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Figure 1. UltrAvatar. Our method takes a text prompt or a single image as input to generate realistic animatable 3D Avatars with PBR

textures, which are compatible with various rendering engines, our generation results in a wide diversity, high quality, and excellent fidelity.

Abstract

Recent advances in 3D avatar generation have gained

significant attention. These breakthroughs aim to produce

more realistic animatable avatars, narrowing the gap be-

tween virtual and real-world experiences. Most of existing

works employ Score Distillation Sampling (SDS) loss, com-

bined with a differentiable renderer and text condition, to

guide a diffusion model in generating 3D avatars. How-

ever, SDS often generates over-smoothed results with few

facial details, thereby lacking the diversity compared with

ancestral sampling. On the other hand, other works gen-

erate 3D avatar from a single image, where the challenges

of unwanted lighting effects, perspective views, and inferior

image quality make them difficult to reliably reconstruct the

3D face meshes with the aligned complete textures. In this

paper, we propose a novel 3D avatar generation approach

termed UltrAvatar with enhanced fidelity of geometry, and

superior quality of physically based rendering (PBR) tex-

tures without unwanted lighting. To this end, the proposed

approach presents a diffuse color extraction model and an

* Equal contribution.

authenticity guided texture diffusion model. The former re-

moves the unwanted lighting effects to reveal true diffuse

colors, so that the generated avatars can be rendered under

various lighting conditions. The latter follows two gradient-

based guidances for generating PBR textures to render di-

verse face-identity features and details better aligning with

3D mesh geometry. We demonstrate the effectiveness and

robustness of the proposed method, outperforming the state-

of-the-art methods by a large margin in the experiments.

1. Introduction

Generating 3D facial avatars is of significant interest in the

communities of both computer vision and computer graph-

ics. Recent advancements in deep learning have greatly

enhanced the realism of AI-generated avatars. Although

multi-view 3D reconstruction methods, such as Multi-View

Stereo (MVS) [62] and Structure from Motion (SfM) [61],

have facilitated avatar generation from multiple images cap-

tured at various angles, generating realistic 3D avatars from

few images, like a single view taken by a user or particu-

larly generated from text prompts, is significantly challeng-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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ing due to the limited visibility, unwanted lighting effects

and inferior image quality.

Previous works have attempted to overcome these chal-

lenges by leveraging available information contained in the

single view image. For example, [22, 43, 75] focused on es-

timating parameters of the 3D Morphable Model (3DMM)

model by minimizing landmark loss and photometric loss,

and other approaches train a self-supervised network to pre-

dict 3DMM parameters [18, 23, 60, 76]. These methods are

sensitive to occlusions and lighting conditions, leading to

susceptible 3DMM parameters or generation of poor qual-

ity textures. Moreover, many existing works [18, 23, 75, 76]

rely on prefixed texture basis [29] to generate facial tex-

tures. Although these textures are often reconstructed

jointly with lighting parameters, the true face colors and

skin details are missing in the underlying texture basis and

thus are unable to be recovered. Alternatively, other works

[6, 8, 35, 69] employ neural radiance rendering field (NeRF)

to generate 3D Avatar, but they are computationally de-

manding and not amenable to mesh-based animation of 3D

avatars. They also may lack photo-realism when being ren-

dered from previously unobserved perspectives.

Generative models [27, 28, 41, 50, 57, 71] designed for

3D avatars have shown promising to generate consistent 3D

meshes and textures. However, these models do not account

for unwanted lighting effects that prevent access to true face

colors and could result in deteriorated diffuse textures. On

the other hand, some works use the SDS loss [52, 71, 72] to

train a 3D avatar by aligning the rendered view with the tex-

tures generated by a diffusion model. The SDS may lead to

the oversmoothed results that lack the diversity in skin and

facial details compared with the original 2D images sam-

pled from the underlying diffusion model.

To overcome these challenges, we propose a novel ap-

proach to create 3D animatable avatars with better diffuse

colors and more detailed skin textures. First, our approach

can take either a text prompt or a single face image as in-

put. The text prompt is fed into a generic diffusion model

to create a face image, or a single face image can also be

input into our framework. It is well known that separating

lighting from the captured colors in a single image is intrin-

sically challenging. To obtain high quality textures that are

not contaminated by the unwanted lighting, our key obser-

vation is that the self-attention block in the diffusion model

indeed captures the lighting effects, enabling us to reveal

the true diffuse colors by proposing a diffuse color extrac-

tion (DCE) model to robustly eliminate the lighting from

the texture of the input image.

