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Abstract

Predicting the future motion of surrounding agents is essen-

tial for autonomous vehicles (AVs) to operate safely in dy-

namic, human-robot-mixed environments. Context informa-

tion, such as road maps and surrounding agents’ states, pro-

vides crucial geometric and semantic information for mo-

tion behavior prediction. To this end, recent works explore

two-stage prediction frameworks where coarse trajectories

are first proposed, and then used to select critical context

information for trajectory refinement. However, they either

incur a large amount of computation or bring limited im-

provement, if not both. In this paper, we introduce a novel

scenario-adaptive refinement strategy, named SmartRefine,

to refine prediction with minimal additional computation.

Specifically, SmartRefine can comprehensively adapt refine-

ment configurations based on each scenario’s properties,

and smartly chooses the number of refinement iterations by

introducing a quality score to measure the prediction qual-

ity and remaining refinement potential of each scenario.

SmartRefine is designed as a generic and flexible approach

that can be seamlessly integrated into most state-of-the-art

motion prediction models. Experiments on Argoverse (1 &

2) show that our method consistently improves the predic-

tion accuracy of multiple state-of-the-art prediction models.

Specifically, by adding SmartRefine to QCNet, we outper-

form all published ensemble-free works on the Argoverse 2

leaderboard (single agent track) at submission1. Compre-

hensive studies are also conducted to ablate design choices

and explore the mechanism behind multi-iteration refine-

ment. Codes are available at our webpage.

1. Introduction

Predicting the future motion of surrounding agents (e.g., ve-

hicle, cyclist, pedestrian) is crucial for autonomous driv-

ing frameworks [11, 22–24, 31] to safely and efficiently

∗ Equal contribution, � Corresponding author.
1 November 2023.

make decisions in a dynamic and human-robot-mixed envi-

ronment. Context information, such as high-definition maps

(HD maps) and surrounding agents’ states, provides crucial

geometric and semantic information for motion behavior, as

agents’ behaviors are highly dependent on the map topology

and impacted by interaction with surrounding agents. For

instance, vehicles usually move in drivable areas and follow

the direction of lanes, and agents’ interactive cues such as

yielding would inform other agent’s decision-making. As

a result, recent motion prediction models are shown to sig-

nificantly benefit from delicate context representation de-

signs [2, 9, 13, 30] and context encodings [16, 21, 26]. How-

ever, complicated context encodings usually come at a high

computational cost and high memory footprint. Since ve-

hicles are high-speed robots and minimal delay could re-

sult in catastrophic accidents, recent advanced state-of-the-

art methods could have low applicability due to limitations

in mobile computation capacity and the hard real-time re-

quirements of autonomous driving.

By contrast, human drivers can easily predict surrounding

agents’ future behaviors, even if they confront a daunt-

ing amount of context information. As implied by neu-

roscience, humans’ efficient reasoning capabilities benefit

from their selective attention mechanism [17, 19], which

identifies compact context information critical to the task for

efficient reasoning. Similarly, motion prediction models are

shown to be able to produce high-quality predictions with

only a few critical context elements provided, such as only

giving the ground-truth future reference lanes and conduct-

ing prediction in the relative coordinates [28, 29, 35]. There-

fore, if we can identify the critical context elements, and ag-

gregate more information from these critical inputs to further

refine the predictions, both the computational efficiency and

prediction performance can be significantly improved.

While multiple refinement strategies have been proposed, the

proper design of refinement is non-trivial. [36, 40] apply a

prediction backbone to generate trajectory proposals, which

are then used as anchor trajectories for refinement. While

accuracy improvement is observed, the refinement still em-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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ploys all context information without selection, which leads

to high computation costs. [5, 25] propose pooling and

grouping methods to select context features via fixed man-

ual rules and refine trajectory for fixed iterations. However,

the mechanism of refinement is still under-studied, and only

fixed refinement strategies are applied, where many itera-

tions of refinement usually exchange a large amount of com-

putation for limited performance improvement.

