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Abstract

The recent advent of pre-trained vision transformers has
unveiled a promising property: their inherent capability to
group semantically related visual concepts. In this paper,
we explore to harnesses this emergent feature to tackle few-
shot semantic segmentation, a task focused on classifying
pixels in a test image with a few example data. A critical
hurdle in this endeavor is preventing overfitting to the lim-
ited classes seen during training the few-shot segmentation
model. As our main discovery, we find that the concept of
“relationship descriptors”, initially conceived for enhanc-
ing the CLIP model for zero-shot semantic segmentation,
offers a potential solution. We adapt and refine this con-
cept to craft a relationship descriptor construction tailored
for few-shot semantic segmentation, extending its applica-
tion across multiple layers to enhance performance. Build-
ing upon this adaptation, we proposed a few-shot seman-
tic segmentation framework that is not only easy to imple-
ment and train but also effectively scales with the number
of support examples and categories. Through rigorous ex-
perimentation across various datasets, including PASCAL-
5i and COCO-20i, we demonstrate a clear advantage of
our method in diverse few-shot semantic segmentation sce-
narios, and a range of pre-trained vision transformer mod-
els. The findings clearly show that our method significantly
outperforms current state-of-the-art techniques, highlight-
ing the effectiveness of harnessing the emerging capabili-
ties of vision transformers for few-shot semantic segmenta-
tion. We release the code at https://github.com/
ZiqinZhou66/FewSegwithRD.git.

1. Introduction
The emergence of pre-trained vision transformers consti-
tutes a pivotal advancement within the computer vision
field. The pioneering model ViT [8] demonstrated com-
petitive performance on various image classification tasks.
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Figure 1. Visualized hidden (1) intra- and (2) cross- image match-
ing capability of pre-trained ViT-B/16 and ResNet50 based on Im-
ageNet. < p,H > denotes the cosine similarity between class-
wise prototypes p and local feature H of Image. Prototypes p
represent the average of embeddings belonging to the object-of-
interest for each image, for example, the “people” and “bicycle”
object of the Image in (1). It illuminates that the pre-trained trans-
former model has certain semantic grouping capabilities which
may be helpful for few-shot semantic segmentation.

Subsequent studies [2, 17, 34] introduced different pre-
training tasks to improve the perception ability further and
widely applied on various downstream tasks. Unlike pre-
trained ResNet models [15] which are based on conven-
tional convolutional neural networks, vision transformers
employ self-attention mechanisms to model global depen-
dencies in images, affording them the capacity to hier-
archically group semantically related visual concepts [2].
This means that they can learn to recognize and understand
complex visual patterns by associating meaningful concepts
within the image and enabling the potential for dense se-
mantic prediction. As shown in Fig. 1, we visualize that
without further learning, the pre-trained transformer already

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3817



has the capability of group patches with similar semantic
meanings together, which could be a valuable property for
segmentation tasks.

Few-shot semantic segmentation task aims to achieve
precise segmentation of novel classes with a limited num-
ber of examples. A common paradigm involves utilizing a
dedicated training dataset to acquire this capability. A piv-
otal obstacle in this learning process lies in ensuring that
the few-shot segmentation capability extends effectively to
classes that were not encountered in the training set. Utiliz-
ing pre-trained models, specifically pre-trained vision trans-
formers, presents a promising avenue for mitigating this
challenge. This is due to the fact that these pre-trained
models are typically trained on large-scale datasets, en-
compassing a diverse array of visual concepts, even though
their training is not specifically tailored for segmentation
tasks. Consequently, one might anticipate that by employ-
ing a segmentation training dataset consisting of some base
classes, it becomes possible for the few-shot segmentation
capability to generalize effectively to classes that were not
included in the training set.

Nonetheless, fine-tuning a pre-trained transformer di-
rectly with a decoder for segmentation often results in sig-
nificant overfitting to the base classes. This occurs because
the parameters introduced in the decoder, initially designed
to produce optimal segmentation results for base classes,
tend to be solely optimized for base class segmentation per-
formance. This can lead to valuable knowledge about un-
seen classes learned from the pre-trained transformer being
overlooked during the training process. To mitigate this is-
sue, our approach draws inspiration from the recently intro-
duced concept of a relationship descriptor (RD), originally
developed for extending the CLIP model for zero-shot se-
mantic segmentation. We adapt and refine the design of the
relationship descriptor construction to tailor it specifically
for few-shot semantic segmentation. Furthermore, we ex-
tend the construction of the RD to incorporate information
from multiple layers. Building upon these adaptations, we
propose a few-shot semantic segmentation framework that
is not only easy to implement and train but also exhibits ef-
fective scalability with the number of support examples and
categories.

