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Figure 1. Diverse shapes with and without open surfaces generated by our UDiFF model. Top-Left: Conditional generation of clothes with
prompts ‘A short-sleeved dress in spiderman style’, ‘A Batman upper with long sleeves’, ‘A superman pant’, ‘A camouflage slip dress’.
Around: A shape gallery generated by UDiFF conditionally and unconditionally.

Abstract

Diffusion models have shown remarkable results for im-
age generation, editing and inpainting. Recent works ex-
plore diffusion models for 3D shape generation with neural
implicit functions, i.e., signed distance function and occu-
pancy function. However, they are limited to shapes with
closed surfaces, which prevents them from generating di-
verse 3D real-world contents containing open surfaces. In
this work, we present UDiFF, a 3D diffusion model for un-
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signed distance fields (UDFs) which is capable to gener-
ate textured 3D shapes with open surfaces from text condi-
tions or unconditionally. Our key idea is to generate UDFs
in spatial-frequency domain with an optimal wavelet trans-
formation, which produces a compact representation space
for UDF generation. Specifically, instead of selecting an
appropriate wavelet transformation which requires expen-
sive manual efforts and still leads to large information loss,
we propose a data-driven approach to learn the optimal
wavelet transformation for UDFs. We evaluate UDiFF to
show our advantages by numerical and visual comparisons
with the latest methods on widely used benchmarks. Page:
https://weiqi-zhang.github.io/UDiFF.
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1. Introduction
Probabilistic diffusion models [17, 60] have largely revolu-
tionized 2D content generation. Recent advancements, such
as DALL-E 2 [55] and Stable Diffusion [56], have been
widely used in text-to-image generation, image inpainting,
etc. A series of works [37, 59] try to replicate these success
in 3D content generation by developing diffusion models
for point clouds or voxels, but fails to produce high fidelity
results due to the limited resolution in voxels and the dis-
creteness of points. Recent approaches [10, 21, 69] explore
diffusion models to generate 3D shapes as neural implicit
functions, i.e., signed distance function (SDF) [38, 52] and
occupancy function (Occ) [45]. However, they are limited
to generate closed shapes since both SDF and Occ model
the internal and external relations of 3D locations for repre-
senting 3D shapes. This prevents previous 3D implicit dif-
fusion models from generating diverse 3D real-world con-
tents containing open surfaces.

Another challenge in diffusion-based 3D generative
models is how to define a compressing transform schema
for achieving compact implicit representations which can be
learned by diffusion models efficiently. Some works train a
variational auto-encoder (VAE) [26] for converting shapes
into triplane [15, 57] or single latents [49] for latent diffu-
sion. However, the relative limited 3D data makes it difficult
to train a stable VAE. Instead, another series of works (e.g.
WaveGen [21]) seek to leverage explicit transform in an-
other domain (e.g. wavelet transform [11]) for direct com-
pression. Nevertheless, they need to select an appropriate
wavelet type, which demands extensive manual efforts and
can still result in significant information loss during wavelet
recovery.

To address these issues, we propose UDiFF, a 3D diffu-
sion model for unsigned distance fields [8, 72] which is ca-
pable of generating textured 3D shapes without geometric
limits on the surface watertightness (e.g. contain open sur-
faces). Compared to commonly-used SDF or Occ, UDF has
proven to be an advanced representation that supports arbi-
trary typologies and remain strong generalization. Going
beyond pure unconditioned models, we incorporate condi-
tions achieved from CLIP [54] models to UDiFF by intro-
ducing conditional cross-attentions. This enables to control
3D generation using the text and image signals. Previous
works merely focus on generating geometries which lead to
a lack of appearance and prevent them from creating diverse
and visual-appealing 3D models, while we get inspiration
from Text2Tex [4] to simultaneously generate textures for
universal 3D content creation.