In addition, we propose to train an authenticity guided

texture diffusion model (AGT-DM) that is able to gener-

ate high-quality complete facial textures that align with the

3D face meshes. Two gradient guidances are presented to

enhance the resultant 3D avatars – a photometric guidance

and an edge guidance that are added to classifier-free diffu-

sion sampling process. This can improve the diversity of the

generated 3D avatars with more subtle high-frequency de-

tails in their facial textures across observed and unobserved

views.

The key contributions of our work are summarized be-

low.

• We reveal the relationship between the self-attention fea-

tures and the lighting effects, enabling us to propose

a novel model for extracting diffuse colors by remov-

ing lighting effects in a single image. Our experiments

demonstrate this is a robust and effective approach, suit-

able for tasks aimed at removing specular spotlights and

shadows.

• We introduce an authenticity guided diffusion model to

generate PBR textures. It can provide high-quality com-

plete textures that well align with 3D meshes without

susceptible lighting effects. The sampling process fol-

lows two gradient-based guidances to retain facial details

unique to each identity, which contributes to the improved

generation diversity.

• We build a novel 3D avatar generative framework, Ul-

trAvatar, upon the proposed DCE model and the AGT-

DM. Our experiments demonstrate high quality diverse

3D avatars with true colors and sharp details (see Fig. 1).

2. Related Work

Image-to-Avatar Generation: Initially, avatar genera-

tion was predominantly reliant on complex and costly scan-

ning setups, limiting its scalability [5, 11, 31, 45]. This

challenge has shifted towards utilizing common image in-

puts like a single photo [18, 23, 76] or video [14, 26, 30, 75].

Additionally, the representation of 3D heads has diversified,

ranging from the mesh-based parametric models [43, 75] to

the fluid neural implicit functions like NeRFs [6, 35, 69].

The introduction of advanced neural networks, especially

Generative Adversarial Networks (GANs) [38] has led to

the embedding of 3D attributes directly into these genera-

tive models [15, 19, 49] and the use of generative model as

a prior to generate 3D avatars [27, 28, 41, 42] etc. Some

techniques [8, 21, 50] can also create the riggable avatars

from a single image. Nevertheless, these existing methods

rely on the provided images for mesh and texture genera-

tion, encountering issues with misalignment between tex-

ture and mesh due to errors in mesh generation and dis-

crepancies between visible and invisible regions, and chal-

lenges in achieving highly precise diffuse textures due to

small specular spots and shadows. Our proposed method

adeptly addresses and mitigates these challenges, ensuring

more consistent and accurate results.
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Figure 2. The Overview of UltrAvatar. First, we feed a text prompt into a generic diffusion model (SDXL [51]) to produce a face image.

Alternatively, the face image can also be used directly as input into our framework. Second, our DCE model takes the face image to extract

its diffuse colors Id by eliminating lighting. The Id is then passed to the mesh generator and the edge detector to generate the 3D mesh,

camera parameters and the edge image. With these predicted parameters, the initial texture and the corresponding visibility mask can be

created by texture mapping. Lastly, we input the masked initial texture into our AGT-DM to generate the PBR textures. A relighting result

using the generated mesh and PBR textures is shown here.

Text-to-3D Generation: Text-to-3D generation is a pop-

ular research topic that builds on the success of text-

to-image models [48, 54–56]. DreamFusion [52],

Magic3D [44], Latent-NeRF [46], AvatarCLIP [34], Clip-

Face [7], Rodin [66], DreamFace [72] etc., use the text

prompt to guide the 3D generation. Most of these ap-

proaches use SDS loss to maintain consistency between the

images generated by the diffusion model and the 3D ob-

ject. However, SDS loss significantly limits the diversity of

generation. Our approach upholds the powerful image gen-

eration capabilities from diffusion models trained on large-

scale data, facilitating diversity. Simultaneously, it ensures

a high degree of fidelity between the textual prompts and

the resulting avatars without depending on SDS loss.

Guided Diffusion Model: A salient feature of diffusion

models lies in their adaptability post-training, achieved by

guiding the sampling process to tailor outputs. The con-

cept of guided diffusion has been extensively explored in

a range of applications, encompassing tasks like image

super-resolution [16, 25, 59], colorization [17, 58], deblur-

ring [16, 67], and style-transfer [24, 39, 40]. Recent studies

have revealed that the diffusion U-Net’s intermediate fea-

tures are rich in information about the structure and content

of generated images [10, 32, 40, 53, 65]. We discover that

the attention features can represent lighting in the image and

propose a method to extract the diffuse colors from a given

image. Additionally, we incorporated two guidances to en-

sure the authenticity and realism of the generated avatars.