We carried out extensive experiments on two well-
known datasets, namely PASCAL-5i and COCO-20i, to
evaluate the effectiveness of our proposed method. The re-
sults demonstrate that our method successfully tackles the
issue of overfitting to base classes, and exhibits superior
performance compared to state-of-the-art methods in vari-
ous settings: generalized (GFSS) and binary (FSS) few-shot
semantic segmentation.

2. Related Works

Few-Shot Learning (FSL) is a task that aims to enable
models to quickly adapt to new classes with limited train-
ing examples and has been applied to various tasks includ-
ing natural language understanding [1], image classification
[5, 48], semantic segmentation [21, 47], object detection
[53, 58] and so on. FSL can be broadly categorized into
two paradigms: episodic meta-learning and representation
learning. Meta-learning focuses on designing better meta-
learners [10, 33, 36], metric distances [19, 40, 42], and
architectures [11, 30, 37] through episodic training tasks.
While representation-based methods [3, 43] simplify the
procedure by facilitating more effective knowledge trans-
fer from a base-class dataset to novel classes with limited
support images.

Binary Few-shot Semantic Segmentation (FSS) was ini-
tially proposed in the work [47, 57] which designed a two-
branch architecture to provide a classifier from support to
query. Subsequent class-wise prototype methods [44, 47,
57, 60], influenced by [40], notably improved performance.
Recent advancements include democratized graph attention
mechanisms [46, 56], multi-scale correlation modules [52],
and superpixel-guided clustering [21]. The latest develop-
ments by [20] and [18] focus on refining semantic masks
and enhancing visual correspondence in few-shot segmen-
tation.

Generalized Few-shot Semantic Segmentation (GFSS)
introduced in [45], segments images of both base and novel
classes without prior inference knowledge. FineTune [31]
method emphasized test-time fine-tuning with a triplet loss
for enhanced novel class performance. CCA [27] intro-
duced a novel-class contrastive loss to address base-novel
relationships, while DIaM [13] applied the InfoMax prin-
ciple and knowledge distillation for classifier optimization.
Additionally, POP [26] proposed an orthogonal constraint
and an enrichment strategy to balance base and novel class
performance during fine-tuning.

Pre-trained Vision Transformer has been highly valued
in the research community due to its scalability [8] and
exceptional feature representation capabilities [32]. Vari-
ous downstream tasks have benefited from building upon
pre-trained vision transformers for better performances,
such as object detection [22, 41] and image segmenta-
tion [4, 23, 61]. For the few-shot semantic segmentation
task, multiple works [28, 38, 59] have achieved great perfor-
mance gain through using a pre-trained vision transformer
backbone. In this work, we further investigate the seman-
tic grouping capability of the pre-trained vision transformer
and introduce it to the few-shot segmentation task for better
novel class generalization.
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3. Background
3.1. Few-shot Semantic Segmentation

Few-shot Semantic Segmentation task aims to segment the
object-of-interest in a query image using only a few user-
provided examples, where each example consists of an im-
age paired with its corresponding object mask. The abil-
ity to perform few-shot segmentation is typically learned
from a training set with well-annotated examples from a set
of “base” classes, denoted as CB . The challenge of few-
shot segmentation is how to ensure the model learned from
“base” classes can be generalized to the novel classes dur-
ing the test time. In the literature, there are two primary
settings for few-shot segmentation:
Binary Few-shot Semantic Segmentation (FSS): This
conventional setting evaluates the model exclusively on
novel classes (CN , where CN ∩ CB = ∅) and often focuses
on object-background segmentation. The object mask only
contains binary values indicating the object’s presence.
Generalized Few-shot Semantic Segmentation (GFSS):
The generalized setting extends beyond the standard frame-
work to better mirror real-world scenarios, necessitating the
recognition of both base and novel classes (CB∪CN ) as well
as background within the same image. Also, this setting
considers multiple object classes in the support examples,
which requires the FSS method to scale well with the num-
ber of object categories.