Adapting existing SDF-based diffusion models directly
to UDF does not work well. The difficulty arises from the
significantly greater complexity of UDF compared to SDF,
particularly in the context of the non-differential zero-level
set. To solve this issue, we introduce UDiFF as a diffusion

model in the spatial-frequency domain based on an optimal
wavelet transformation, which produces a compact repre-
sentation space for UDF generation. Instead of engaging
in selecting a suitable wavelet transformation, which is te-
dious and often results in significant information loss, we
employ a data-driven approach to obtain an optimal wavelet
filter for representing UDFs. We minimize the unsigned
distance errors during a self-reconstruction through the
wavelet transformation, especially near the zero-level set of
UDFs. This preserves the geometry details during wavelet
transformation, which leads to the high-fidelity generation
of 3D geometries. We evaluate UDiFF for generating 3D
shapes with open surfaces and closed surfaces using con-
ditions or unconditionally under DeepFashion3D [79] and
ShapeNet [3] datasets. The experimental results demon-
strate that UDiFF achieves promising generation perfor-
mance compared to the existing state-of-the-art approaches,
in both qualitative and quantitative evaluations. Our main
contributions can be summarized as follows.
• We propose UDiFF, a 3D diffusion model for unsigned

distance fields which is capable of generating real-world
textured 3D shapes with open surfaces from text condi-
tions or unconditionally.

• We introduce an optimal wavelet transformation for UDF
through data-driven optimization, and justify that the
spatial-frequency domain learned through this transfor-
mation is a compact domain suitable for UDF generation.

• We evaluate UDiFF for generating 3D shapes with both
open and closed surfaces, and show our superiority over
the state-of-the-art methods.

2. Related Work

With the rapid development of deep learning, the neural
networks have shown great potential in 3D applications
[19, 24, 32, 33, 41, 43, 63, 64, 66, 70, 73, 75–77]. We
mainly focus on learning generative Neural Implicit Func-
tions with networks for generating 3D shapes.

2.1. Neural Implicit Representations

Recently, Neural Implicit Functions (NIFs) have shown
promising results in surface reconstruction [42, 45, 52],
novel view synthesis [46, 48], image super-resolution [1,
58], etc. The NIFs approaches train a neural network to
represent shapes and scenes with signed distance functions
(SDFs) [9, 52] or binary occupancy [45, 53], where the
marching cubes algorithm [36] is then used to extract sur-
faces from the learned NIFs. OccNet and DeepSDF [45, 52]
are the pioneers of NIFs which learn global latent codes
for representing 3D shapes with MLP-based decoder to
achieve occupancies or signed distances. The subsequent
approaches [23, 53] leverage more latent codes to repre-
sent detailed local geometries. PCP [40] and OnSurf [39]
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Figure 2. Overview of UDiFF. (a) We propose a data-driven approach to attain the optimal wavelet transformation for UDF generation.
We optimize wavelet filter parameters through the decomposition and inversion by minimizing errors in UDF self-reconstruction. (b) We
fix the learned decomposition wavelet parameters and leverage it to prepare the data as a compact representation of UDFs including pairs
of coarse and fine coefficient volumes. (c) is the architecture of the generator in diffusion models, where text conditions are introduced
with cross-attentions. (d) The diffusion process of UDiFF. We train the generator to produce coarse coefficient volumes from random
noises guided by input texts and train the fine predictor to predict fine coefficient volumes from the coarse ones. Follow the green arrows
for inference, we start from a random noise and an input text to leverage the trained generator to produce a coarse coefficient volume.
The trained fine predictor then predicts the fine coefficient volume. Together with the coarse one, we recover the UDFs with the fixed
pre-optimized inversion wavelet filter parameters. Finally, we extract surfaces from UDFs and further texture them with the guiding text.

introduce predictive context priors and on-surface prior to
enhance the representation ability of NIFs.