3. The Method

An overview of our framework is illustrated in Fig. 2. We

take a face image as input or use the text prompt to gener-

ate a view I of the avatar with a diffusion model. Then, we

introduce a DCE model to recover diffuse colors by elim-

inating unwanted lighting from the generated image. This

process is key to generating high quality textures without

being deteriorated by lighting effects such as specularity

and shadows. This also ensures the generated avatars can

be properly rendered under new lighting conditions. We ap-

ply a 3D face model (e.g., a 3DMM model) to generate the

mesh aligned with the resultant diffuse face image. Finally,

we apply AGT-DM with several trained decoders to gener-

ate PBR textures, including diffuse colors, normal, specular,

and roughness textures. This complete set of PBR textures

can align well with the 3D mesh, as well as preserve the

face details unique to individual identity.

3.1. Preliminaries

Diffusion models learn to adeptly transform random noise

with condition y into a clear image by progressively remov-

ing the noise. These models are based on two essential pro-

cesses. The forward process initiates with a clear image x0
and incrementally introduces noise, culminating in a noisy

image xT , and the backward process works to gradually re-

move the noise from xT , restoring the clear image x0. The

stable diffusion (SD) model [51, 56] operates within the la-

tent space z = E(x) by encoding the image x to a latent

representation. The final denoised RGB image is obtained
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by decoding the latent image through x0 = D(z0). To carry

out the sequential denoising, the network ϵθ is rigorously

trained to predict noise at each time step t by following the

objective function:

min
θ

Ez∼E(x),t,ϵ∼N (0,1)||ϵ− ϵθ(zt, t, τ(y))||
2
2. (1)

where the τ(·) is the conditioning encoder for an input

condition y, such as a text embedding, zt represents the

noisy latent sample at the time step t. The noise prediction

model in SD is based on the U-Net architecture, where each

layer consists of a residual block, a self-attention block, and

a cross-attention block, as depicted in Fig. 4. At a denoising

step t, the features ϕl−1
t from the previous (l − 1)-th layer

are relayed to the residual block to produce the res-features

f lt . Within the self-attention block, the combined features

(ϕl−1
t +f lt) through the residual connection are projected to

the query features qlt, key features klt and value features vlt.

The above res-features f lt contributes to the content of the

generated image and the attention features hold substantial

information that contributes to the overall structure layout,

which are normally used in image editing [32, 40, 53, 65].

Diffusion models possess the pivotal feature of employ-

ing guidance to influence the reverse process for generat-

ing conditional samples. Typically, classifier guidance can

be applied to the score-based models by utilizing a dis-

tinct classifier. Ho et al. [33] introduce the classifier-free

guidance technique, blending both conditioned noise pre-

diction ϵθ(zt, t, τ(y)) and unconditioned noise prediction

ϵθ(zt, t,∅), to extrapolate one from another,

ϵ̃θ(zt, t, τ(y)) = ωϵθ(zt, t, τ(y)) + (1− ω)ϵθ(zt, t,∅).
(2)

where ∅ is the embedding of a null text and ω is the guid-

ance scale.

3.2. Diffuse Color Extraction via Diffusion Features

Our approach creates a 3D avatar from a face image I that is

either provided by a user or generated by a diffusion model

[51, 56] from a text prompt. To unify the treatment of those

two cases, the DDIM inversion [20, 64] with non-textual

condition is applied to the image that results in a latent noise

zIT at time step T from which the original image I is then

reconstructed through the backward process. This gives rise

to a set of features from the diffusion model.

The given image I , no matter user-provided or SD-

generated, typically contains shadows, specular highlights,

and lighting effects that are hard to eliminate. To render

a relightable and animatable 3D avatar, it usually requires

a diffuse texture map with these lighting effects removed

from the image, which is a challenging task. For this, we

make a key observation that reveals the relation between the
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Figure 3. Features Visualization. We render a high-quality data

with PBR textures under a complex lighting condition to image I ,

and also render its corresponding ground truth diffuse color image.

