a memory-based encoder-decoder
network: the encoder E(·) is a visual backbone encoding
the image It at frame t into the feature Ft; and then, the de-
coder D(·) converts Ft into the segmentation St via reading
the features stored in the memory M[F0:t−1], as below,

Ft = E(It), St = D(Ft,M[F0:t−1]). (1)
Here, M[F0:t−1] generally comes from saving the features
at a certain frequency [11, 24, 45], and the VOS decoder is
usually special transformers [36], e.g., LSTT in AOT [45].
The final objective of VOS is to minimize the difference
between the predicted mask St and ground truth S̃t.

Design of Our Memory Deciphering Analysis. Our pi-
lot study separates the variables of VOS module D(·) and
the prediction target S̃t to clearly analyze the influence of
the memory bank M[F0:t−1] under a controlling variable
setting. Therefore, we purposefully design our memory de-
ciphering analysis as decoding the mask of the initial frame
(frame 0) from the features stored in the memory bank.

More precisely, our pilot study is formulated as Eqn. 2,
S0
t = D′(F0,M[F1:t]), (2)

where D′(·) is an additional VOS decoder trained for the
objective in Eqn. 2. In practice, we let the original VOS
decoder D(·) to conduct regular VOS as Eqn. 1, then use
D′(·) only for deciphering the mask St

0 for frame 0, to avoid
influencing the original VOS. M[F1:t] contains the stored
feature between frame 1 to t. Please note that the feature
of frame 0 are excluded from the input M[F1:t] to avoid D′

from trivially relying on single-frame memory.

Before delving into the experiment, we clarify and em-
phasize our reasons for choosing the formulation as Eqn. 2.
(1) Presence of relevant information. The procedure in
Eqn. 1 resembles propagating the masks from historical
frames to the current frame t, indicating that M[F1:t] al-
ready contains the information about the mask at frame 0.
Therefore, decoding the mask on frame 0 from M[F1:t] is
not a random guess, but should have high-quality results.
(2) Identical prediction target. Our prediction target re-
mains identical for every frame and varying memory size.
(3) Cooperating with regular VOS. We utilize D′(·) as a
stand-alone VOS decoder for the analytical deciphering so
that the original VOS process remains unchanged and our
pilot study can utilize the same memory bank.

Implementation. We select the recent VOST [34] to high-
light challenging object state changes. Its long video dura-
tion and complex scenarios push the limits of VOS decoders
in deciphering memory. Then we adopt AOT [45] as VOS
encoder-decoder, a popular baseline and the top method on
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Figure 3. RMem Overview. (a) RMem revisits restricting memory banks to enhance VOS (Sec. 4.1), motivated by the insight from our
pilot study. (b) To maintain an informative memory bank, we balance both the relevance and freshness of frames when updating the latest
features (Sec. 4.2). (c) Benefiting from smaller memory size gaps between training and inference, we introduce previously overlooked
temporal positional embedding to encode the orders of frames explicitly (Sec. 4.3), which enhances spatio-temporal reasoning.

VOST. Emulating Eqn. 2, we initialize D′(·) from AOT’s
pretrained decoder D(·), and then supervise St

0 with a seg-
mentation loss between the ground truth S̃0. More imple-
mentation details are in the supplementary.

Hypothesis and Expectations. With an expanding mem-
ory bank, the information in M[F1:t] only becomes rigor-
ously richer at later frames while the prediction target is un-
changed. Therefore, we naturally expect the decoded mask
St
0 to illustrate stable or better accuracy at later frames, as-

suming that the VOS decoder D(·) is capable of extracting
the relevant features from an increasingly large M[F1:t].

Results and Analysis. Contrasting the expectation above,
we observe that masks St

0 degrade with a growing memory
bank, as shown in Fig. 2 (b). To verify that the growing
memory bank is indeed the cause of degradation, we em-
pirically bound the memory bank to 8 frames containing
the most relevant and latest information, intuitively: first 7
frames and the latest frame in M[F1:t]. According to the
blue curve in Fig. 2 (b), restricting the memory only to store
concise features effectively avoids degradation.