Occupancy and SDFs are mainly suitable to represent
closed shapes. Recent works explore the neural unsigned
distances (UDFs) [5, 8, 34, 35, 62, 72, 74] to represent
shapes and scenes with open surfaces. NDF [8] designs a hi-
erarchical neural network to learn UDFs with ground truth
distance supervisions. GIFS [68] learns UDFs and repre-
sents shapes with query relationships. CAP-UDF [72] and
LevelSetUDF [74] propose consistency-aware constraints
and level set projections to stabilize the optimization of
UDFs and produce more accurate geometries.

2.2. Diffusion-based 3D Generative Models

Generating 3D contents plays the key role in aug-
mented/virtual reality and has been widely explored in the
past few years. Earlier works transfer the success of GAN
[13], VAE [26] and the flow-based model [25] in image gen-
eration to the 3D domain for generating 3D shapes repre-
sented as point clouds [2, 22, 31, 50, 67] and voxels [59, 65].
PointDiff [37] introduces the powerful diffusion models for

point cloud generation. Some advanced works [61, 78]
combining the voxel and point representations were pro-
posed for more robust 3D generation with diffusion models.

More recently, some approaches [7, 12, 21, 30, 57] try
to combine the diffusion models and neural implicit rep-
resentations for generating high-quality 3D shapes. These
methods generate signed distance fields [10, 15, 21, 28, 30]
or occupancy fields [69] with diffusion models and extract
the meshes from the fields with the marching cubes [36].
For the efficient training of diffusion models, methods like
Diffusion-SDF [10] and 3D-LDM [49] train a VAE for con-
verting shapes into latent codes for latent diffusion. But
the relative small number of 3D samples for training makes
it difficult to train a stable VAE. WaveGen [21] was pro-
posed to explicitly compress SDFs in frequency domain
with wavelet transform, but it is limited to the information
loss during the wavelet recovery.

The advances in NIFs-based 3D generative models have
shown significant improvements in the generation qualities,
however, they are limited to generate closed surfaces. This
prevents them from generating diverse 3D contents in real
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world. In this work, we focus on generating UDFs for open
surfaces with textures using a 3D diffusion model.

3. Method

Overview. The overview of UDiFF is shown in Fig. 2. UD-
iFF is a 3D generative model which takes texts as conditions
and generates general textured 3D shapes with either open
or closed surfaces. We will start by introducing the novel
approach to obtain an optimal wavelet transform for a com-
pact UDF representation and the data preparation process
for training diffusion models in Sec. 3.1. We then present
the designed conditional diffusion framework for UDF gen-
eration and the generator network in Sec. 3.2. Finally, we
extract surfaces from the generated UDF and further add
textures on the mesh with the guiding text in Sec. 3.3.

3.1. Optimal Wavelet Transformation for UDFs

One main challenge in diffusion-based 3D generative mod-
els is to search for a compact representation space for dif-
fusion model to learn efficiently. WaveGen [21] adopts an
explicit wavelet transform on the SDF volumes (2563) to
decompose them into coarse coefficient volumes and fine
coefficient volumes with much lower resolutions. The naive
wavelet transform leads to large information loss since the
manually selected wavelet is not capable of representing
various shapes as accurate distance functions.

To represent UDFs in a compact way, we follow Wave-
Gen to adopt multi-scale wavelet transform [11, 44] as the
compressing schema, keeping only the coefficients at a rel-
ative small scale of J = 3 for efficient shape learning.
However, the UDF is significantly more complex and un-
stable than SDF, particularly in the area of non-differential
zero-level sets, where the geometry details that the wavelet
compressing does not preserve will severely affect the gen-
eration of UDFs. Thus, a suitable wavelet filter with much
less information loss but remains compact and efficient for
UDFs is vital.