To this end, we therefore propose a scenario-adaptive refine-

ment strategy, SmartRefine, which improves prediction ac-

curacy with minimal additional computation for a wide va-

riety of prediction models. Our key insight is that, while

motion prediction models confront various driving scenarios,

the prediction quality and refinement potential in different

scenarios are not uniform: though some scenarios can ben-

efit from intense refinement, some scenarios can be insen-

sitive to refinement or even pushed away from ground truth

due to over-refinement. Further, different scenarios may re-

quire different refinement configurations (i.e. how to select

and encode context), while previous methods typically apply

fixed refinement configurations to all scenarios (as shown in

Table 1). To address these issues, the proposed SmartRefine

can adapt the anchor/context selection and context encod-

ing according to each scenario’s properties, and can select

the number of refinement iterations by introducing a quality

score to measure the prediction quality and remaining refine-

ment potential of each scenario. Thus, our method can allo-

cate computation resources to those scenarios that require re-

finement, and terminate the refinement of the other scenarios

to avoid worse prediction and wasted computation, achieving

a better trade-off between accuracy and efficiency.

It is worth noting that SmartRefine is not only lightweight,

but also designed as a general and flexible framework that

is decoupled from the primary prediction model backbone,

and only requires a generic interface to the model backbone

(predicted trajectories and trajectory features). Therefore,

SmartRefine can be easily integrated into most state-of-the-

art motion prediction models. This distinguishes our method

from previous refinement methods [5, 25, 36, 40] which are

either computationally heavy, or highly coupled with a par-

ticular backbone, if not both.

To summarize, the contributions of this work are threefold:

• We introduce SmartRefine, a scenario-adaptive refinement

method that considers comprehensive design choices and

configurations for refinement and adapts them to each sce-

nario, to effectively enhance prediction accuracy with lim-

ited additional computation.

• We propose a generic and flexible refinement framework,

which can be easily integrated into most state-of-the-art

motion prediction models to enhance performance. Codes

are released to facilitate further research.

• We conduct extensive experiments on Argoverse and Ar-

goverse 2 datasets (both the validation set and test set),

where we evaluate SmartRefine by applying it to multi-

Refine

Context Selection/Encoding Refinement Iteration

All
Fixed

Strategy

Adaptive

Strategy
Single Multiple

Scenario

Adaptive

TNT [38] %

GoalNet [37] %

GANet [32] %

ProphNet [33] %

DCMS [36] " % % % " % %

QCNet [40] " " % % " % %

R-Pred [5] " % " % " % %

MTR [25] " % " % % " %

SmartRefine (ours) " % % " % % "

Table 1. A comparison between the proposed SmartRefine frame-

work and previous methods in terms of 1) whether refinement is

conducted; 2) how the context selection and encoding is conducted;

3) how to determine the number of refinement iterations.

ple state-of-the-art motion prediction models. We show

that SmartRefine improves the accuracy of all considered

motion prediction models with little additional computa-

tion. Specifically, by adding SmartRefine to QCNet [40],

we outperform all published ensemble-free works on the

Argoverse 2 leaderboard (single agent track) at the time of

the paper submission.

2. Related Work

2.1. Goal­Conditioned Trajectory Prediction

Trajectory prediction typically takes the road map, agent his-

tory states, and semantic type as inputs and outputs future

agent states. To encode scene context (road map, surround

agents) around the target agents, early works [2, 6] rasterize

them into a bird-eye-view image and process it with con-

volutional neural networks. To encourage relationship rea-

soning and reduce computation, recent works adopt vector-

based encoding schemes, where each scene context is repre-

sented as a vector, and encoded with permutation-invariant

operators such as pooling [26], graph convolution [7], and

attention mechanism [8, 12, 33]. Inspired by human hi-

erarchical decision-making where the motion intention de-

termines the specific trajectory, goal-conditional prediction,

which first predicts or predefines goal candidates, and then

predicts trajectory conditioned on them, is shown to be ef-

fective and has been widely adopted in state-of-the-art meth-

ods. Multipath [2] predefines a set of anchor trajectories by

clustering and predicts offset for the trajectories. TNT [38]

predicts goal points that offset from a lane centerline. Goal-

Net [37] uses lane segments as trajectory anchors. we predict

the lane that a vehicle will pass in the future. FRM [18] pre-

dicts the occupancy of each waypoint on the lanes, and then

predicts the fine-grained trajectory. GANet [32] proposes a

goal area-based framework for predicting goal areas and fus-

ing crucial distant map features. MTR [25] pre-defines a set

of goal points as queries by clustering the trajectory data of

each agent type, and adopts attention layers to aggregate con-
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text information based on the queries. Prophnet [33] uses

trajectory proposals as learnable anchors to enable the at-

tention layers to encode goal-oriented scene contexts. How-

ever, while these methods exploit goal-conditioned predic-

tion, they only leverage goal-conditioned contexts once. In

this paper, we utilize trajectory anchors as goals in an iter-

ative manner, where the predicted trajectory at one iteration

can benefit the next iteration by specifying more precise an-

chors as goals to extract more relevant map information.