Inspired by addressing the degradation issue, we propose
that the redundant information is the main negative impact
of an expanding memory bank. Otherwise, the degrada-
tion should not disappear simply after we select a subset of
intuitively relevant frames. More specifically, this closely
relates to how VOS methods utilize attention mechanisms
to read from memory banks, where the redundant features
decrease the attention scores on relevant frames. As di-
rect evidence, we analyze the attention scores for decoding
St
0 in Fig. 2 (c) and observe that the attention scores be-

tween F0 and its most relevant memory feature (first frame
in M[F1:t]) have worse concentration on the correct object
and become scattered in a longer memory. Therefore, we
conclude that restricting the memory banks with a concise
set of relevant features potentially benefits the decoding of
VOS modules via more precise attention.

4. Method of RMem
Motivated by our insight from the pilot study, we propose
a straightforward approach highlighting a concise mem-
ory bank: restricting the memory with a constant frame
number (Sec. 4.1). We then explore the strategies to up-
date the memory bank to constantly digest incoming fea-
tures and remove obsolete frames (Sec. 4.2). Finally, the
restricted memory bank decrease the gaps between the
memory lengths across the training and inference stages.
This enables previous overlook techniques, and we pro-
pose a compelling example of temporal positional embed-
ding (Sec. 4.3). The overview of our method “RMem” is in
Fig. 3.

4.1. Restricting Memory Banks for VOS
Design. As indicated in our pilot study (Sec. 3), VOS
modules have limited capability to process large quantities
of features and benefit from a concise memory bank with
less redundant information. To verify this in actual VOS
systems, we develop the simple approach of restricting the
memory bank to a fixed frame number. In practice, a pre-
defined small constant number K is the maximum number
of frames a memory bank can store, as shown in Fig. 3.
The simplicity of our approach makes it a plug-and-play
enhancement for the existing VOS framework.

On an arbitrary frame t, we simplify the notation of
memory bank by denoting M[F0:t−1] as Mt, containing
Kt ≤ K frames. A natural issue of bounded memory Mt

is that Kt can reach the limit K at sufficiently large t, mak-
ing the digestion of newly arriving features non-trivial, es-
pecially when the quality of information is vital for VOS,
according to how we address degradation in the pilot study
(Sec. 3). Our baseline adopts an intuitively simple yet ef-
fective approach (we explore better strategies in Sec. 4.2):
selecting the most reliable frame (frame 0) and temporally
most relevant frames (closest frames). Formally, updating
the memory bank is as Eqn. 3 when Kt = K,

Mt+1 = Concat(Mt
0, M

t
2:Kt−1, Ft), (3)
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where Mt
2:Kt−1 and Ft are the closest frames, and Mt

1 is
removed to create an available slot, just like Fig. 3 (b).
Discussion. Our restricted memory is a revisit to previous
methods [24, 25]. However, we are distinct in emphasiz-
ing accuracy instead of efficiency. In addition, our RMem
also simplifies them [9, 24, 25] by treating each frame as a
constituent feature map instead of breaking it into smaller
regions or pixels [9]; thus, our strategy can directly apply
to a wider range of models. Although more sophisticated
strategies might further improve our accuracy, a simple ap-
proach is already effective (Sec. 5.3).
4.2. Memory Update
Updating the incoming frames to the memory bank provides
informative cues for VOS modules to decode. Although our
baseline strategy (Eqn. 3) has already cooperated with the
bounded memory bank, we investigate its deeper principles.
Challenges of Memory Update. As proved in our pilot
study (Sec. 3), the conciseness of information heavily in-
fluences the decoding efficacy of VOS modules. Therefore,
naive heuristics of random selection or keeping the latest
frames are unreliable (as in Sec. 5.4, memory update analy-
sis) since they fail to consider the relevance of frames (ran-
dom) or suffer from drifting of knowledge (latest). There-
fore, we propose the principles that consider both relevant
prototypical features and fresh incoming information.
Memory Update Inspired by Multi-arm Bandits. Our
memory update problem can be stated as how to select and
delete the most obsolete frame kd from K candidates to
make space for incoming features. Although not exactly
identical, this problem analogizes multi-arm bandit, which
also concerns optimizing the reward by selecting from a
fixed number of candidates. Its most inspiring insight for us
is balancing the exploitation and exploration with the upper
confidence bound (UCB) algorithm [3], whose maximiza-
tion objective Oj for an option j is as Eqn. 4,

Oj = Rj +
√
(2 log T )/tj , (4)

where Rj is option j’s average reward, T is the total
timestamps, and tj is the number of timestamps select-
ing j. When migrating to our VOS, we re-define Rj

as the relevance of a frame for reliable VOS and con-
sider

√
(2 log T )/tj as the freshness of memory, intuitively.