To this end, instead of manually searching for the ap-
propriate wavelet filter which demands costly efforts and
is still hard to reduce the information loss, we propose
a data-driven approach to learn the optimal wavelet filter
parameters for UDFs through learning-based optimization
as shown in Fig. 2(a). Specifically, we define a learnable
biorthogonal wavelet filter which consists of a decomposi-
tion filter ϕD

θ and an inversion filter ϕI
δ with learnable filter

parameters θ and δ. Given a set of shapes {Si}Ni=1, we first
sample the UDF volume Ui for each shape at a resolution of
2563 and truncate the distance values in Ui to [0, 0.1], and
then compress it into a coarse coefficient volume and a fine
coefficient volume with the learnable decomposition filter
ϕD
θ as:

{Ci, Fi} = ϕD
θ (Ui). (1)

(a) Original 
Shape

(b) Our Learned
Wavelet

(c) Biorthogonal
Wavelet 6-8

(d) Biorthogonal
Wavelet 3-3

Figure 3. Comparisons of reconstructions with different
wavelet filters. (a) The input shapes from DeepFashion3D [79]
and ShapeNet [3], from where we sample UDFs to prepare com-
pact wavelet representations. (b) The surfaces extracted from the
recovered UDF with decomposition and inversion by our learned
wavelet filter. (c,d) The surfaces extracted from the recovered
UDF with manual chosen wavelet filters.

We then predict the lossy UDF Û from Ci and Fi with the
learnable inversion filter ϕI

δ as:

{Ûi} = ϕI
δ(Ci, Fi). (2)

The target is to optimize the filter parameters θ and δ by
minimizing the information loss during wavelet decompo-
sition and inversion, formulated as:

min
θ,δ

N∑
i=1

LMSE(w
γ
i Ûi, w

γ
i Ui). (3)

where wγ
i is the weights for enforcing the optimization to

focus on the space near the zero-level set of UDF. wγ
i has

the same size as Ui for weighting each grid in the UDF
volume, where we define wγ

i according to a threshold γ to
mask the grids with distances larger than γ.

After data-driven optimization of the wavelet filters ϕD
θ

and ϕI
δ , we learn the optimal wavelet transform with much

less information loss and can faithfully reconstruct the orig-
inal UDF while remains compact. We show the compar-
ison on the wavelet filters in Fig. 3, where the surfaces
reconstructed from UDF with our learned wavelet filter
in Fig. 3(b) are much smoother and more accurate than
the reconstructions with common filters like Biorthogonal
wavelet 3-3 in Fig. 3 (d). Specifically, Biorthogonal wavelet
6-8 in Fig. 3 (c) is the carefully chosen filter by WaveGen
from a series of wavelet filters, where our learned filter sig-
nificantly outperforms the manually selected filters in com-
pressing and recovering UDF. The reason is that the filters
learned by data-driven optimizing from UDF datasets are
much more suitable to specific characters of UDFs, which
preserves more geometry details.

With the learned optimal wavelet filter, we then leverage
it to represent UDFs as a compact representation for train-
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ing diffusion models. As shown in Fig. 2 (b), we fix the
parameters for ϕD

θ and produce the paired coarse efficient
{Ci}Mi=1 volumes and fine efficient volumes {Fi}Mi=1 by de-
composing Ui with Eq. (1).

3.2. Conditional UDF Diffusion

Generator Architecture. We first introduce the network
details of diffusion generators for 3D volumes, as shown in
Fig. 2(c). The generator shares a similar U-Net architecture
as Stable-Diffusion [51, 56], where the 2D convolutions are
replaced with 3D ones for handling 3D volumes. Each U-
Net operation in Fig. 2(c) contains 3×3×3 residual blocks,
pooling layers and down/up-sampling layers. For introduc-
ing text conditions to diffusion models, we first encode the
input texts with frozen CLIP [54] models to produce text
embeddings and then fuse them into the volume features
with cross-attention layers.
Learning Diffusion Models. We develop our 3D genera-
tive model UDiFF based on diffusion probabilistic models
[17, 60]. The diffusion process is to generate coarse coeffi-
cient volumes which represents the general geometry of 3D
shapes from random volume noises, as shown in Fig. 2 (d).
We define {C0, C1, ..., CT } as the forward process q(C0:T )
which gradually transforms a real data C0 into Gaussian
noise (CT ) by adding noises, where C0 is a sample from the
coarse coefficient data {Ci}Mi=1. The diffusion backward
process pσ(C0:T ) leverages the generator with parameter σ
to denoise CT into a real data sample. The learning schema
is to train the generator to maximize the generation proba-
bility of the target, i.e. pσ(C0). We follow DDPM [17] to
simplify the optimization target to predict noises ϵσ with the
generator, formulated as:

min
σ

EC0,t,ϵ∼N (0,1)

