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Figure 1. Video super-resolution comparisons on both real-world and AI-generated videos. Our proposed Upscale-A-Video showcases
excellent upscaling capabilities. By using appropriate text prompts, it achieves impressive results characterized by finer details and height-
ened visual realism. (Zoom-in for best view)

Abstract

Text-based diffusion models have exhibited remarkable
success in generation and editing, showing great promise
for enhancing visual content with their generative prior.
However, applying these models to video super-resolution
remains challenging due to the high demands for output fi-
delity and temporal consistency, which is complicated by
the inherent randomness in diffusion models. Our study
introduces Upscale-A-Video, a text-guided latent diffusion

*Equal contribution.

framework for video upscaling. This framework ensures
temporal coherence through two key mechanisms: locally,
it integrates temporal layers into U-Net and VAE-Decoder,
maintaining consistency within short sequences; globally,
without training, a flow-guided recurrent latent propagation
module is introduced to enhance overall video stability by
propagating and fusing latent across the entire sequences.
Thanks to the diffusion paradigm, our model also offers
greater flexibility by allowing text prompts to guide texture
creation and adjustable noise levels to balance restoration
and generation, enabling a trade-off between fidelity and
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quality. Extensive experiments show that Upscale-A-Video
surpasses existing methods in both synthetic and real-world
benchmarks, as well as in AI-generated videos, showcasing
impressive visual realism and temporal consistency.

1. Introduction

Video super-resolution (VSR) in real-world scenarios is a
challenging task that aims at enhancing the quality of low-
quality videos to produce high-quality results. Unlike pre-
vious works that mainly focus on either synthetic degrada-
tions [8, 9, 64] or specific camera-related degradations [80],
this task is more demanding due to the need for address-
ing complex and unknown degradations commonly found
in low-quality videos, such as downsampling, noise, blur,
flickering, and video compression. In addition, maintain-
ing the visual fidelity and ensuring temporal coherence are
crucial for the perceptual quality of the output video. Al-
though recent convolutional neural network (CNN)-based
networks [10, 73] have shown success in mitigating many
forms of degradation, they still fall short in producing re-
alistic textures and details due to their limited generative
capabilities, often resulting in over-smoothing, which can
be observed in RealBasicVSR results shown in Fig. 1.

Diffusion models [24] have exhibited impressive profi-
ciency in generating high-quality images [49, 50, 52, 85]
and videos [6, 11, 17, 25, 87]. Harnessing their gen-
erative potential, diffusion-based models have been pro-
posed for image restoration, including both training from
scratch [50, 51, 83] and fine-tuning from pretrained Sta-
ble Diffusion models [38, 62]. These methods have ef-
fectively mitigated the over-smoothing issue often observed
in CNN-based models, yielding results with more realistic
fine-grained details. However, adapting these diffusion pri-
ors to VSR remains a non-trivial challenge. This difficulty
stems from the inherent randomness in diffusion sampling,
which inevitably introduces unexpected temporal disconti-
nuities in resulting videos. This issue is more pronounced in
latent diffusion, where the VAE decoder further introduces
flickering in low-level texture details.

Recent efforts have been made to adapt image diffusion
models for video tasks by introducing strategies for tempo-
ral consistency, which include: 1) Fine-tuning video mod-
els with temporal layers such as 3D convolution [6, 66] and
temporal attention [6, 11, 66, 87]; 2) Employing zero-shot
mechanisms like cross-frame attention [71, 78] and flow-
guided attention [14, 18] in the pretrained models. Al-
though these solutions significantly improve video stabil-
ity, there remain two primary issues: i) The current meth-
ods, operating in the U-Net feature or latent space, strug-
gle to maintain low-level consistency, with issues like tex-
ture flickering still present. ii) The existing temporal layers
and attention mechanisms can only impose constraints on

short, local input sequences, limiting their capacity to en-
sure global temporal consistency in longer videos.

To tackle these issues, we adopt a local-global strategy
for maintaining temporal consistency in video reconstruc-
tion, focusing on both fine-grained textures and overall con-
sistency. On a local video clip, we explore finetuning a pre-
trained image ×4 upscaling model [2] with additional tem-
poral layers on the video data. Specifically, within a latent
diffusion framework, we first finetune the U-Net with inte-
grated 3D convolutions and temporal attention layers, and
then tune the VAE-Decoder with video-conditioned inputs
and 3D convolutions. The former significantly achieves
structure stability in local sequences, while the latter further
improves low-level consistency, reducing texture flickering.
On a more global scale, we introduce a novel, training-free
flow-guided recurrent latent propagation module. Spanning
short video segments, it bidirectionally conducts frame-
by-frame propagation and latent fusion during inference.
Leveraging latent fusion in a long-term sequence, this mod-
ule encourages overall stability for long videos.