3.2. Relationship Descriptor (RD) in ZegCLIP [61]

Recently, researchers have shown interest in adapting the
image-level zero-shot classification ability of CLIP [35]
model to the per-pixel prediction task, e.g., zero-shot se-
mantic segmentation [7, 51]. One work ZegCLIP [61] pro-
posed a novel relationship descriptor module (RD) to suf-
ficiently utilize the text-image matching capability learned
during the CLIP pretraining stage and effectively alleviate
the base class overfitting problem. Specifically, the RD is
the element-wise product between the image encoder em-
bedding from the [CLS] token and the text embedding from
the text encoder. Essentially, such a mechanism encodes
the dimension-wise contribution to the image-text match-
ing score calculated from a pre-trained CLIP model. It’s
important to note that the RD calculation takes place be-
fore applying any transformations to the text and image em-
beddings using newly introduced decoder parameters. This
ensures that the matching capability of these embeddings
is preserved, even for classes that are not part of the base
classes. Therefore, using RDs can potentially alleviate the
issue of overfitting to the based classes.

Our work is motivated by its effectiveness of leveraging
the inherent matching capability of CLIP to alleviate the
overfiting-to-base-class issue, despite our method not trying
to leverage any text-image matching capability and needs a
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Figure 2. Overall training framework of our proposed few-shot
semantic segmentation method.

further adaption and extension of the idea of RD for few-
shot segmentation.

3.3. Semantic Grouping Capability in Pre-trained
Vision Transformers

Akin to the text-image matching capability of CLIP, the in-
herent capability we are interested in utilizing is the seman-
tic grouping capability in a pre-trained vision transformer.
This capability is well demonstrated in Fig. 1. We can see
that even before any fine-tuning, the patch embedding ex-
tracted from a pew-trained visual transformer is similar to
patches sharing the same semantic concept, i.e., the “per-
son” riding bicycle or the “bicycle”. In particular, we find
this semantic grouping capability is quite prominent for vi-
sion transformers than CNNs. This motivates us to explore
pre-trained vision transformers for few-shot segmentation
tasks. The key research problem in this paper is thus how to
extend the idea of RD to fully leverage this semantic group-
ing capability to improve generalization.

4. Our Method
4.1. Few-shot Segmentation via Prototype Embed-

dings and Relationship Descriptors

Without loss of generality, we can express a Few-shot Se-
mantic Segmentation model in the form of F (Iq,S), where
Iq represents the query image and S denotes the support
set examples. To make the few-shot segmentation model
scalable to the number of the classes and support set exam-
ples, recent work [45] advocates representing each support
example as a prototype embedding vector, with one vector
per object category. Specifically for one support image, we
calculate the prototype embedding for class c as:

pc =
1∑

i,j M
c[i, j]

∑
i,j

Mc[i, j]Hi,j , (1)

where Hi,j ∈ Rd is the patch embedding extracted from a
pre-trained vision transformer and located at the (i, j) grid
of the support image. Mc[i, j] is the value at the corre-
sponding mask for object category c. It can be either “1”
or “0”, indicating foreground and background respectively.
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Figure 3. The detailed design of our Relationship Descriptor (RD) Generator module.

When there is more than one support example, we simply
average the prototype across all examples. Once support ex-
amples are represented by P = [p1,p2, · · · ,pc], predicting
semantic masks is performed by using a decoder F (Iq,P).

A straightforward idea to design F (Iq,P) is to use a
matching function to compare pc against patch embedding
Hi,j , producing how likely patch (i, j) is compatible with
object category c and thus achieving semantic segmenta-
tion. However, this naive idea often leads to overfitting the
base classes in the training set.

As mentioned in [61], the matching function inevitably
introduces new parameters for achieving good matching
quality1. However, those newly introduced parameters are
optimized solely for the existing base classes, potentially
disregarding valuable knowledge gained during the earlier
transformer pretraining stage that could be beneficial for
novel classes. In our experiments, we indeed observe this
issue if we directly use prototypes to match patch embed-
ding as shown in Tab. 4. Thus motivated by [61], we use an
RD-augmented decoder to perform few-shot segmentation.

More specifically, the decoder consists of three trans-
former layers with a multi-head cross-attention model. The
overall architecture is shown in Fig. 2. The transformer
takes two types of inputs. The first one is the patch em-
bedding from a pre-trained vision transformer, denoted as
H; and the second one is the concatenation of the pro-
totypes P and the relationship descriptor R which is de-
rived from the prototypes. The former will be used to pro-
duce the key and value vectors of the transformer and the
latter will be used for producing the query vectors of the
transformer. The final layer of attention, between the query
for a given class and the patch embeddings, is then used
to produce the segmentation mask for that particular class.
The high-level calculation can be written as Masks =
Trans(ϕ([P,R]), φ(H)), where [·] denotes concatenation
and {ϕ, φ} represent the projection layers on class queries
and patch features respectively. Please refer to [61] and Ap-
pendix for more details about the decoder design.