2.2. Refinement: Two­Stage Trajectory Prediction

Inspired by refinement networks [1, 20] in computer vision,

refinement strategies have been introduced to the trajectory

prediction community. Trajectory refinement typically takes

proposed trajectories in the first stage as inputs, and out-

puts the offset and probability for each proposed trajectory.

DCMS [36] takes the output of the first stage as anchor tra-

jectories and conducts refinement to predict the offset. QC-

Net [40] uses a small GRU to embed the proposed trajecto-

ries in the first stage and predict the offset of the trajectories

by fusing the same scene context. R-Pred [5] proposes tube-

query scene attention layers to refine based on local contexts,

and interaction attention layers to refine based on agents’ in-

teractions. MTR [25] uses the predicted trajectory as anchors

to retrieve contexts along the trajectory for refinement. The

refinement is conducted for multiple iterations. However,

existing methods typically employ a relatively large refine-

ment network or utilize fixed refinement strategies (e.g. re-

trieval range, context encodings, and refinement iterations),

which leads to sub-optimal performance in various scenar-

ios. By contrast, SmartRefine can comprehensively adapt

refinement configurations based on each scenario’s proper-

ties, and smartly choose the number of refinement iterations.

Besides, SmartRefine is designed as a lightweight and flex-

ible approach that can be seamlessly integrated into state-

of-the-art motion prediction. We will show through exper-

iments how our method can refine prediction with minimal

additional computation.

3. Method

SmartRefine is a scenario-adaptive refinement method to en-

hance the performance of motion prediction models with

limited additional computation by adaptively iterating be-

tween retrieving critical context information and predicting

more accurate trajectories. The overall structure is illustrated

in Fig. 1 and Algorithm 1. In Sec. 3.1, we introduce the for-

mulation of the problem. In Sec. 3.2, we elaborate on the

proposed methodologies. In Sec. 3.3, we introduce the train-

ing details of our framework.

3.1. Problem formulation

Given the observed states of the target agent sh =
[s−Th

, s−Th+1, . . . , s0] in the historic Th steps, we aim at

predicting its future states sf = [s1, s2, . . . , sTf
] of Tf steps

and associated probabilities p. Naturally, the target agent

will interact with the context c = (oh,m), including historic

states of surrounding agents oh, and the HD map m. For the

HD map, we adopt the vectorized representation [9, 13],

where each lane is defined as a sequence of points along its

centerline. Each point is represented by the coordinates and

semantic information. Thus typical motion prediction task

is formulated as (sf ,p) = f(sh, c), where f denotes the

prediction model.

In this work, the introduced refinement strategy will slightly

modifies problem formulation. As in Fig. 1, we first

have a backbone model fb generating initial trajectories s0f
and trajectory features h0

f , as typical prediction methods

(s0f ,h
0
f ,p) = fb(sh, c). The initial predicted trajectory s0f

is then used to select anchors a0 and retrieve critical con-

text elements c0, which are then passed along with the tra-

jectory features h0
f into the refinement model fr for tra-

jectory refinement. Note that the refinement can be multi-

iteration, thus refinement of the i-th iteration is formulated

as (δsif ,h
i
f ,p) = fr(h

i−1

f , si−1

f , ci−1). The generated off-

set δsif is added to the input trajectory si−1

f for refinement.

3.2. Scenario­Adaptive Refinement

3.2.1 Adaptive Anchor/Context Selection

Trajectory refinement necessitates informative anchor selec-

tion and context retrieval. After the backbone generates the

initial trajectories and trajectory features, SmartRefine first

selects an adaptive number of anchors along the trajectories,

and then retrieves contexts near the anchors with adaptive

radius (illustrated in the bottom left in Fig. 1).

Anchor Selection. To select anchors along the trajectory, an

intuitive option is to choose the last waypoint of the trajec-

tory as the anchor for long-term context retrieval, as in goal-

based predictions [32, 38]. However, relying exclusively on

the endpoint as an anchor often misses the intermediate evo-

lution and progression of the trajectory, resulting in devia-

tions and oscillations. On the other extreme, selecting all Tf

waypoints as anchors will lead to large but unnecessary com-

putations. To balance between context richness and compu-

tation efficiency, we adopt an adaptive approach, where the

trajectory is divided into N < Tf segments and each seg-

ment’s endpoint is selected as an anchor. Note that motion

prediction benchmarks typically consider varied prediction

horizon lengths. To depress the cumulative error in long-

horizon prediction, the number of segments N is designed to

adapt to the prediction horizon.