We further investigate the generative potential of diffu-
sion models in the VSR task. Following the text-guided
fashion, our model can leverage text prompts as an optional
condition to steer the model towards producing more real-
istic and high-quality details, as illustrated in Fig. 1. Fur-
thermore, we enhance the robustness of our model against
heavy or unseen degradation by injecting noise into input to
dilute its degradation. By adjusting the level of added noise,
we can modulate the balance between restoring and generat-
ing within the diffusion model. Lower noise levels prioritize
the model’s restoration capabilities, while higher levels en-
courage generation of more refined details, thus achieving a
trade-off between fidelity and quality of the output.

To summarize, the main contribution of our study is a
practical and robust approach to real-world VSR. In par-
ticular, we conduct an exhaustive exploration of integrat-
ing a local-global temporal strategy within a latent diffu-
sion framework, enhancing temporal coherence and gener-
ation quality. We further examine ways to improve versatil-
ity by allowing text prompts to guide texture creation, and
offer control over noise levels to balance restoration and
generation, thereby achieving a trade-off between fidelity
and quality. Thanks to our design and pretrained genera-
tive prior, our model achieves state-of-the-art performance
on existing benchmarks, showing remarkable visual realism
and temporal consistency.

2. Related Work

Video Super-Resolution. VSR aims to restore a se-
quence of high-resolution (HR) video frames from its de-
graded low-resolution (LR) counterparts. Most existing ap-
proaches [7–9, 28–31, 36, 37, 64, 75] assume a pre-defined
degradation process [39, 45, 75, 82], and their performance
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deteriorates significantly in real-world scenarios due to the
limited generalizability. To tackle real-world VSR, recent
works go beyond the traditional paradigms by assuming
inputs with unknown degradations. Due to the lack of
real-world paired data for training, Yang et al. [80] pro-
pose to collect HR-LR data pairs with iPhone cameras.
While the VSR model trained on such data can be effec-
tive to videos captured by similar mobile cameras, its gen-
eralization capability to other devices is in doubt. Rather
than relying on labor-intensive pair data collection, recent
studies [10, 73] have shifted towards employing diverse
degradations for data augmentation during training, demon-
strating better performance in handling real-world cases.
Nonetheless, it is still challenging for existing CNN-based
approaches [10, 73] to generate photo-realistic textures due
to the absence of generative prior. In this study, we set our
sights on exploiting robust and extensive generative prior
encapsulated in a pretrained image diffusion model, i.e.,
Stable Diffusion (SD) ×4 upscaler [2]. By integrating this
strong diffusion prior, our approach circumvents the need
for exhaustive training from scratch and exhibits improved
performance in producing detailed textures.
Diffusion Models for Video Tasks. Following the success
of text-to-image diffusion models [4, 12, 16, 20, 22, 44, 85],
recent studies have ventured into the applications of video
diffusion models [15, 25–27, 40–42]. Instead of training
from scratch, some methods [14, 19, 48, 71, 78] focus on
video generation using off-the-shelf image diffusion mod-
els [50, 85] in a zero-shot manner. To keep temporal con-
sistency, cross attention [60] between neighboring frames
and optical flow [58] warping are popular solutions adopted
in these methods. While being efficient, these methods gen-
erally suffer from limited generalizability and the selection
of hyperparameters can be tricky. Most recently, Blattmann
et al. [6] propose to extend pretrained image diffusion mod-
els to the video domain by introducing an additional tem-
poral dimension and fine-tuning the temporal layers only to
speed up the training process. Subsequent works [21, 74]
following such paradigm are capable of generating impres-
sive video sequences. Inspired by these works, we employ a
pretrained image ×4 upscaling model [2] as generative prior
and propose a novel local-global temporal strategy, result-
ing in temporally coherent outputs with faithful details.
Diffusion Models for Restoration Tasks. With notable ad-
vancements in diffusion models [24, 46, 55, 77], numer-
ous diffusion-based works have been proposed for image
restoration. A straightforward way is to train a diffusion
model conditioned on LR images from scratch [50, 51,
53, 72, 83], which, however, demands significant compu-
tational resources for training. To avoid such heavy training
costs, another prevalent approach [12, 13, 32, 56, 67, 69, 76]
is to incorporate constraints into the reverse diffusion pro-
cess of a pretrained diffusion model. Though efficient, de-
signing these constraints relies on pre-defined image degra-