Then, the deleted frame kd is chosen according to the small-
est O1:K . In practice, we define the relevance term Rk using
the attention scores between frame Mt

k and current VOS
target Ft, to quantify the contribution of features from the
memory. Under the context of transformers, we assume de-
coding the memory bank is as Eqn. 5,

FD
t = Attn(Q = Ft,K = Mt,V = Mt), (5)

and assume that St is the scores (after softmax) between Ft

and Mt, computed inside the attention. Then, we treat the
sum of scores as the relevance of a frame in the memory:

Rk = sum(St
k), where St

k is the slice of attention scores
corresponding to Mt

k. Compared to XMem [9], which also
uses attention scores for selection, our design differs in se-
lecting at the frame level instead of the pixel level, which is
simpler and already effective (as in Sec. 5.4).

As for the second term in UCB,
√
(2 log T )/tj , we mod-

ify it by defining tj as the times a frame has stayed in the
memory bank and T as the sum of all the frames’ staying
time. This freshness term penalizes long-staying frames and
allows refreshing from the latest information. Finally, Ok

combines it with the relevance term Rk via a weight α bal-
ancing their numerical scales.

4.3. Memory with Temporal Awareness
Motivation. In addition to accommodating the decoding
capability of VOS modules, restricting the memory bank
systematically decreases the training-inference discrepan-
cies in memory lengths. Specifically, the VOS algorithms
are generally trained on short video clips with a few frames
in the memory, while the videos are much longer during in-
ference time. Therefore, the number of frames in the mem-
ory bank diverges more significantly without our restriction.

Such temporal alignment between training and inference
opens new opportunities for VOS. As a compelling exam-
ple, we introduce temporal positional embedding (PE) to
enhance spatio-temporal reasoning. Specifically, we notice
that previous approaches [9, 11, 45] overlook the order of
frames in the memory, i.e., the temporal relationship among
the frames are not explicitly considered, while spatial PE is
widely adopted. Considering the vital role of orders in tem-
poral modeling, which is commonly addressed with tempo-
ral PE in video-based tasks, we conjecture that the distinc-
tion of memory sizes between training and inference hin-
ders previous methods from employing temporal PE.

Design. The objective of temporal PE is to embed explicit
temporal awareness into memory and guide the attention in
Eqn. 5. Although restriction on the memory bank allevi-
ates the training-inference shift, the challenges of temporal
PE still exist: the optimal memory size K, though much
smaller than expanding, can still be larger than the training-
time memory size Ktrain; (2) the frames in the memory are
varying from 1 to K. To address them, our solution is in-
spired by how ViT [16] uses learnable PE and interpolation
to address different image resolutions. Similarly, we initial-
ize the PE according to Ktrain, denoted as P̃0:Ktrain−1, and the
query Ft having a dedicated PE Pq . Then, the temporal PE
for the memory bank Mt

0:Kt−1 is P t
0:Kt−1.

P t
0:Kt−1 =

{
P̃0:Kt−1, Kt ≤ Ktrain

Interp(P̃0:Ktrain−1,Kt), Kt > Ktrain
(6)

where “Interp(·)” interpolates P̃0:Ktrain−1 to Kt via nearest
neighbor. Finally, temporal PE enhances the original atten-
tion in Eqn. 5 by augmenting the key and values, identical
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to our conceptual illustration in Fig. 3 (c):

FD
t = Attn(Q = Ft + Pq,

K = Mt
0:Kt−1 + P t

0:Kt−1,

V = Mt
0:Kt−1).

(7)

The above design contains two critical choices. (1) We
use the relative index {k = 0, ...,Kt−2} inside the memory
instead of the frame index t to avoid the shift between train-
ing and inference. (2) Using learnable PE instead of Fourier
features fits better to a limited training length, Ktrain.

5. Experiments
5.1. Datasets and Evaluation Metrics
VOST. We primarily utilize the recent VOST [34] that
concentrates on challenging object state changes. It curates
over 700 videos covering diverse object state changes, e.g.,
changing appearance, occlusions, crowded objects, and fast
motions. In VOST, the evaluation metrics are J and Jtr,
resembling the average Jaccard over all the frames and the
harder last 25% frames corresponding to state changes.

Long Videos Dataset. We use the Long Videos
dataset [25] to evaluate long-term understanding, similar to
XMem [9]. It contains 3 validation videos with more than
1k frames. Both J and F are considered for evaluation.