Context Retrieval. When retrieving context information c

around the anchors, previous methods usually employ a fixed

radius or rectangle around the anchor to extract local con-

texts (e.g. map and nearby agents) [5, 25]. Such fixed re-

trieval strategies, though straightforward, can be sub-optimal
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Figure 1. Overview of our framework. The top section concisely illustrates the full pipeline, while the lower section introduces details

of three core modules. We first pass HD map and agent information to a prediction model backbone, generating initial trajectories and

trajectory features. The initial predicted trajectory is then used to adaptively select anchors and retrieve critical context elements (bottom

left). The contexts retrieved by each anchor are transformed to the coordinate frame centered at the corresponding anchors (bottom middle).

The encoded contexts are then utilized to refine each trajectory segment by generating the offset of each trajectory segment (bottom right).

Our model will predict a quality score measuring the prediction quality, and adaptively decide the number of refinement iterations (upper

right). Our method is lightweight and can be seamlessly integrated with most existing motion prediction models.

especially when applied across diverse datasets and scenar-

ios which could require different retrieval ranges. To address

this issue, our idea is that, the retrieval range of one an-

chor should depend on 1) the refinement iteration i, because

only fine-grained context information is needed in later re-

finement iterations, where the trajectories are more accurate

compared to early iterations. 2) the target agent’s speed v

around the anchor, since large speed requires a far and long-

term vision of the environment context. Thus we introduce

an adaptive retrieval strategy, where each anchor’s retrieval

range R varies by the refinement iterations i and the agent’s

average velocity v around the anchor: Ri,v = F(i) · v. F(i)
can be any monotonically decreasing function of the refine-

ment iteration i, to reduce the retrieval range as the trajectory

becomes more precise. We instantiate it with an exponential

decay function F(i) = β( 1
2
)i−1, where β denotes a constant.

The retrieval range is also constrained within a permissible

range [Rmin, Rmax] to ensure computational stability and ef-

ficiency.

3.2.2 Anchor-Centric Context Encoding

With the retrieved context elements, most existing methods

directly use their embeddings generated by the prediction

backbone for further refinement [40]. However, these con-

text embeddings from the backbone are typically encoded in

the coordinate frame centered at the target agent’s current

position. While this agent-centric embedding emphasizes

the context details around the target agent, the refinement

process instead desires the context nuances along the future

trajectories. To address this issue, we propose an anchor-

centric context encoding approach, to better capture future

trajectory details. (illustrated in the bottom middle in Fig. 1)

This is achieved by transforming the context features into the

coordinate frame centered and aligned with the anchor, and

then encoding the features to generate anchor-centric con-

text embeddings for refinement. Note that as the positions

and orientations of anchors are dynamically changing across

different refinement iterations i, these anchor-centric context

features could also vary. This encoding process is applied to

every context element retrieved around the anchor a, gener-

ating a set of context embeddings za.
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3.2.3 Recurrent and Multi-Iteration Refinement

The anchor-centric context embeddings introduced in the

previous section are then fused with the trajectory embed-

dings to refine predictions. To this end, previous methods

usually fuse all embeddings once and refine the trajectory of

the whole future horizon, which suffers from long-term cu-

mulative error. To mitigate this issue, we adopt a recurrent

refinement strategy where we divide the trajectory into N

segments, and refine the trajectory N times, one trajectory

segment each time (illustrated in the bottom right in Fig. 1).

Note that here N equals the number of anchors, which means

each trajectory segment corresponds to one anchor. For each

trajectory segment, we refine it only using the context re-

trieved by the corresponding anchor to enhance local context

fusion. Besides, refining all N segments finishes one itera-

tion of refinement, and we will conduct multiple refinement

iterations.

Recurrent Refinement. Specifically, in each recurrent re-

finement step, we refine one trajectory segment, with a set

of scene context embeddings za around the segment’s cor-

responding anchor a, and the target agent’s future trajec-

tory embeddings hf . We adopt the cross attention mecha-

nism [27] to fuse them, where the trajectory embeddings are

used as queries to attend to the keys/values from the con-

text embeddings za. The fused trajectory embeddings will

be used to predict δs, the offset of waypoints in the trajec-

tory segment, to subtly adjust the original trajectory segment.