[
∥ϵ− ϵσ (Ct, t)∥2

]
, (4)

where t is a time step and ϵ is a noise volume sampled from
the unit Gaussian distribution N .
Condition-Guided 3D Diffusion. Up to this point, we
have covered the generative diffusion process without con-
ditions. For a controllable generation of unsigned distance
fields, we further introduce a conditioning mechanism [56]
into the diffusion process by cross-attention. Specifically,
given an input text y, we first leverage a frozen CLIP
text encoder τ to project y into the condition embedding
τ(y). The embedding is then fused into the U-Net layers
of generator with cross attention modules implemented as
Attention(Q,K, V ) = softmax

(
QKT

√
d

)
· V , where Q =

W
(i)
Q ·φi(Ct), K = W

(i)
K ·τ(y) and V = W

(i)
V ·τ(y). Here,

φi(Ct) is the output of an intermediate layer of the U-Net
and W

(i)
V , W (i)

Q & W
(i)
K are learnable matrices.

The cross-attention mechanism learns a mapping from
the input text condition to the coefficient volumes which

Table 1. Quantitative comparison of shape generation un-
der DeepFashion3D dataset. MMD-CD scores and MMD-EMD
scores are scaled by 103 and 102, respectively.

Method COV ↑ MMD ↓ 1-NNA ↓
CD EMD CD EMD CD EMD

PointDiff [37] 68.67 64.56 11.01 15.53 83.21 87.69
WaveGen [21] 62.34 51.89 15.56 17.03 92.93 94.83

Diffusion-SDF [10] 67.09 62.03 14.79 16.63 88.98 92.63
LAS-Diffusion [71] 67.40 56.01 14.59 16.53 88.61 91.41

Ours 69.62 67.72 11.60 14.01 81.83 82.14

represent the geometric generations. The optimizing target
in Eq. (4) is then modified as:

min
σ

EC0,y,t,ϵ∼N (0,1)

[
∥ϵ− ϵσ (Ct, τ(y), t)∥2

]
, (5)

Fine Predictor. The last module for learning to generate
UDFs is the fine predictor f which predicts fine coefficient
volumes from the generated coarse ones. We follow Wave-
Gen [21] to implement f with the similar U-Net architecture
as the generator. We train f with pairs of coarse and fine co-
efficient volumes {Ci, Fi} with MSE loss to minimize the
differences between Fi and the prediction f(Ci).

3.3. Generating Novel 3D Shapes

Generating UDFs at Inference. With the learned optimal
wavelet filters and the trained conditional diffusion models,
we can now generate novel 3D shapes as shown in the green
arrows in Fig. 2. Starting from a random volume noise
and an input text y, we leverage the generator to produce a
coarse coefficient C ′ volume by removing noises iteratively
with the guidance of y. The fine predictor then predicts the
fine coefficient volume F ′, together with C ′ to generate the
UDF U ′ by wavelet inversion with the learned filter ϕI

δ as
Eq. (2).
Surface Extraction and Texturing After generating a
novel UDF U ′, we extract the zero-level set of U ′ as a
surface. The recent works [14, 72] leverage the gradients
at UDF as the signals to mesh UDFs, however, the ap-
proximated gradients of generated UDF may not be sta-
ble enough at the zero-level set, which leads to errors and
holes. We therefore adopt DCUDF [18] with double cov-
ering to mesh the generated UDF of UDiFF. Please refer
to the supplementary for the adaptions to DCUDF. Finally,
to create visual-appealing 3D models, we drew inspiration
from Text2Tex [4]. This helps to generates textures for the
extracted mesh while leveraging the text guidance within a
progressive rendering-based texturing framework.