1Note that in ZegCLIP, the matching process is between text embedding
and patch embedding, while in our case is matching between prototype and
patch embedding.

4.2. Relationship Descriptors Design for Few-shot
Segmentation

Unlike the ZegCLIP [61] model, which utilizes the inherent
matching ability between image and text embeddings, the
inherent matching capability we wish to leverage is on the
matching between patch embeddings. This could further
boil down to the matching between a class prototype and
patch embeddings in a query image.

First, we define a relationship descriptor for each patch
that can be done by performing an element-wise multipli-
cation between a patch embedding and the class prototype.
Considering the potentially large number of patch embed-
dings and the need to scale the method across multiple
classes, it’s more efficient to consolidate these relationship
descriptors into a single descriptor per class. This consol-
idation can be effectively done by placing greater empha-
sis on descriptors whose corresponding patch embedding
shows a higher matching score with the class prototype.
The approach to achieve this involves a weighted summa-
tion method, which prioritizes descriptors based on their
matching scores:

rc =
∑
i,j

αi,jHi,j ⊙ pc, αi,j =
exp(H⊤

i,jp
c/τ)∑

m,n exp(H
⊤
m,np

c/τ)
,

(2)

where τ is a temperature hyperparameter and is set to 0.1.
Hi,j ⊙ pc ∈ Rd with ⊙ denoting the elementwise prod-
uct. H⊤

i,jp
c is the inner product (a scalar) between Hi,j and

pc, indicating how Hi,j is related to class c. The final class-
query procedure based on relationship descriptor generation
is detailed presented in Fig. 3 and the collection of relation-
ship descriptor can be formulated as R = [r1, r2, · · · , rc].

4.3. Multi-layer Relationship Descriptors

Since semantic grouping capability exists in different layers
of a vision transformer, it is possible to extend the relation-
ship descriptor definitions to multiple layers. We use the
lith layer patch embeddings of query and support images
to perform the calculation in Eq. 2. Similar augmentation
can be made to patch embeddings and prototypes. Specif-
ically when multi-layer relationship descriptors are used,
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Figure 4. The framework of fusing multiple relationship descrip-
tors from different transformer layers.
the enriched class query of the decoder transformers are
[Pl1 ,Rl1 ,Pl2 ,Rl2 , · · ·] and the mask is calculated via:

Masks = Trans
(
ϕ([Pl1 ,Rl1 ,Pl2 ,Rl2 , · · · ]), (3)

φ([Hl1 ,Hl2 , · · · ]))

4.4. Training and Inference

Training algorithm: The aim of the training is to empower
the network with the capability to conduct Few-Shot Se-
mantic Segmentation using class prototypes derived from
the support examples. In this work, we adopt a simple yet
effective training procedure to learn the few-shot semantic
segmentation capability from the training set. Specifically,
our method maintains C prototypes for all objects that ap-
pear in the training set and updates the prototype dynami-
cally using a momentum-style update equation:

pc ← (1− η) ∗ pc
i + η ∗ pc, (4)

where pc is the prototype embedding for the object in class
c and pc

i is the prototype embedding calculated from the i-
th image. η ∈ [0, 1) is the momentum coefficient to update
parameters smoothly instead of learning linear classifiers as
class-wise prototypes in the previous GFSS methods [45].
Following [12, 16], we initialize η with a relatively large
value of 0.996 and increase η gradually with iteration up to
1.0.

At every training step, we utilize the up-to-date proto-
types to compute RDs and generate queries for the decoder
transformer. It’s worth noting that because pc is dynami-
cally updated, it effectively introduces variations in the pro-
totypes since pc will differ at each iteration.
Training loss: Following previous works [55, 61], we apply
the combination of the focal loss and dice loss to train the
network, namely,

Lmask = λ · Lfocal(M,Mgt) + β · Ldice(M,Mgt), (5)

where {λ, β} is set to 20.0 and 1.0 to balance two loss items.
Our training method avoids the episodic training strategy

of traditional few-shot learning and a pre-calculated proto-
type will be supplied at each training step, which is akin
to the standard fully-supervised semantic segmentation at
each training step. As shown in our experimental study, this
method successfully adapts to both generalized and tradi-
tional binary few-shot segmentation settings.
Learnable parameters: Following ZegCLIP [61], we fix
the parameters of the backbone vision transformer and in-
troduce a few deep prompt tokens to make it adapt to the
segmentation task. So the to-be-trained parameters are only
those learnable deep prompts and the parameters in the
transformer decoder.
Inference: In the context of Generalized Few-Shot Se-
mantic Segmentation (GFSS), the class-wise prototypes are
momentum-updated by using the training samples from the
base classes. Meanwhile, we determine the prototypes for
novel classes based on the examples in the support set. In
the binary FSS setting that focuses on distinguishing fore-
ground from background, the representation of the back-
ground can be achieved using prototypes from the desig-
nated background class, as well as prototypes from base
classes. This approach is adopted because, during the in-
ference stage in conventional FSS settings, base classes are
treated as part of the background. More details are provided
in the Appendix.