LVOS. We also experiment with the recent LVOS [20] and
include the results in the supplementary materials.

Regular and Short Datasets. YoutubeVOS [40] and
DAVIS [30, 31] are two earlier VOS datasets with shorter
duration and easier scenarios compared to VOST. In this pa-
per, we use them as the pretraining datasets for VOST and
the Long Videos dataset following standard practice [9, 34],
and conduct analysis in addition to the challenging datasets.

5.2. Baseline and Implementation Details
Our proposed RMem is a simple and plug-and-play en-
hancement for the VOS framework. Without loss of gen-
erality, we select AOT [45] as the main baseline because of
its top performance on VOST (as in Table 1) and simplic-
ity. It adopts ResNet-50 [19] as its encoder and a specially
designed “long short term-transformer” (LSTT) as its de-
coder.For the memory bank, the original AOT digests the
latest frame and expands the memory continuously, while
RMem restricts its size to 8 frames. We also employ RMem
on other VOS methods besides AOT. More details on mod-
els and implementation in the supplementary.

5.3. State-of-the-art Comparison
VOST. In Table 1, we compare RMem with previous
methods on VOST. Our approach establishes new state-of-
the-art on this challenging benchmark with significant im-
provement. Notably, our simple strategy increases the VOS
quality for the whole video (J ) and maintains better robust-
ness for the state-changing frames (Jtr). This is especially

Jtr J
OSMN Match [42] 7.0 8.7
OSMN Tune [42] 17.6 23.0
CRW [22] 13.9 23.7
CFBI [44] 32.0 45.0
CFBI+ [46] 32.6 46.0
XMem [9] 33.8 44.1
HODOR Img [1] 13.9 24.2
HODOR Vid [1] 25.4 37.1
AOT [45] 36.4 48.7

AOTΨ 37.0 49.2
AOTΨ + RMem (Ours) 39.8 50.5

DeAOTΨ 37.6 50.1
DeAOTΨ + RMem (Ours) 40.4 51.8

Table 1. Comparison with previous methods on VOST [34]. Our
RMem shows advantages on both overall quality (J ) and address-
ing object state changes (Jtr). (Without mention, the results are
from VOST’s implementation. Ψ denotes our implementation.)

J&F J F
CFBI [44] 53.5 50.9 56.1
CFBI+ [46] 50.9 47.9 53.8
STM [29] 80.6 79.9 81.3
MiVOS [10] 81.1 80.2 82.0
AFB-URR [25] 83.7 82.9 84.5
STCN [11] 87.3 85.4 89.2
XMem [9] 89.8 88.0 91.6
AOT [45] 84.3 83.2 85.4

AOTΨ 86.7 85.5 87.9
AOTΨ + RMem (Ours) 90.3 88.5 92.1

DeAOTΨ 89.4 87.4 91.4
DeAOTΨ + RMem (Ours) 91.5 89.8 93.3

Table 2. Comparison with previous methods on Long Videos
dataset [25]. For both baselines of AOT and DeAOT, our RMem
shows significant improvement. (Without mention, the results are
from XMem [9], Ψ denotes our implementation.)

clear when compared to AOT [45], which is both the previ-
ous top-performing method and our baseline: the improve-
ment is over ∼3% with our plug-and-play modifications.

Long Videos Dataset. As our RMem limits memory ca-
pacity, a natural suspicion is that our memory bank per-
forms worse in storing information and struggles with long-
term modeling. However, our comparison in Table 2 shows
the opposite. On the Long Videos dataset, our RMem
not only improves upon the baseline AOT and DeAOT
model but also performs comparably with the state-of-the-
art XMem [9] model, which utilizes specially designed hi-
erarchical memory banks and memory manipulation opera-
tors. Therefore, this further supports our insight on keeping
a concise memory bank to accommodate the limited capa-
bility of VOS modules to address expanding memory banks.