4. Experiment
In this section, we evaluate our proposed UDiFF on the task
of shape generation. We first demonstrate the performance
of UDiFF in generating novel shapes with open surfaces
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Figure 4. Visual comparison with state-of-the-arts on the gener-
ated shapes under DeepFashion3D dataset. The front and back
faces are rendered with different colors for a clear distinguish on
open surfaces.

in Sec. 4.1. Next, we conduct experiments on generating
shape with closed surfaces in Sec. 4.2. The ablation studies
are shown in Sec. 4.3.

4.1. Open-Surface Shape Generation

Dataset. For evaluations in the task of open-surface shape
generation, we conduct experiments under DeepFashion3D
dataset [79]. The DeepFashin3D dataset is a real-captured
3D dataset of open-surface clothes, containing 1,798 mod-
els reconstructed from real garments. It covers 10 categories
and 563 garment instances. The dataset is randomly split
into training and testing sets by the ratio 80% and 20 %. To
get the text conditions for training UDiFF, we first render
each model from the front facing view to obtain the image
representing the model. We then leverage BLIP2 [29] for
captioning the images and keep the caption description of
the rendered image for each model as the text condition for
the model. We further mix the category description of each
model provided in the dataset into the text condition as a
supplementary.
Metrics. For a fair comparison with various methods, we

Figure 5. Conditional generations produced by UDiFF and
Shap·E. The front and back faces are rendered with different col-
ors for a clear distinguish on open surfaces.

conduct the quantitative evaluations on the unconditional
shape generation. We randomly generate 1,000 shapes with
the trained model and uniformly sample 2,048 points on
each generated shape. We follow previous works [21, 37]
to evaluate the generation quality using Minimum matching
distance (MMD), Coverage (COV) and 1-NN classifier ac-
curacy (1-NNA). MMD measures the geometry accuracy of
the generated shapes. COV indicates the ability of the gen-
erated shapes to cover the shapes in the test set. 1-NNA is
designed to measure how well a classifier differentiates the
generated shapes from the given shapes in the testing set.
Lower is better for MMD, higher is better for COV and the
closer to 50 % the better for 1-NNA.
Baselines. We compare UDiFF with the state-of-the-art
methods in terms of the shape generation quality. Point-
Diff [37], WaveGen [21], Diffusion-SDF [10] and LAS-
Diffusion [71]. PointDiff uses point cloud data for training,
where we sample 2,048 points on each model and lever-
age the official code for training. All the previous implicit-
based shape generation methods represent shapes as SDF
or Occ, where the watertight meshes are required to gener-
ate the SDF/Occ data for training. Therefore, we leverage
the commonly-used manifold method [20] for preprocess-
ing the open-surfaces in DeepFashion3D. After that, we fol-
low the official codes of these methods for training uncon-
ditional models with the watertight meshes.
Comparison. The quantitative comparison is shown in Tab.
1. where UDiFF achieves the best performance compared
to the previous state-of-the-art methods. The main reason
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(a) Geometry Only (b) With Texture

Figure 6. Image conditioned generation of UDiFF. (a) Open-
surface geometries generated with image guidance. (b) An ex-
ample of generating textured shapes with image guidance.

is that all the previous implicit-based methods fail to handle
the open-surfaces, where the needed manifold preprocess-
ing leads to large bias on the original open-surface shapes.
While the proposed UDiFF represents shapes as unsigned
distance fields and is able to handle general shapes with
or without open surfaces, leading to superior performance
compared to other methods.