It’s important to highlight that, in contrast to the tech-
niques outlined in [13, 26, 27, 31], our approach has the ca-
pability to directly execute Generalized Few-Shot Semantic
Segmentation using the support set examples, without re-
quiring any additional fine-tuning on those examples. For
a fair comparison, we also provide the results after a fast
update on learnable parameters on the few annotated novel
support set to further improve the performance.

5. Experiments

5.1. Datasets and Setup

To evaluate the effectiveness of our proposed method, we
conducted extensive experiments on two public bench-
mark datasets for GFSS and FSS settings: PASCAL-5i
and COCO-20i. The PASCAL-5i dataset is created from
PASCAL VOC 2012 [9] with additional annotations from
SDS [14] and contains a total of 20 classes with an extra
“background” category. COCO-20i dataset is more diffi-
cult which is derived from MSCOCO [24] and includes 80
categories with “background”.

For a fair comparison, we followed the evaluation proto-
col used in [13, 26] and divided the classes of each dataset
into four non-overlapping folds. For each fold, we consid-
ered the selected classes as the novel part (5 classes for
PASCAL-5i and 20 classes for COCO-20i), while the re-
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Table 1. Comparison of our proposed method with previous works on the PASCAL-5i dataset under the GFSS setting. mIoU(N) and
mIoU(B) denote the mean mIoU of the novel(N) and base(B) classes among four folders, while F0-F3 shows the detailed mIoU results of
each novel fold. Note that the rows with gray background represent the results obtained after test-time finetuning on novel classes .

Method 1-shot 5-shot
mIoU(N) F0 F1 F2 F3 mIoU(B) hIoU mIoU(N) F0 F1 F2 F3 mIoU(B) hIoU

CANet[57] 2.4 - - - - 8.7 3.8 1.5 - - - - 9.1 2.6
PFENet [44] 2.7 - - - - 8.3 4.0 1.9 - - - - 8.8 3.1

SCL [54] 2.4 - - - - 8.9 3.8 1.8 - - - - 9.1 3.1
PANet [47] 11.3 - - - - 31.9 16.6 15.3 - - - - 33.0 20.9

CAPL+PANet [45] 15.0 - - - - 63.1 24.2 19.7 - - - - 63.8 30.1
CAPL+DeeplabV3 [45] 15.1 - - - - 65.7 24.6 23.3 - - - - 67.0 34.6

CAPL+PSPNet [45] 17.5 11.5 26.0 20.3 12.0 66.1 27.7 24.6 16.7 34.6 27.4 19.6 66.9 36.0
CAPL-ViT [45] 23.2 16.5 32.4 25.3 18.6 72.6 35.2 28.5 20.2 37.8 31.2 24.5 73.4 41.1

Ours-single 45.4 45.6 53.5 38.8 43.5 74.2 56.3 51.2 55.7 61.9 40.9 46.3 74.5 60.7
Ours-multiple 51.0 58.1 60.4 40.5 44.8 76.3 61.1 55.3 63.0 66.5 42.5 49.2 76.5 64.2
FineTune [31] 19.7 - - - - 66.4 30.4 50.5 - - - - 71.3 59.1

CCA [27] 22.6 18.0 34.1 22.8 15.5 68.4 34.0 32.1 27.6 46.0 30.1 24.7 70.5 44.1
DIaM [13] 35.1 29.4 46.7 27.1 37.3 70.9 47.0 55.3 53.7 63.6 54.0 50.2 70.9 62.1
POP [26] 35.5 - - - - 73.9 48.0 55.9 - - - - 75.0 64.1

Ours-single 48.9 49.3 57.7 41.3 47.1 76.4 59.6 52.1 55.8 59.3 42.9 50.5 76.6 62.0
Ours-multiple 52.6 58.6 60.4 42.5 48.9 76.5 62.3 56.7 64.0 65.9 44.3 52.4 76.9 65.3