dation processes or pretrained SR models as a priori, lead-
ing to limited generalizability and inferior performance.
Recent works [62, 79] go further by fine-tuning directly on
a frozen pretrained diffusion model with several additional
trainable layers, demonstrating impressive performance. In-
spired by these recent advances, we focus on exploiting the
effective diffusion prior for real-world VSR, which remains
under-explored and challenging due to the temporal discon-
tinuities caused by inherent randomness during diffusion
sampling. With the proposed local-global temporal strategy,
our approach is capable of generating temporally coherent
results for real-world VSR.

3. Methodology
Our objective is to develop a text-guided diffusion frame-
work tailored for real-world VSR. The diffusion denois-
ing process, characterized by its inherent stochastic nature,
poses significant challenges when applied to video tasks.
These challenges include temporal instability and the emer-
gence of flickering artifacts, which are particularly promi-
nent in VSR tasks involving lengthy video sequences. The
complexity of these tasks lies not just in achieving temporal
consistency within localized segments, but also in preserv-
ing coherence throughout the entire video.

As illustrated in Fig. 2, our framework incorporates
both local and global modules in the latent diffusion model
(LDM) to preserve temporal consistency both within and
across video segments. Within each diffusion time step
(t = 1, 2 . . . T ), the video is split into segments and pro-
cessed with a U-Net that includes temporal layers to ensure
consistency within each segment. If the current time step
falls within the user-specified global refinement steps (T ∗),
a recurrent latent propagation module is employed to im-
prove consistency across segments during inference. Lastly,
a finetuned VAE-Decoder is used to reduce remaining flick-
ering artifacts. Thanks to the diffusion paradigm, our model
exhibits remarkable versatility: 1) Input text prompts can
enhance video quality further with improved realism and
details. 2) User-specified noise levels provide a control over
the trade-off between quality and fidelity.

3.1. Preliminary: Diffusion Models

Pretrained Stable Diffusion Image ×4 Upscaler. Our
Upscale-A-Video is built upon the pretrained text-guided
SD ×4 Upscaler [2]. It employs the LDM framework [50],
which uses an autoencoder to transform an image into a
latent with an encoder E (×4 downsampling), and recon-
structs it with a decoder D. Conditioned on the low-
resolution images x, it learns to generate the high-quality
counterparts via iterative denoising in the latent space. To
achieve this, given latent samples z ∼ pdata, diffused la-
tents zt = αtz + σtϵ is generated by introducing Gaus-
sian noise to the latents z at each diffusion step t; where
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Figure 2. An overview of Upscale-A-Video. Upscale-A-Video processes long videos using both local and global strategies to maintain
temporal coherence. It divides the video into segments and processes them using a U-Net with temporal layers for intra-segment consis-
tency. During user-specified diffusion steps for global refinement, a recurrent latent propagation module is used to enhance inter-segment
consistency. Finally, a finetuned VAE-Decoder reduces remaining flickering artifacts for low-level consistency. Our model also allows
users to guide texture creation with text prompts and adjust noise levels to balance the effect of restoration and generation.

ϵ ∼ N (0, I), αt and σt define a noise schedule. To en-
hance the ability of our model to generate fine details, it
also applies random noise to input images, i.e., the diffused
images xτ = ατx + στϵ, where τ is the noise level that
corresponds to the early steps in noise schedule.

Adopting v-prediction perameterization [54], the U-Net
denoiser fθ is trained to make predictions of vt ≡ αtϵ−σtx.
The optimization objective for LDM is as follows:

Ez,x,c,t,ϵ
[
∥v − fθ(zt, xτ ; c, t)∥22

]
, (1)

where c serves as an optional set of conditions, including
text prompts and noise levels of the diffused image. During
inference, the model has the flexibility to involve different
text prompts and noise levels to diffusion sampling of x0,
and finally decode it to produce the ×4 upscaled images.
Inflated 2D Convolution. When adapting pretrained 2D
diffusion models to video tasks, it is common to inflate their
2D convolutions into the 3D convolutions [6, 17, 71, 78].
This modification allows the diffusion models to smoothly
integrate new temporal layers, enabling them to capture and
encode temporal information within the pretrained model.