The updated trajectory embeddings will also be leveraged as

new queries to refine the next segment. After all N steps

within one iteration, the whole trajectory will be adjusted,

and the trajectory embeddings will also be updated with rich

context information. Note that we predict multiple possible

predictions, thus the trajectory embeddings will also be used

to predict the probability of each prediction.

Multi-Iteration Refinement. After one iteration terminates,

the updated trajectory and trajectory embeddings will be

used to start another refinement iteration. We first repeat the

adaptive anchor selection and context retrieval mentioned in

Sec. 3.2.1, and then conduct another N recurrent refinement

steps. Thus in the multi-iteration refinement, the trajectory

and trajectory embeddings used in one iteration can come

from either the backbone (for the first iteration) or the previ-

ous refinement iteration (for the later iterations). Note that in

the first refinement iteration, we employ a compressor net-

work to reduce the hidden dimension of the trajectory em-

bedding from the backbone for efficient refinement, which

we found brings little performance loss.

3.2.4 Adaptive Number of Refinement Iterations

As mentioned in the previous section, the refinement is

multi-iteration. As we get into later iterations, the predicted

trajectory becomes more accurate. Nonetheless, there’s a di-

Algorithm 1 Adaptive Inference with SmartRefine

Input: Backbone model fb, refinement model fr, quality

score decoder fd, agents history trajectories sh, scene

context c, and score threshold q̄, maximum refinement

iteration at inference I ′.

Output: Target agent’s future trajectories sf and corre-

sponding probabilities p.

1: s0f ,h
0
f ,p

0 = fb(s
0
f , c) % Backbone prediction

2: q0 = fd(h
0
f ) % Initial quality score

3: if q0 > q̄ then % No need for refinement

4: Return s0f ,p
0

5: for i = 1, 2, . . . , I ′ do % Multi-iteration refine

6: Adaptively select anchors and contexts

7: Adpatively encode contexts ci−1 (anchor-centric)

8: Multi-segment recurrent refinement:

δsif ,h
i
f ,p

i, qi = fr(s
i−1

f ,hi−1

f , ci−1)

sif = si−1

f + δsif
9: if qi < qi−1 then % Terminate refinement

10: Return sif ,p
i

11: Return sif ,p
i % Reach max refinement iteration

minishing return as we utilize more refinement iterations. To

trade-off between performance gain and additional computa-

tion, we propose an adaptive refinement strategy where the

number of refinement iterations is dynamically adapted ac-

cording to the current prediction quality and remaining po-

tential refinement improvement. Specifically, we propose a

quality score to quantify current prediction quality.

Quality Score Design. At the training stage, since we have

access to the ground-truth trajectory and predicted trajectory

of all refinement iterations, an intuitive measure for the qual-

ity of the predicted trajectory in iteration i is dmax − di,

where dmax denotes the largest predicted error among all it-

erations. A small di means that the current prediction has al-

ready been improved from the largest prediction error dmax,

and thus of high quality. However, this design as the quality

score can be unstable as it lies in a big range and can vary a

lot in different scenarios. We then normalize dmax − di with

dmax − dmin, where dmin denotes the smallest predicted er-

ror among all iterations. Thus the final quality score lies in

between [0,1] and is designed as

qi =
dmax − di

dmax − dmin

(1)

To enable the model to predict the quality score, we first em-

ploy a GRU [4] to recurrently process the trajectory embed-

dings of all previous iterations, and then use an MLP to gen-

erate the quality score. Thus our model will generate three

types of output: the predicted trajectories, the probabilities

of the trajectories, and the quality score.
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Adaptive Refinement Iteration. The contents above intro-

duce how to design and generate the quality score at the train-

ing stage. At the inference stage, the initial trajectory fea-

tures from the backbone will be appended with the quality

score decoder to predict an initial quality score. Our model

will also predict the quality score at each refinement iter-

ation. Thus we propose a simple yet effective strategy to

dynamically decide whether another refinement iteration is

needed. As outlined in Algorithm 1, the adaptive strategy in-

cludes three major criteria: 1) an initial quality score thresh-

old is set, and we only conduct refinement if the initial pre-

dicted quality score is below the threshold, which means the

current prediction is not good enough and need refinement;

2) at any of the later refinement iterations, if the quality score

stops growing compared to previous iterations, we terminate

the refinement as this indicates that we are close to ideal per-

formance, and further refinement will only bring diminishing

returns or negative effects due to over-refinement; 3) a max-

imum refinement iteration is set, which is a hyper-parameter

to balance performance and efficiency.