Table 2. Qualitative results on COCO-20i datasets under GFSS
setting. Note that the rows with gray background represent the

results obtained after test-time finetuning on novel classes .
Method mIoU(N) F0 F1 F2 F3 mIoU(B) hIoU

1-shot
CAPL [45] 7.6 5.3 9.2 6.9 9.1 44.4 13.0

CAPL-ViT [45] 9.7 6.5 10.8 11.2 10.2 46.1 16.0
Ours-single 17.2 13.4 18.5 22.0 14.7 46.5 25.1

Ours-multiple 21.1 17.1 21.3 25.2 20.9 49.5 29.6
FineTune [31] 9.2 - - - - 43.6 15.2

CCA [27] 8.8 6.6 10.0 9.3 9.4 46.9 14.1
DIaM [13] 17.2 15.9 19.5 16.9 16.6 48.3 25.4
POP [26] 15.3 - - - - 54.7 23.9

Ours-single 20.6 17.6 21.8 24.1 19.0 48.4 28.9
Ours-multiple 23.2 20.3 22.3 27.5 22.7 49.6 31.5

5-shot
CAPL [45] 11.0 6.5 14.0 10.6 13.0 44.9 17.7

CAPL-ViT [45] 11.9 7.2 13.5 14.1 12.9 46.9 19.0
Ours-single 22.0 19.4 22.6 25.7 20.5 47.2 30.0

Ours-multiple 27.0 22.6 28.3 30.4 26.5 50.1 35.1
FineTune [31] 28.8 - - - - 46.6 35.6

CCA [27] 12.7 9.2 15.3 12.1 14.1 47.1 20.0
DIaM [13] 28.7 24.9 33.9 27.2 29.0 48.4 36.0
POP [26] 30.0 - - - - 54.9 38.8

Ours-single 25.1 25.3 25.4 26.6 23.1 49.6 33.3
Ours-multiple 33.1 32.1 36.9 34.2 29.3 50.2 39.9

maining classes (15 for PASCAL-5i and 60 for COCO-20i)
were considered as base categories. In the training stage,
we learn the segmentation ability on the base dataset, and
then randomly selected either 1 or 5 samples as support sets
for each novel class. In the testing stage, we used the orig-
inal testing set which contains both base and novel classes
for evaluation without any pair-wise input in the generalized
few-shot segmentation task. We randomly selected different
samples as the novel support set several times by controlling

the seeds, as done in [45]. The averaged results of each fold
are provided in this work.

5.2. Evaluation Metrics

Following previous works, we measure pixel-wise classifi-
cation accuracy (pAcc) and the mean of class-wise inter-
section over union (mIoU) on both base and novel classes,
denoted as mIoU(B) and mIoU(N) respectively. We also
evaluate the harmonic mean of the IoU (hIoU ) among base
and novel classes which is formulated as:

hIoU =
2 ∗mIoU(B) ∗mIoU(N)

mIoU(B) +mIoU(N)
. (6)

5.3. Implementation Details

Our proposed method is implemented based on the open-
source toolbox MMSegmentation [6] with PyTorch 1.10.1.
All experiments we provided are based on the pre-trained
vision transformers with the ViT-B/16 architecture and con-
ducted on 4 Tesla V100 GPUs. The batch size is set to 16
with 512x512 as the resolution of images. The total training
iterations on base datasets are 10K for PASCAL-5i and 40K
for COCO-20i. The number of prompt tokens is set to 10
and 50 for PASCAL-5i and COCO-20i according to [61].
During the testing stage, similar to prior works [13, 26],
we perform quick adaptation by fine-tuning the learned pa-
rameters for 100 iterations on PASCAL-5i and 400 itera-
tions on COCO-20i, respectively. The optimizer is set to
AdamW with the default training schedule in the MMSeg
toolbox. Similar to the architecture proposed in [55, 61],
we employ three plain vision transformer layers serving as
the lightweight decoder network.
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(g) Ground Truth(f) Ours-ViT(e) POP(d) FT(c) Ours-ViT(b) CAPL-ViT(a) Image

Figure 5. Visualization results on PASCAL-5i compared with
other methods on GFSS setting. Note that (b)-(c) are the meth-
ods without test-time tuning, while (d)-(f) are the methods with
test-time tuning on novel support images.