The visual comparison is shown in Fig. 4, where the pro-
posed UDiFF significantly outperforms the previous works
in generating visual-appealing clothes with open surfaces.
We render the inside and outside surfaces in different colors
for a clear difference on open surfaces. The PointDiff gen-
erates the point cloud to represente shapes, which do not
require the manifold preprocess. However, it struggles to
produce high-fidelity generations due to the discreteness of
points.
Text-conditional Generation. For evaluations in genera-
tion with conditions, we further train a conditional model
and generate shapes with the guidance from provided text
prompts. We visually compare the generations with those
produced by Shap·E under the same texts as shown in Fig.
5. The results demonstrate that UDiFF generates more ac-
curate and high-fidelity predictions from the texts. UDiFF
also produces more realistic textures thanks to the powerful
Text2Tex [4]. On the contrary, Shap·E struggles to generate
correct geometries and textures.
Image-conditional Generation. We further justify that
UDiFF can receive diverse signals except texts (e.g. im-
ages) for conditional generation. This is achieved by lever-
aging the pre-aligned text and image representations of the
CLIP model, where we adopt the frozen CLIP image en-
coder to achieve the image embeddings to guide UDiFF
generation by cross-attention, without requiring extra train-
ing on images. We show the image-conditional generations
of UDiFF in Fig. 6. The textures on the right of Fig. 6
is achieved with Text2Tex [4] on the text prompt predicted
from the image with BLIP2 [29], i.e., ‘A white floral shirt
with a long sleeves’ .

4.2. Closed Shape Generation

Dataset and metrics. For the closed shape generation, we
follow the common setting of previous methods [21, 28]
to conduct generation experiments under the airplane and

IM-GAN SPAGHETTI WaveGen Ours

Figure 7. Visual comparison with state-of-the-arts on the gener-
ated shapes under ShapeNet dataset.

chair classes of the ShapeNet [3] dataset. We randomly gen-
erate 2,000 shapes with the trained model and uniformly
sample 2,048 points on each generated shape. We follow
previous works [21, 37] to evaluate the generation quality
using MMD, COV and 1-NNA. We compare our method
with all the baselines using their officially provided pre-
trained models and codes.
Comparison. We compare UDiFF with the state-of-the-art
methods including IM-GAN [6], Voxel-GAN [27], Point-
Diff [37], SPAGHETTI [16], WaveGen [21] and SALAD
[28]. We show the quantitative comparison in Tab. 2,
where the results are directly borrowed from WaveGen and
SALAD for a fair comparison.

The comparison demonstrates UDiFF also has the capa-
bility to generate high-fidelity watertight geometries with
only closed surfaces. We justify that UDiFF is a gen-
eral shape generator to produce general shapes with open
surfaces and closed surfaces. We achieve the comparable
performance with the state-of-the-art method SALAD, and
also significantly outperform the baseline WaveGen which
also leverages wavelet transformation as the compact rep-
resentation. The reason is that our proposed approach for
learning optimal wavelet filter largely reduces the informa-
tion loss during transformation, which leads to more accu-
rate and diverse generations. We further show the visual
comparison of some generated shapes of different methods
in Fig. 7. We can see that the shapes generated by our
method are more faithful than IM-GAN and SPAGHETTI
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Table 2. Quantitative comparison of shape generation under ShapeNet dataset. MMD-CD scores and MMD-EMD scores are scaled
by 103 and 102, respectively.

Method
Chair Airplane

COV ↑ MMD ↓ 1-NNA ↓ COV ↑ MMD ↓ 1-NNA ↓
CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

IM-GAN [6] 56.49 54.50 11.79 14.52 61.98 63.45 61.55 62.79 3.320 8.371 76.21 76.08
Voxel-GAN [27] 43.95 39.45 15.18 17.32 80.27 81.16 38.44 39.18 5.937 11.69 93.14 92.77

PointDiff [37] 51.47 55.97 12.79 16.12 61.76 63.72 60.19 62.30 3.543 9.519 74.60 72.31
SPAGHETTI [16] 49.48 50.22 14.7 15.85 72.34 69.46 56.86 58.83 4.260 8.930 79.36 78.86