3.3. Training Loss

The training of our model considers three loss terms, and

uses hyper-parameter α to balance them:

L = Lcls + Lreg + α · Lscore (2)

where Lcls denotes the cross-entropy classification loss for

predicting the probability of the multi-modal trajectories.

For the regression loss Lreg, as our model predicts a Laplace

distribution for each time step’s waypoint, we calculate the

negative log-likelihood of the ground-truth trajectory in the

predicted distribution. Note that among all predicted multi-

modal trajectories, only the modal closest to the ground truth

is considered for the regression loss. For the quality score

loss Lscore, in the training stage, we fix the refinement it-

eration as I and each iteration will output a quality score.

Thus for each iteration i, we calculate the ℓ1 loss between

the predicted quality score q̂i and labeled quality score qi
(see Sec 3.2.4), and average the loss over all iterations:

Lscore =
1

I + 1

I∑

i=0

∥q̂i − qi∥1 (3)

Similarly, the score loss also only considers the modal clos-

est to the ground truth.

4. Experiments

We first report the prediction accuracy and computation cost

on the validation set of the two datasets. As shown in Ta-

ble 2, SmartRefine can consistently improve the prediction

accuracy of all considered state-of-the-art methods with lim-

ited added parameters, Flops, and latency.

4.1. Experimental Settings

Dataset. We train and evaluate our method on two large-

scale motion forecasting datasets: Argoverse [3] and Argo-

verse 2 [34]. Argoverse contains 333k scenarios collected

from interactive and dense traffic. Each scenario provides the

HD map and 2 seconds of history trajectory data, to predict

the trajectory for future 3 seconds, sampled at 10Hz. Follow-

ing the official guide, we split the training, validation, and

test set to 205k, 39k, 78k scenarios respectively. Argoverse

2 upgrades the previous dataset to include 250K sequences

with higher prediction complexity. It extends the historic and

prediction horizon to 5 seconds and 6 seconds respectively,

sampled at 10Hz. The data is split into 200k, 25k, and 25k

for training, validation, and test respectively.

Metrics. Following the official dataset settings, we evalu-

ate our model on the standard metrics for motion predic-

tion, including minimum Average Displacement Error (mi-

nADE), minimum Final Displacement Error (minFDE), and

Miss Rate (MR). These metrics allow models to forecast up

to 6 trajectories for each agent and define the one that has

the minimum endpoint error as the best trajectory to calcu-

late the above metrics.

Baselines. As mentioned earlier, our SmartRefine can be

seamlessly integrated into most existing trajectory predic-

tion methods to improve accuracy with limited additional

computation. In our experiment, we consider five popu-

lar and state-of-the-art methods as the prediction backbone

to evaluate how our SmartRefine further improves the per-

formance: HiVT [39], Prophnet [33], mmTransformer [14],

DenseTNT [10] and QCNet [40]. Note that, since QCNet

includes a refinement module itself, we introduce another

baseline QCNet (no refinement) which removes the original

refinement module from the QCNet. For implementation and

computation details of our methods, please refer to the sup-

plementary material.

4.2. Quantitative Result

Performance on Val Set. We first report the prediction ac-

curacy and computation cost on the validation set of the two

datasets. As shown in Table 2, SmartRefine can consistently

improve the prediction accuracy of all considered state-of-

the-art methods with limited added parameters, Flops, and

latency. For instance, our method can reduce the minFDE

of Prophnet, mmTransformer, HiVT, DenseTNT, and QC-

Net (no ref) by 6.0%, 3.7%, 5.4%, 4.3%, 3.5% respectively.

Besides, our refinement model only added Flops by 130M

on Argoverse and 408M on Argoverse 2, and thus is much

smaller than the Flops of the backbone which range from

1.2G to 55.8G. Our method benefits QCNet less than other

methods, because QCNet itself incorporates a relatively large

refinement network that has 2,200K parameters. However, if

we replace the refinement module in QCNet with ours, we

can achieve competitive results with much less added param-
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Dataset Method minFDE ↓ minADE ↓ MR ↓ #Param.(M) ↓ Flops(G) ↓ Latency(ms) ↓