5.4. Ablation Studies
Effect of RMem Components. We analyze each RMem
component with the baseline of AOT and DeAOT, as in Ta-
ble 3. (1) Restricting memory banks. The most important
insight from our pilot study (Sec. 3) is to maintain a concise
memory bank with relevant information, which motivates
our revisit of restricting memory banks (Sec. 4.1). Accord-
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Index RM TPE MU AOT DeAOT
Jtr J Jtr J

1 Baseline 37.0 49.2 37.6 50.9

2 ✓ 38.6 50.2 38.8 51.0
3 ✓ ✓ 39.7 50.3 40.0 51.7
4 ✓ ✓ 39.4 50.3 39.0 51.4
5 ✓ ✓ ✓ 39.8 50.5 40.4 51.8

Table 3. Ablation studies of RMem components on VOST. Start-
ing from the AOT and DeAOT baseline, all of the components im-
prove the performance, especially the harder object state-changing
frames (Jtr). RM: restricting memory banks. TPE: temporal po-
sitional embedding. MU: memory update with UCB algorithm.

Method Variants Jtr J

Remove

0-th 35.9 48.9
1-st 38.6 50.2
Middle 38.3 50.2
Latest 35.7 48.5
Random 38.0 50.0

UCB Relev 39.1 50.1
Relev + Fresh 39.4 50.3

Table 4. Ablation study of different memory updating strategies
on VOST. We analyze deleting a frame in the memory based on
heuristics (“Remove”) or guided by the relevance and freshness of
the UCB algorithm (“UCB”). Our final memory updating strategy
using both relevance and freshness achieves the best performance.

ing to Table 3 (row 1 and 2), a bounded memory bank leads
to significant enhancement in the long and complex VOST
videos. (2) Temporal positional embedding. In Table 3,
we illustrate that adding positional embedding (Sec. 4.3)
greatly benefits the spatio-temporal modeling, especially
the harder Jtr for state changes. (3) Memory update. We
refresh the memory banks by balancing the relevance and
freshness of frames (Sec. 4.2), inspired by the UCB algo-
rithm [3]. In row 4 and row 5 of Table 3, such a strategy
effectively boosts the overall performance.

Analysis on Frame Numbers of Memory Banks. We
verify a direct implication of our insight: an expanding
memory bank elevates the difficulty of VOS modules to de-
code information. Specifically, we observe the VOS accu-
racy under various limits of memory banks. To avoid the
influence of hyper-parameter tuning, we utilize the baseline
memory update strategy in Sec. 4.1. As in Fig. 4, the per-
formance first improves from richer information. Then both
J and Jtr decrease when the length of memory exceeds the
capability of learned AOT modules, until becoming similar
to unrestricted memory. Consequently, these results directly
support our insight of restricting memory banks.

Memory Update Analysis. Maintaining an informative
memory bank is critical for VOS accuracy, and we propose
a UCB-inspired algorithm in Sec. 4.2. Table 4 analyzes the
key intuition and design choices with AOT. (1) The initial
frame is critical in keeping the provided ground-truth infor-
mation: removing the 0-th frame leads to an accuracy drop,
and is more profound when scenarios are complex (VOST).
(2) Freshness of information is critical, as in the worse ac-
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Figure 4. Impact of memory bank size on VOS, tested on VOST.
With more frames in the restricted memory, the accuracy first in-
creases and then decreases until it approximates unrestricted mem-
ory. This supports the limited deciphering capability of VOS mod-
ules and our insight into restricting memory banks.

Method Jtr J
AOT 37.0 49.2
AOT + RM 38.6 50.2

AOT + SinCos PE 37.2 48.3
AOT + Learnable PE 36.7 49.4

AOT + RM + SinCos PE 37.9 48.9
AOT + RM + Learnable PE 39.7 50.3

Table 5. Comparison of temporal PE strategies on VOST. Based
on restricted memory (“RM”), our learnable temporal PE (“Learn-
able”) is better than using high-frequency Fourier features (“Sin-
Cos”). Notably, restricting memory is essential for PE.

curacy of removing the latest frame. (3) Randomly remov-
ing frames performs surprisingly well but is still worse than
our baseline (removing 1-st frame, in Sec. 4.1). (4) Using
attention scores to reflect the relevance better removes re-
dundant features (“Relev”), and it is further enhanced with
the freshness term, where freshness is especially effective
to avoid long-staying frames for the Long Video dataset.
Finally, the best strategy is our UCB-inspired strategy com-
bining relevance and freshness.

Temporal Positional Embedding Strategies. We intro-
duce using learnable temporal PE to address the varied
frames in the memory banks of VOS in Sec. 4.3. In Ta-
ble 5, we analyze another PE strategy of encoding the in-
dex into high-frequency features with SinCos functions and
find it performs worse. This is because SinCos is commonly
used in scenarios of a large number or continuous space of
coordinates (e.g., NeRF [27]), while learnable embeddings
can better handle a small number of slots (e.g., ViT [16]),
as in the limited memory length during the VOS training.
Furthermore, we highlight that temporal PE requires re-
stricted memory to function well because of better training-
inference temporal alignment in memory lengths. This sup-
ports our intuition in Sec. 4.3 and suggests the emerging
opportunities from restricting memory banks.