SALAD (Global) [28] 49.71 48.75 11.71 14.12 62.72 61.25 54.88 59.33 3.877 8.958 82.20 80.35
SALAD [28] 56.42 55.16 11.69 14.29 57.82 58.41 63.16 65.39 3.636 8.238 73.92 71.08

WaveGen [21] 49.63 50.15 12.12 14.25 65.04 62.87 60.94 59.09 3.528 7.964 75.77 72.93

Ours 52.58 55.99 11.67 14.04 65.96 63.42 64.77 63.78 3.151 7.798 74.48 78.99

Figure 8. Text-conditioned generation produced by UDiFF and
AutoSDF under ShapeNet dataset.

Table 3. Ablation studies on the framework design. MMD-CD
scores and MMD-EMD scores are scaled by 103 and 102.

Method COV ↑ MMD ↓ 1-NNA ↓
CD EMD CD EMD CD EMD

W/o learned wavelet 64.52 65.02 13.24 15.26 85.06 86.22
W/o fine predictor 66.36 65.18 12.37 14.48 83.62 84.17

Full 69.62 67.72 11.60 14.01 81.83 82.14

by producing finer details and cleaner surfaces, and have
less bumpy geometries than WaveGen thanks to the optimal
wavelet filter to significantly reduce information loss.
Conditional Generation. We further train a text-
conditional model under the ‘Chair’ category of the
ShapeNet dataset. We visually compare the generations
produced by AutoSDF [47] and our propose UDiFF under
the same texts as shown in Fig. 8. The results demonstrate
that UDiFF generates more accurate and high-fidelity pre-
dictions from the texts compared to AutoSDF.

4.3. Ablation Studies

Framework Design. To evaluate the major components
in our methods, we conduct ablation studies under the
DeepFashion3D dataset [79] and report the performance in
Tab. 3. We first justify the effectiveness of the proposed

Table 4. Ablation studies on the effect of wavelet optimization.
We report the L2 Chamfer Distance scaled by 105.

Method Haar Biorthogonal3-3 Biorthogonal6-8

CD 264.8 46.04 42.92

Method Learnable ϕD
θ Learnable ϕI

δ Both

CD 36.12 32.15 28.51

optimal wavelet transformation by replacing our learned
wavelet filter with the previous carefully chosen wavelet fil-
ter by WaveGen [21], i.e., Biorthogonal 6-8. The result is
shown as ‘W/o learned wavelet’. We then remove the fine
predictor of UDiFF to recover the 3D shapes with only the
generated coarse coefficients as shown in ‘W/o fine predic-
tor’. The ablation study results demonstrate that effect of
designs in UDiFF by significantly improving the generation
performance.
The Effect of Wavelet Optimization. We further evaluate
the effect of our proposed wavelet optimization to achieve
optimal wavelet filter. The result is shown in Tab. 4,
where we conduct evaluations under the test set of Deep-
Fashion3D [79] and report the L2 Chamfer Distance be-
tween the ground truth meshes and the recovered meshes
with wavelet filters Haar, Biorthogonal3-3, Biorthogonal6-
8 and ours. We show the performance of only optimizing
decomposition filter parameters ϕD

θ and fix inversion fil-
ter parameters ϕI

δ as ‘Learnable ϕD
θ ’, and only optimize ϕI

δ

with fixed ϕD
θ as ‘Learnable ϕI

δ’. The best performance is
achieved with optimizing both ϕI

δ and ϕD
θ as ‘Both’.

5. Conclusion
In this work, we present UDiFF, a 3D diffusion model for
conditional or unconditional generating textured 3D shapes
with open and closed surfaces. We leverage a diffusion
model to learn distributions of UDFs in a spatial-frequency
space established through an optimal wavelet transforma-
tion for UDFs, which is obtained by data-driven optimiza-
tions. The evaluations on widely used benchmarks show our
superior performance over the latest methods in generating
shapes with either open and closed surfaces.
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