We input the I to our DCE model to produce result Id. The S is the

semantic mask. We apply DDIM inversion and sampling on these

images and extract the features. To visualize the features, we ap-

ply PCA on the extracted features to check the first three principal

components. The attention features and res-features shown here

are all from the 8-th layer at upsampling layers in the U-Net at time

step 101. From the extracted query and key features of I , we can

clearly visualize the lighting. The colors and extracted query and

key features of the result Id closely match those from the ground

truth image, which demonstrates our method effectively removes

the lighting. All res-features do not present too much lighting. We

also show the color distributions of these three images, illustrating

that the result Id can eliminate shadows and specular points, mak-

ing its distribution similar to the ground truth.

self-attention features and the lighting effects in the image,

and introduce a DCE model to eliminate the lighting.

First, we note that the features f lt in each layer contain

the RGB details as discussed in [63, 65]. The self-attention

features qlt and klt reflect the image layout, with similar re-

gions exhibiting similar values. Beyond this, our finding is

that the variations in these self-attention features qlt and klt
indeed reflect the variations caused by the lighting effects

such as shading, shadows, and specular highlights within a

semantic region. This is illustrated in Fig. 3. This concept

is readily graspable. Consider a pixel on the face image,

its query features ought to align with the key features from

the same facial part so that its color can be retrieved from

the relevant pixels. With the lighting added to the diffuse

image, the query features must vary in the same way as the

variation caused by the lighting effects. In this way, the

lighted colors could be correctly retrieved corresponding to

the lighting pattern – shadows contribute to the colors of
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Figure 4. DCE Model. The input image I is fed to the face parsing

model to create the semantic mask S. We apply DDIM inversion

on the I and S to get initial noise zIT and zST , then we progressively

denoise the zIT and zST to extract and preserve the res-features and

attention features separately. Lastly, we progressively denoise the

zIT one more time, copying the res-features and attention features

from storage at certain layers (as discussed in Sec. 4) during sam-

pling to produce ẑI0 , the final result Id will be generated from de-

coding the ẑI0 .

nearby shadowed pixels, while highlights contribute to the

colors of nearby highlighted ones.

To eliminate lighting effects, one just needs to remove

the variation in the self-attention (query and key) features

while still keeping these features aligned with the semantic

structure. Fig. 4 summarizes the idea. Specifically, first we

choose a face parsing model to generate a semantic mask

S for the image I . The semantic mask meets the above

two requirements since it perfectly aligns with the semantic

structure by design and has no variation within a semantic

region. Then we apply the DDIM inversion to S resulting in

a latent noise zST at time step T , and obtain the self-attention

features of S via the backward process starting from zST for

further replacing qlt and klt of the original I . Since the se-

mantic mask has uniform values within a semantic region,

the resultant self-attention features are hypothesized to con-

tain no lighting effects (see Fig. 3), while the face details are

still kept in the features f lt of the original image I . Thus, by

replacing the query and key features qlt and klt with those

from the semantic mask in the self-attention block, we are

able to eliminate the lighting effects from I and keep its dif-

fuse colors through the backward process starting from the

latent noise zIT used for generating I .

This approach can be applied to eliminate lighting effects

from more generic images other than face images, and we

show more results in the supplementary material.

3.3. 3D Avatar Mesh Generation

We employ the FLAME [43] model as our geometry rep-

resentation of 3D avatars. FLAME is a 3D head template

model, which is trained from over 33, 000 scans. It is char-

acterized by the parameters for identity shape β , facial ex-

pression ψ and pose parameters θ. With these parameters.

FLAME generates a mesh M(β, ψ, θ) consisting 5023 ver-

tices and 9976 faces, including head, neck, and eyeballs

meshes. We adopt MICA [76] for estimating shape code

β∗ of the FLAME model from the diffuse image Id, which

excels in accurately estimating the neutral face shape and

is robust to expression, illumination, and camera changes.

We additionally apply EMOCA [18] to obtain the expres-

sion code ψ∗, pose parameters θ∗ and camera parameters

c∗, which are employed for subsequent 3D animation/driv-

ing applications. Note that we do not use the color texture

generated by the EMOCA combining the FLAME texture

basis. It cannot accurately present the true face color, lacks

skin details and contains no PBR details, such as diffuse

colors, normal maps, specularity, and roughness textures,

which can be derived below with our AGT-DM.