In this study, we explore a new avenue to create a text-
guided video diffusion model for VSR tasks, starting with
the pretrained SD ×4 Upscaler [2]. To process video data,
we first modify its network structure by inflating the 2D
convolutions into 3D convolutions, and then initialize our
network with this upscaler to inherit its enhancement capa-
bilities. Our goal is to transfer the knowledge learned from
image upscaling to video enhancement, enabling more ef-
ficient training. In the following, we we will describe our

local-global strategy within the LDM framework to achieve
temporal coherence while harnessing the capability of dif-
fusion for VSR tasks.

3.2. Local Consistency within Video Segments

To apply the pretrained text-to-image SD model to video-
related tasks, existing video diffusion models typically em-
ploy techniques such as 3D convolutions [6, 66], temporal
attention [6, 17, 66, 68]sx, and cross-frame attention [71] to
ensure temporal consistency.
Finetuning Temporal U-Net. Following the existing meth-
ods [6, 66], we introduce additional temporal layers into the
pretrained image model and learn the local consistency con-
straint within video segments. As illustrated in Fig. 2, in
the modified temporal U-Net, we opt for temporal attention
and 3D residual blocks based on 3D convolutions to serve
as our temporal layers, and insert them within the pretrained
spatial layers. The temporal attention layer performs self-
attention along the temporal dimension and focuses on all
local frames. Additionally, we add Rotary Position Embed-
ding (RoPE) [59] into the temporal layers to provide the
model with positional information for time.

Our temporal layers are trained using the same noise
schedule as the pretrained image model. Importantly, we
keep the pretrained spatial layers fixed during training and
only optimize the inserted temporal layers using Eq. (1). An
essential benefit of this strategy is that it allows us to lever-
age the pretrained spatial layers that were learned from a
huge, high-quality image dataset. This enables us to con-
centrate our training efforts on refining the temporal layers.
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Finetuning Temporal VAE-Decoder. Even after finetun-
ing the U-Net on video data, the VAE-Decoder within the
LDM framework, which is trained on images only, still
tends to produce flickering artifacts when decoding a la-
tent sequence. To mitigate this issue, we introduce addi-
tional temporal 3D residual blocks into the VAE-Decoder
to enhance low-level consistency. Furthermore, the diffu-
sion denoising process in the U-Net often introduces color
shifts, a problem also encountered by other diffusion-based
restoration networks [62, 83]. To tackle this, we condition
the input videos with a Spatial Feature Transform (SFT)
layer [63], which employs the inputs to transform the fea-
tures of the first layer of the VAE-Decoder. This allows the
input videos to provide low-frequency information, such as
color, to strengthen the color fidelity of the output results.

Similar to the training of the Temporal U-Net, we keep
the pretrained spatial layers unchanged and only train the
newly added temporal layers. These temporal layers are
trained on video data using a hybrid loss consisting of L1
loss, LPIPS perceptual loss [86], and an adversarial loss
employing a temporal PatchGAN [89] discriminator. As
demonstrated by the ablation study in Fig. 6 and Table 2,
this step is crucial for achieving favorable results.

3.3. Global Consistency cross Video Segments
The trained temporal layers within the LDM are limited
to processing local sequences (e.g., eight frames in our U-
Net setting), making it impossible to enforce global con-
sistency constraints across video segments. Prior stud-
ies [9, 10, 88, 89] have already showcased the benefits of
flow-guided long-term propagation in enhancing temporal
consistency for video restoration tasks. However, their per-
formance gains are often observed when dealing with long
video sequences that provide long-term information. Un-
fortunately, these methods are not well-suited for diffusion
models due to memory constraints, which typically restrict
them to processing short video clips.
Training-Free Recurrent Latent Propagation. We in-
troduce a training-free flow-guided recurrent propagation
module within the latent space. This module ensures global
temporal coherence for long input videos, involving bidi-
rectional propagation in the forward and backward direc-
tions. Here, we elaborate on the forward propagation, and
backward propagation follows the same process.