5.4. Comparison with Existing GFSS Methods

We first compare our methods against existing ones in Tab. 1
and Tab. 2. Quantitative improvements achieved by our
proposed are shown in Fig 5. We consider using single-
layer RDs (our-single) and multi-layer RDs (our-multiple).
In addition to the inference approaches mentioned previ-
ously, we also explore using the test-tuning strategy, that
is, fine-tuning the model several iterations on the novel
support examples, to achieve a fair comparison to meth-
ods [13, 26, 27, 31]. The results obtained are marked
in gray background . As seen from Tab. 1 and Tab. 2,
our method shows a clear advantage over existing meth-
ods when no test-tuning strategy is used. In particular, us-
ing multi-layer RDs leads to consistent improvement over
single layer RDs, achieving state-of-the-art performance in
GFSS. After test-tuning, our methods gains further improve
and outperform the comparable methods.

Moreover, we reported the results by replacing the pre-
trained ResNet backbone with ViT-B/16 in CAPL [45] and
using the same decoder in our proposed method. The re-
sults (CAPL-ViT) demonstrate that even though the CAPL
method with ViT achieved better segmentation performance
on base classes, it still fails to generalize to novel categories.
It validates that the competitive performance of our pro-
posed method is not coming from the use of ViT, but the
effectiveness of using relationship descriptor. Besides, the
visualization in Fig. 6 indicates that enriched multiple RDs
further improve the generalized recognition ability while
achieving better segmentation boundaries.

5.5. Apply Our Pre-trained Model to FSS Setting

In accordance with previous studies, we evaluated the bi-
nary Few-Shot Semantic Segmentation (FSS) performance
on novel pair-wise support-query sets. Although our
model was not specifically designed for binary segmenta-
tion, it demonstrated remarkable results on PASCAL-5i and
COCO-20i, as reported in Tab. 3 and qualitative perfor-
mance is presented in Fig. 6.

Table 3. Comparison of our proposed method with the state-of-
the-art FSS methods. Note that our method has not been trained on
binary segmentation as well as test-time tuning on novel classes.

Method Backbone PASCAL-5i COCO-20i
1-shot 5-shot 1-shot 5-shot

PANet [47] RN-50 48.1 55.7 20.9 29.7
PFENet [44] RN-50 60.1 61.4 32.4 37.4
BAM [20] RN-50 67.8 70.9 46.2 51.2

MSANet [18] RN-50 69.1 74.0 51.1 56.8
FECANet [25] RN-50 69.3 74.9 50.9 58.3
ASGNet [21] RN-101 59.3 63.9 34.5 42.5
SAGNN [49] RN-101 62.1 62.8 37.2 42.7
HSNet [29] RN-101 66.2 70.4 41.2 49.5
CAPL [45] RN-101 63.6 68.9 42.8 50.4
DACM [50] RN-101 69.1 73.3 43.0 49.2

CLIPSeg [28] CLIP-ViT/B 52.3 - 33.2 -
CLIPSeg+ [28] CLIP-ViT/B 59.3 - 33.2 -
PGMA-Net [39] CLIP-ViT/B 74.1 74.6 - -
PGMA-Net [39] CLIP-RN50 74.1 75.2 54.3 57.1
PGMA-Net [39] CLIP-RN101 77.6 78.6 59.4 61.8

FPTrans [59] ViT-B/16 64.7 73.7 42.0 53.8
FPTrans [59] DeiT-B/16 68.8 78.0 47.0 58.9
HSNet [38] Swin-B 67.3 71.6 47.3 55.1

DCAMA [38] Swin-B 69.3 74.9 50.9 58.3
Ours-single ViT-B/16 77.7 78.0 57.1 59.2

Ours-multiple ViT-B/16 78.9 80.3 60.1 61.2

5.6. Ablation study

A. How about the results without applying RD?
RD (relationship descriptor) was first proposed in ZegCLIP
[61] to unleash the latent matching potential of the pre-
trained transformer. By design, it only applies to the CLIP
model that matches text and image modalities and it does
not support the multiple layers design as [CLS] from other
layers do not match across modalities in the pre-trained
CLIP model. In fact, how to generalize the idea of RD to
other domain or alternative construction of RD are not clear
before this work. To experimentally verify this argument,
we devised a baseline approach that exclusively employed
class-wise prototypes without RDs as queries for the seg-
ment decoder. The results are shown in the first row of
Table 4. Evidently, when RD is not utilized, a significant
performance drop is observed. This outcome clearly shows
the indispensable role played by RD in our method for mit-
igating overfitting to the training set.
B. Effect of our proposed design of RD
ZegCLIP [61] constructed relationship descriptors based on
[cls] token, leveraging the inherent matching capability of
[cls] tokens with CLIP text embedding. Our work is based
on the vision transformer and we propose to leverage the
inherent semantic grouping (matching) capability of patch
tokens. Thus, we have a different design of RD, as shown
in Eq. 2, than the one in ZegCLIP. Moreover, we propose
a multi-layer strategy and fuse RD from different layers in
Eq. 3. One alternative solution is to straightforwardly bor-
row the approach of RD construction from ZegCLIP by us-
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Table 4. Using an alternative design for relationship descriptor (RD). [CLS] indicates a design that directly calculates RD via the [CLS] and
the prototype embedding, as directly borrowed from ZegCLIP [61]. Our method achieves better performance especially on novel classes,
highlighting the contribution of our customized RD.