3.4. Authenticity Guided Texture Diffusion Model

Given the current estimated mesh M(β∗, ψ∗, θ∗), camera

parameters c∗ and the lighting-free face image Id, one can

do the texture mapping of the latter onto the mesh, and then

project the obtained mesh texture to an initial texture UV

map Im. Since Id is only a single view of the face, the

resultant Im is an incomplete UV texture map of diffuse

colors, and we use V to denote its visible mask in the UV

coordinates. The UV texture map may also not perfectly

align with the mesh due to the imperfect estimation of face

pose, expression and camera parameters by EMOCA.

To address the above challenges, we train an AGT-DM

that can 1) inpaint the partially observed texture UV map Im
by T −N steps to fill in the unobserved regions, 2) improve

the alignment between the texture map and the 3D mesh

by leveraging the texture diffusion model as a prior, and 3)

preserve the identity and facial details by employing two

guidance signals based on the photometric and edge details.

Moreover, the model can output more PBR details beyond

the diffuse color textures, including normal, specular and

roughness maps from the given Im and V .

To this end, we use the online 3DScan dataset [1] that

consists of high-quality 3D face scans alongside multiple

types of PBR texture maps including diffuse colors, normal

maps, specularity and roughness textures. We process this

dataset (details in the supplementary material) as a training

dataset to train a texture diffusion model where the U-net

of the original SD is finetuned over the ground truth diffuse

UV maps from the dataset. To generate PBR textures, the

SD encoder is frozen and the SD decoder is finetuned for

each type of PBR textures (specularity, roughness and nor-
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mal), except for the the PBR decoder for diffuse texture,Dd

which directly inherits from the original SD decoder. Then

we can use the fine-tuned texture diffusion model to inpaint

the masked diffuse color map V ⊙ Im for the first T − N

steps to get ZN . We denoise ZN for the rest N steps to

achieve output Z0. Because the training dataset has ideally

aligned meshes and texture details, the resultant texture dif-

fusion model can improve the alignment between the output

PBR textures and meshes by denoising the noisy texture la-

tent ZN generated from latent inpainting.
To further enhance the PBR textures with more facial de-

tails, we employ two guidance terms to guide the sampling
process of the texture diffusion model. The first is the pho-
tometric guidance GP with the following energy function,

GP = ωphoto||Vd ⊙ (R(M(β∗

, ψ
∗

, θ
∗), Dd(zt), c

∗)− Id)||
2

2

+ ωlpipsLlpips(Vd ⊙ (R(M(β∗

, ψ
∗

, θ
∗), Dd(zt), c

∗)), Vd ⊙ Id))
(3)

where Vd is the mask over the visible part of rendered face,

as shown in Fig. 6, and the R(·) is a differential renderer of

the avatar face based on the current estimate of the meshM ,

the diffuse color texture mapDd(zt) at a diffusion time step

t, the Llpips(.) is the perceptual loss function (LPIPS [73]).

The minimization of this photometric energy will align the

rendered image with the original image.
The second is the edge guidance with the following edge

energy function,

GE = |||Vd ⊙ (C(R(M(β∗

, ψ
∗

, θ
∗), D(zt), c

∗))− C(Id))||
2

2

(4)

whereC(·) is the canny edge detection function [13]. While

the edges contain high-frequency details, as shown in Fig.

2, this guidance will help retain the facial details such as

wrinkles, freckles, pores, moles and scars in the image Id,

making the generated avatars look more realistic with high

fidelity.

We integrate the two guidances through the gradients of

their energy functions into the sampling of classifier-free

guidance below,

ϵ̃θ(zt, t, τ(y)) = ωϵθ(zt, t, τ(y)) + (1− ω)ϵθ(zt, t,∅)

+ ωp∇ztGP + ωe∇ztGE . (5)

We demonstrate the effectiveness in Fig 6.

4. Experiments

4.1. Setup and Baselines

Experimental Setup. We used SDXL[51] as our text-

to-image generation model. We used pretrained BiSeNet

[2, 70] for generating face parsing mask, S. In our DCE

module, we use the standard SD-2.1 base model and apply

the DDIM sampling with 20 time steps. We preserve the

res-features from 4th to 11th upsampling layers in the U-

net extracted from the I , and inject them into the DDIM

sampling of zIT , the query and key features from the 4th to

9th upsampling layers are extracted from DDIM inversion

of S. We choose not to inject query and key features from

all layers because we find injecting them to the last few lay-

ers can sometimes slightly change the identity.