Argoverse

HiVT [39] 0.969 0.661 0.092 2.5 2.6 54±4.0

HiVT w/ Ours 0.911 0.646 0.083 2.7 2.7 67±8.4

Prophnet* [33] 1.004 0.687 0.093 15.2 7.8 59±1.7

Prophnet w/ Ours 0.967 0.675 0.092 15.4 7.9 71±6.2

mmTransformer [14] 1.081 0.709 0.102 2.6 1.2 15±4.8

mmTransformer w/ Ours 1.023 0.692 0.094 2.8 1.3 27±9.7

Argoverse 2

DenseTNT [10] 1.624 0.964 0.233 1.6 3.6 1,075±199

DenseTNT w/ Ours 1.553 0.834 0.221 1.9 4.0 1,099±212

QCNet (no ref) 1.304 0.729 0.164 5.5 47.0 338±53

QCNet (no ref) w/ Ours 1.258 0.718 0.157 5.8 47.4 363±67

QCNet [40] 1.253 0.720 0.157 7.7 55.8 392±54

QCNet w/ Ours 1.240 0.716 0.156 8.0 56.2 418±68

Table 2. Performance and computation efficiency on Argoverse and Argoverse 2 val set. Methods that are not open-source and reproduced

by us are marked with the symbol “*”. QCNet (no ref) denotes the version where we remove the original refinement module in the QCNet.

SmartRefine consistently improves the accuracy of all considered state-of-the-art methods with limited added computation and latency.

eters, flops, and latency.

Performance on Test Set. We also submit our method to

Argoverse and Argoverse 2 test set and the results are shown

in Table 3. Again, SmartRefine consistently improves the

prediction accuracy of all considered methods. For instance,

SmartRefine reduces the minFDE of HiVT, Prophnet, mm-

Transformer, DenseTNT, and QCNet (no ref) by 3.4%, 6.9%,

7.5%, 4.2%, 3.9% respectively. Specifically, our SmartRe-

fine based on QCNet outperforms all published ensemble-

free works on the Argoverse 2 leaderboard (single agent

track) at the time of the paper submission. See Sec. C for

a more detailed explanation.

4.3. Ablation studies

We conducted comprehensive ablation studies on the effect

of each component in our proposed method, on the Argov-

erse validation set. We show the performance when we add

SmartRefine on top of HiVT, and the results based on other

backbones can be found in the supplementary material.

Adaptive Refinement Iterations. Fig. 2 ablates the effect of

adaptive refinement iterations. When we use a fixed number

of iterations (blue curve), the prediction accuracy improves

with more refinement iterations, but diminishing or zero im-

provements are witnessed in later iterations. In comparison,

when we adopt the adaptive refinement iteration proposed by

SmartRefine, we can achieve higher accuracy with a smaller

number of refinement iterations. Note that we studied differ-

ent quality score thresholds q̄ for adaptive refinement, while

a higher threshold leads to better accuracy, we find q̄ = 0.5
achieves an ideal performance and higher thresholds perform

similarly. Besides, for each threshold, we ablate different

limits for maximum refinement iteration, resulting in 5 points

for each curve.

Anchor Numbers. Table 4 ablates the effect of anchor num-

bers. We can see that increasing the anchor number from 1

to 2 reduces the minFDE. However, excessively increasing

the number of anchors is ineffective, as it brings much larger

Dataset Method minFDE ↓ minADE ↓ MR ↓

Argoverse

HiVT [39] 1.17 0.77 0.13

HiVT w/ Ours 1.13 0.77 0.12

ProphNet* [33] 1.30 0.85 0.14

Prophnet* w/ Ours 1.21 0.81 0.13

mmTransformer [14] 1.34 0.84 0.15

mmTransformer w/ Ours 1.24 0.81 0.14

Argoverse 2

DenseTNT [10] 1.66 0.99 0.23

DenseTNT w/ Ours 1.59 0.85 0.22

QCNet (no ref) 1.29 0.65 0.16

QCNet (no ref) w/ Ours 1.24 0.64 0.15

QCNet [40] 1.24 0.64 0.15

QCNet w/ Ours 1.23 0.63 0.15

Table 3. Performance on Argoverse (1&2) test set. Methods that are

not open-source and reproduced by us are marked with the symbol

“*”. The original DenseTNT and QCNet (no ref) did not report

results in the test set, thus we train them to match the validation set

and submit them to the test set.
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Figure 2. Comparison between the fixed and adaptive number of

refinement iterations. For the adaptive methods, We tested different

quality score thresholds q̄ mentioned in Algorithm 1.

model parameters with the same or slightly worse accuracy.