RD format
PASCAL -5i COCO -20i

1-shot 5-shot 1-shot 5-shot
mIoU(N) mIoU(B) hIoU mIoU(N) mIoU(B) hIoU mIoU(N) mIoU(B) hIoU mIoU(N) mIoU(B) hIoU

N/A - 15.9 68.6 25.8 16.1 71.0 26.2 7.2 42.8 12.3 7.8 43.4 13.2

single [cls] 41.9 73.8 53.5 48.8 74.2 58.9 13.7 45.4 21.0 16.8 46.5 24.7
ours 45.4 74.2 56.3 51.2 74.5 60.7 17.2 46.5 25.1 22.0 47.2 30.0

3.5(↑) (0.4↑) (2.8↑) (2.4↑) (0.3↑) (1.8↑) (3.5↑) (1.1↑) (4.1↑) (5.2↑) (0.7↑) (5.3↑)

multiple [cls] 48.6 74.6 58.9 53.9 75.3 62.8 17.5 49.9 25.9 20.6 50.2 29.2
ours 51.0 76.3 61.1 55.3 76.5 64.2 21.1 49.5 29.6 27.0 50.1 35.1

(2.4↑) (1.7↑) (2.2↑) (1.4↑) (1.2↑) (1.4↑) (3.6↑) (0.4↓) (3.7↑) (6.4↑) 0.1(↓) (5.9↑)

ing the element-wise product between the [CLS] embed-
ding and prototype embedding. We investigate this variant
(denoted as [cls]), and report the results in Table 4. Inter-
estingly, we find this approach can also achieve quite good
performance than the baseline without using RDs. The sig-
nificantly lower performance compared to our RD design
clearly demonstrates the unique contribution of our cus-
tomized RD approach.

(1) Generalized Few-shot Semantic Segmentation (GFSS)

(2) Adapt to Binary Few-shot Semantic Segmentation (FSS)

(a) Image (b) Ours-single (c) Ours-multiple (d) Ground Truth
Figure 6. Quantitative results of (1) generalized and (2) binary
few-shot semantic segmentation. (a) are the testing images, (b)
and (c) are the results of our method with single and multiple re-
lationship descriptors, (d) denotes ground truths. After enriched
RDs, (c) shows better segmentation and recognition ability.

C. The choice of layers for multi-layer RDs
Our proposed multi-layer relationship descriptors (RDs)
have exhibited a clear advantage over the use of single-
layer RDs, as evident in Tab. 4 and the quantitative en-
hancements demonstrated in Fig. 6. To further investigate,
we conducted comparisons among various choices of layers
for constructing multi-layer RDs, with the experimental re-
sults presented in Fig. 7. As seen, the incorporation of the
last layer is a main factor for achieving competitive perfor-
mance. In addition to that, we identify the best combination
from our investigation is utilizing the last three layers.
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Figure 7. Quantitative results on PASCAL VOC 2012 of fusing
relationship descriptors from different vision transformer layers.

6. Conclusion
This work presents a novel approach to few-shot semantic
segmentation that leverages the hidden matching capability
of a pre-trained vision transformer. The proposed method
focuses on a more practical but challenging generalized
few-shot segmentation setting and addresses the potential
overfitting to base classes in the segmentation training set
by using the relationship descriptor technique. In addition,
our work can handle arbitrary input to conduct both gener-
alized and traditional settings of the few-shot semantic seg-
mentation tasks. We demonstrate the effectiveness and sim-
plicity of our approach through extensive experimentation
on various pre-trained vision transformers, achieving supe-
rior generalization performance and providing insights for
choosing the appropriate transformer model. This work in-
troduces a new paradigm for designing few-shot dense pre-
diction models and is expected to contribute significantly to
the research community.
Limitation Limited by the identification ability and resolu-
tion of ViT, similar objects may be misclassified and small
objects may be ignored in complex scenes.
Acknowledgement This work was done in Adelaide Intel-
ligence Research (AIR) Lab and Lingqiao Liu is supported
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