For our AGT-DM, we finetune the U-Net from SD-2.1-

base model on our annotated 3DScan store dataset to gener-

ate diffuse color texture map. We attach “A UV map of” to

the text prompt during finetuning to generate FLAME UV

maps. We train three decoders to output normal, specular

and roughness maps. More training details are presented in

the supplementary material.

In the AGT-DM, we use T = 200, N = 90, ω = 7.5,

ωp = 0.1, ωphoto = 0.4, ωlpips = 0.6 and ωe = 0.05. In the

initial T −N denoising steps, our approach adopts a latent

space inpainting technique akin to the method described in

[9], utilizing a visibility mask. During the final N steps,

we apply the proposed photometric and edge guidances to

rectify any misalignments and ensure a coherent integration

between the observed and unobserved regions of the face.

After the inference, we pass the resultant latent code to nor-

mal, specular and roughness decoders to obtain the corre-

sponding PBR texture maps. We then pass the texture to a

pre-trained Stable Diffusion super-resoltuion network [56]

to get 2K resolution texture.

Baselines. We show comparisons against different

state-of-the-art approaches for text-to-avatar genera-

tion (Latent3d [12], CLIPMatrix [36], Text2Mesh[47],

CLIPFace[7], DreamFace[72]) and image-to-avatar genera-

tion (FlameTex[22], PanoHead [6]) in the Table. 1. Details

about the comparisons are included in the supplementary

material.

4.2. Results and Discussion

We demonstrate our text/image generated realistic avatars

in Fig. 1 and 5. Note that, we do not have those images

in the training data for our AGT-DM. Generated results

demonstrate rich textures maintaining fidelity to the given

text prompt/image. Furthermore, due to our DCE model

and AGT-DM’s capabilities to extract diffuse color texture

and PBR details, we can correctly render relighted avatars

from any lighting condition. Since, AGT-DM enforces con-

sistency across the observed and unobserved region, our

rendered avatars look equally realistic from different angles

without any visible artifacts.

Performance Analysis. For comparison, we randomly

select 40 text prompts shown in the supplementary material,

ensuring a comprehensive representation across various age

groups, ethnicities and genders, as well as including a range

of celebrities. For DreamFace and UltrAvatar, we render the
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“A middle-aged East Asian man with 
pronounced wrinkles, piercing eyes.”

“A middle-aged Caucasian woman 
with sun-kissed skin, subtle smile lines”

“A young white girl with blue eyes, 
a dusting of freckles across her nose” “A middle-age Middle Eastern man”

“Morgan Freeman” “Brad Pitt” “Mark Zuckerberg” “Will Smith”

Figure 5. Results of generating random identities and celebrities. We input the text prompts into the generic SDXL to create 2D

face images. Our results showcase the reconstructed high-quality PBR textures which are also well-aligned with the meshes, exhibit high

fidelity, and maintain the identity and facial details. To illustrate the quality of our generation, we relight each 3D avatar under various

environment maps.

Image 𝑰𝒅
𝑽𝒅

𝑽𝒅⊙ 𝑰𝒅
𝑽

𝑽⊙ 𝑰𝒎

On 𝑰𝒅On UV Map

Only with 𝑮𝑷 With 𝑮𝑷 + 𝑮𝑬

Without 𝑮𝑷 and 𝑮𝑬Masks

Figure 6. Analysis of the guidances in the AGT-DM. Three PBR

textures generation scenarios from image Id by our AGT-DM are

shown: one without GP and GE , one only with GP , and another

with bothGP andGE . It clearly demonstrates that the identity and

facial details are effectively maintained through these two guid-

ances.

generated meshes from 50 different angles under five dif-

ferent lighting conditions. For PanoHead, we provide five

face images generated by SDXL for each text prompt, re-

sulting in a total of 200 face images. Producing 50 different

views for each prompt via PanoHead yields a total of 10k

images (the same number applied to DreamFace and Ul-

trAvatar). UltrAvatar can generate high-quality facial asset

from text prompt within 2 minutes (compared to 5 minutes

for DreamFace) on a single Nvidia A6000 GPU.

We evaluate the perceptual quality of the rendered im-

ages by using standard generative model metrics FID and

KID. Similar to CLIPFace, we evaluate both of these met-

rics with respect to masked FFHQ images [37] (without

background, eyes and mouth interior) as ground truth. For

text-to-avatar generation, we additionally calculate CLIP

score to measure similarity between text prompts and ren-

dered images. We report the average score from two differ-

ent CLIP variants, ‘ViT-B/16’ and ‘ViT-L/14’.