Context Representation. In Table 5, we compare the per-

formance when we employ the fixed agent-centric context

embeddings or the adaptive anchor-centric context embed-

dings (see details in Sec 3.2.2). We can see our adaptive

anchor-centric encoding effectively outperforms the fixed

agent-centric context encoding.
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Figure 3. A study to understand the mechanism behind the refinement. Specifically, We mark the quality score distribution of the predictive

trajectory before refinement, and track how the quality score changes along the multi-iteration refinement. We can see while the overall

performance is improved, not every trajectory benefits from refinement, which implies the necessity of adaptive refinement. See Sec. 4.4

for detailed discussions.

Retrieval Radius. Table 6 studies the effect of the radius

used to retrieve contexts. We can see a fixed retrieval radius

from 50 to 2 can be sub-optimal, as a large retrieval radius

might lead to redundant or unrelavant context information,

while a small radius might not provide sufficient context for

refinement. In comparison, our SmartRefine adapts the ra-

dius to each agent’s velocity, and decays the radius with the

number of refinement iterations (see details in Sec 3.2.1).

Here we consider two strategies for radius decay: linear

decay and exponential decay. Both methods lead to lower

minFDE compared to the fixed radius, and the exponential

decay has lower Flops compared to linear decay.

4.4. Discussion

While many previous works have explored various refine-

ment strategies, few of them explain how exactly the refine-

ment works and what limitations it has. For example, it re-

mains unclear whether every trajectory is improved by the re-

finement. In this section, we take a step forward to study the

mechanism behind the refinement. Specifically, for each pre-

dicted trajectory, we measure its accuracy using the quality

score proposed earlier. We will track how the quality score

changes along the multi-iteration refinements. As shown in

Fig. 3, before the refinement, the quality score of the trajec-

tories most fall in two categories: about 56% of the trajecto-

ries have a low quality score between 0 and 0.2 (marked as

blue), and about 44% trajectories have a high quality score

between 0.8 and 1 (marked as orange). We then conduct

multi-iteration refinement and track how the quality score

of the ”blue” and ”orange” trajectories change. Two phe-

nomenons are observed:

• Not every trajectory benefits from refinement: as the refine-

ment goes, we can see that the initially low-score ”blue”

trajectories gradually move to the right, which means they

become more accurate. However, the initially high-score

”orange” trajectories gradually move to the left, which

means they become less accurate. In fact, we can see that

initially low-score blue trajectories and initially high-score

orange trajectories switched their quality score at the final

iteration. We hypothesize that this is because while inac-

curate trajectories can get much improvement from refine-

ment, the accurate trajectories are good enough and can

#Anchor numbers minFDE #Param.

1 0.928 134K

2 0.911 207K

3 0.911 280K

5 0.915 433K

6 0.916 509K

Table 4. Ablation study on the

number of anchors.

Context Encoding minFDE

Agent-Centric 0.941

Anchor-Centric 0.911

Table 5. Ablation study on how

the contexts are encoded.

Retrieval Radius minFDE Flops (M)

Fixed Radius

50 0.926 2,297

20 0.923 722

10 0.921 325

2 0.930 58

Adaptive Radius
Rmax=10, Rmin=2, linear 0.911 245

Rmax=10, Rmin=2, exp 0.911 130

Table 6. Ablation study on the context retrieval radius. Linear and

exp denote different ways to decay the radius.

hardly be further improved, or even be pushed away from

the ground truth due to over-refinement.

• The overall performance is better: though the initially

accurate and inaccurate trajectories switch their quality

scores at the final iteration, we see the final iteration has

a higher percentage of high-score trajectories. This is why

our refinement can lead to a higher overall performance.

These results show the necessity of adaptive refinement.

5. Conclusion

In this paper, we introduce SmartRefine, a scenario-adaptive

refinement framework for efficient refinement of motion pre-

diction models. Our method adopts adaptive strategies an-

chor selection, retrieval radius, and context encoding to con-

duct refinement that better suits each scenario. We then pro-

pose the quality score to indicate current prediction quality

and potential refinement improvement, and adaptively de-

cide how many refinement iterations are needed for each sce-

nario. Our SmartRefine is not only lightweight, but can also

be seamlessly plugged into most existing motion prediction

models as it is decoupled from the prediction backbone and

only relies on a generic interface between the backbone. Ex-

tensive experiments demonstrate the effectiveness of our ap-

proach in terms of both prediction accuracy and computa-

tion efficiency. We also study the mechanism behind multi-

iteration refinement. In the future, we will further extend our

framework to multi-agent joint prediction settings.
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