Analysis on Regular Short Video Benchmarks. We
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(a)	Cut	Tomato (b)	Tear	Aluminum	Foil
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Figure 5. (Best viewed zoom-in with color.) Qualitative VOS results for object state changes on VOST [34]. We provide two examples
showing the challenges of object state changes, including slicing, occlusions, distraction from similar objects (other tomatoes), and shape
changes. For both scenarios, using RMem shows advantages in robustly maintaining the masks of the target objects, as highlighted. (White
pixels are annotated by VOST denoting “ignored” regions for evaluation, which are hard and ambiguous even for human annotators.)

Method J&F Jtr J Max Mem ↓ FPS

AOT 85.2 82.5 87.9 4.46G 13.67
AOT + RMem (Ours) 85.2 82.4 88.0 2.34G 15.57

DeAOT 85.2 82.3 88.1 2.24G 25.11
DeAOT + RMem (Ours) 85.3 82.4 88.2 1.53G 27.42

Table 6. RMem maintains the accuracy on DAVIS2017 while be-
ing more efficient, indicating that RMem can be generally applied,
not limited to challenging scenarios. This also aligns with the prior
works and suggests that not having demanding datasets was poten-
tially why the accuracy benefits of memory restriction were not
clearly revealed previously.

highlight the improvement on long and complex VOS
datasets, but we also supplement our analysis on the reg-
ular and short video datasets DAVIS2017. As in Table 6,
our RMem has relatively the same performance while be-
ing an effective measure to improve efficiency. Compared
to our improvement on VOST and the Long Video dataset,
we conjecture that the learned VOS modules (AOT and
DeAOT) are already capable of handling shorter video du-
ration and less complicated scenarios, even without our
concise memory banks. Additionally, this potentially ex-
plains that previous studies exploring restricting memory
banks [23, 25] have not explicitly discovered its benefits,
probably due to not having longer and more challenging
datasets like VOST.

5.5. Qualitative Results
We visualize on two videos from VOST [34] that demand
robust spatio-temporal reasoning. Video (a) is the kitchen
behavior of cutting a tomato into slices, and it illustrates
the challenges of splitting objects, occlusions from hands,
and visual distraction from other tomatoes. Without our
RMem, the baseline AOT model fails to maintain the masks
for the separated tomato slice, while using RMem correctly
remembers this slice at the later stage of the video (columns
3 and 4). Such regions are highlighted with the yellow ar-
rows. The other video (b) illustrates another difficulty of

object shape transformation and the splitting between the
box and aluminum. Although the baseline model without
RMem can correctly segment the box at the beginning of
splitting (column 2), it gradually loses track of the box and
can only concentrate on the dominant object. However, our
model enhanced with RMem robustly segments the small
regions of the box, indicating that its attention association
with relevant historical frames is still stable thanks to our
restricted memory. Therefore, we conclude that the quan-
titative results reveal the difficulties of object state changes
and support the effectiveness of our approach.

6. Conclusions
Limitations and Future Work. Our paper prioritizes the
analysis of memory banks and illustrates our insight with
a straightforward approach. Therefore, interesting future
work is to combine the intuition or techniques from more
sophisticated methods, such as XMem [9]. Furthermore,
our exploration mainly adapts memory banks to the capa-
bility of VOS modules, while how to effectively improve
the decoding ability of VOS modules for a huge memory
bank is the alternative direction and interesting future work.

Conclusion. This paper reveals the drawbacks of expand-
ing memory banks, a conventional design in VOS. Our in-
sight stems from a novel “memory deciphering” analysis,
which suggests that the redundant information in grow-
ing memory banks confuses the attention of VOS modules
and elevates the difficulty of feature decoding. Then, we
propose the simple enhancement for VOS named RMem,
whose center is restricting the size of memory banks, ac-
companied by UCB-inspired memory update strategies and
temporal positional embedding to enhance spatio-temporal
reasoning. Extensive evaluation of the recent challenging
datasets, including VOST and the Long Videos dataset, sup-
ports our insight and effectiveness of RMem.
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