Among the text-to-avatar generation approaches in Ta-

ble 1, DreamFace performs very well on maintaining sim-

ilarity between text and generated avatars. However, the

generated avatars by DreamFace lack realism and diver-

sity. Our proposed UltrAvatar performs significantly bet-

ter than DreamFace in terms of perceptual quality (more

results are shown in the supplementary material). Further-

more, in Fig. 7, we demonstrate that DreamFace fails to

generate avatars from challenging prompts (e.g. big nose,

uncommon celebrities). It is important to note that the re-

sults from DreamFace represent its best outputs from mul-

tiple runs. Our UltrAvatar also outperforms other text-to-

avatar approaches in terms of perceptual quality and CLIP

score, as reported in Table 1.

In the task of image-to-avatar generation, PanoHead
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Method FID ↓ KID ↓ CLIP Score ↑

DreamFace [72] 76.70 0.061 0.291 ± 0.020

ClipFace∗ [7] 80.34 0.032 0.251 ± 0.059

Latent3d∗[12] 205.27 0.260 0.227 ± 0.041

ClipMatrix∗[36] 198.34 0.180 0.243 ± 0.049

Text2Mesh∗[47] 219.59 0.185 0.264 ± 0.044

FlameTex∗[22] 88.95 0.053 -

PanoHead [6] 48.64 0.039 -

UtrAvatar (Ours) 45.50 0.029 0.301 ± 0.023

Table 1. Comparison of methods based on FID, KID, and CLIP
Score metrics, ∗ results are from CLIPFace.

“A black man with a big and wide nose”

O
u

r 
R

es
u

lt
s

D
re

a
m

F
a
ce

 

“Angela Merkel”

Figure 7. Comparison to DreamFace. Our results achieve bet-

ter alignment with the text prompt than DreamFace, especially for

extreme prompts.

achieves impressive performance in rendering front views.

However, the effectiveness of PanoHead is heavily depen-

dent on the accuracy of their pre-processing steps, which

occasionally fail to provide precise estimation. Further-

more, the NeRF-based PanoHead approach is limited in re-

lighting. Considering the multi-view rendering capabilities,

UltrAvatar outperforms PanoHead in image-to-avatar task

as shown in Table 1.

In addition, we automate text-to-avatar performance as-

sessment utilizing GPT-4V(ision) [3, 4]. GPT-4V is recog-

nized for its human-like evaluation capabilities in vision-

language tasks [68, 74]. We evaluate models on a five-point

Likert scale. The criteria for assessment include photo-

realism, artifact minimization, skin texture quality, textual

prompt alignment, and the overall focus and sharpness of

the image. As illustrated in Fig. 8, UltrAvatar demonstrates

superior capabilities in generating lifelike human faces. It

not only significantly reduces artifacts and enhances sharp-

ness and focus compared to DreamFace and PanoHead but

also maintains a high level of photo-realism and fidelity in

text-prompt alignment.

4.3. Ablation Studies.

In Fig. 6, we illustrate the impact of different guidances on

the AGT-DM performance. The photometric guidance en-

Figure 8. Qualitative evaluation by GPT-4V. Our framework has

overall better performance.

“Moana Waialiki”“Joker from DC” “Hiccup Horrendous 
Haddock III”

“Elsa from Frozen”

Figure 9. Results of out-of-domain avatar generation. Our

framework has capability to generate out-of-distribution animation

characters or non-human avatars.

forces the similarity between the generated texture and the

source image. Additionally, the edge guidance enhances the

details in the generated color texture.

Out-of-domain Generation. UltrAvatar can generate

avatars from the image/prompt of animation characters,

comic characters and other out-of-domain characters. We

have shown some results in Fig. 9.

Animation and Editing Since our generated avatars are

FLAME-based models, we can animate our generated

avatars by changing the expressions and poses. We can also

perform some texture editing using the text prompt in our

AGT-DM. We have included the animation and editing re-

sults in the supplementary material.

5. Conclusion

We introduce a novel approach to 3D avatar generation from

either a text prompt or a single image. At the core of our

method is the DCE Model designed to eliminate unwanted

lighting effects from a source image, as well as a texture

generation model guided by photometric and edge signals

to retain the avatar’s PBR details. Compared with the other

SOTA approaches, we demonstrate that our method can

generate 3D avatars that display heightened realism, higher

quality, superior fidelity and more extensive diversity.
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