Given an input low-resolution video, we first adopt
RAFT [58] to estimate optical flow, with its resolution ex-
actly matching the latent resolution, thus no need for resiz-
ing. We then check the validity of the estimated flow by
evaluating forward-backward consistency error [43]:

Ei−1→i

(
p
)
=

∥∥∥fi−1→i

(
p
)
+ fi→i−1

(
p+ fi−1→i(p)

)∥∥∥2
2
,

(2)
where p denotes the position of the last frame latent, fi−1→i

and fi→i−1 are forward and backward flow respectively. As

… …

Optical Flow Warping Valid Prop. Invalid Prop.

Figure 3. An illustration of flow-guided recurrent latent propa-
gation. Without requiring any learning, this module can achieve
coherence across video segments via long-term latent propagation
and aggregation. It relies on optical flow validity determined by
forward-backward consistency error [43]. Only latent positions
with low consistency errors will be propagated, while those with
high errors, marked with a red dot, are not.

shown in Fig. 3, only latents with small consistency error
will be propagated, which can be thought of as an occlusion
mask, M : Ei−1→i(p) < δ, where δ is a threshold. Let zi
be the latent feature for the i-th frame at diffusion step t, we
update the predicted ẑ0 as ˜̂z0 The process of recurrent latent
propagation and aggregation is expressed as:˜̂zi0 =

[
W(

˜̂zi−1
0 , fi→i−1) ∗ β + ẑi0 ∗ (1− β)

]
∗M

+ ẑi0 ∗ (1−M), (3)

where W(·) denotes warping operation (with nearest
mode), and β ∈ [0, 1] serves as a fusion weight for ag-
gregating the warped latent from the previous (i − 1)th

frame to the current ith frame, where smaller values tend
to preserve current information, while larger values favor
the propagated information. We set β to 0.5 by default.

It is not necessary to apply this module at each diffusion
step during the inference process. Instead, we can choose
T ∗ steps for latent propagation and aggregation. When
dealing with minor video jitter, one can opt to integrate this
module early in the diffusion denoising process, while for
severe video jitter, such as AIGC videos, it is preferable to
execute this module later in the denoising process.

3.4. Inference with Additional Conditions
We can further adjust additional conditions of text prompts
and noise levels in Upscale-A-Video to influence the diffu-
sion denoising process. Text prompts can guide the gen-
eration of texture details, such as animal fur, as shown in
Fig. 7. Besides, adjusting the noise level allows us to bal-
ance the model’s restoration and generation abilities, with
smaller values favoring restoration and larger values pro-
moting the generation of more details (see comparisons in
Fig. 7). We also adopt Classifier-Free Guidance (CFG) [23]
during inference, which can significantly enhance the im-
pact of both text prompts and noise levels, helping produce
high-quality videos with finer details.
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Table 1. Quantitative comparisons on different VSR benchmarks from diverse sources, i.e., synthetic (SPMCS, UDM10, REDS30,
YouHQ40), real (VideoLQ), and AIGC (AIGC30) data. The best and second performances are marked in red and orange , respec-
tively. E∗

warp denotes Ewarp (×10−3).

Datasets Metrics Real-ESRGAN [65] SD ×4 Upscaler [2] ResShift [83] StableSR [62] RealVSR [80] DBVSR [47] RealBasicVSR [10] Ours

SPMCS

PSNR ↑ 22.89 23.19 23.27 22.71 23.88 24.28 24.51 25.32
SSIM ↑ 0.669 0.631 0.667 0.657 0.681 0.726 0.717 0.741
LPIPS ↓ 0.238 0.304 0.257 0.231 0.437 0.302 0.198 0.222
E∗

warp ↓ 1.364 5.008 4.942 4.815 0.294 1.360 0.559 0.367

UDM10

PSNR ↑ 27.13 28.07 27.62 26.45 27.38 29.60 29.11 30.79
SSIM ↑ 0.843 0.811 0.827 0.825 0.825 0.880 0.876 0.878
LPIPS ↓ 0.190 0.186 0.222 0.181 0.278 0.155 0.172 0.133
E∗

warp ↓ 1.462 1.710 2.196 2.797 0.531 1.943 0.602 0.446

REDS30

PSNR ↑ 22.40 22.98 23.00 23.72 23.05 24.37 23.91 24.41
SSIM ↑ 0.591 0.572 0.580 0.635 0.603 0.633 0.636 0.631
LPIPS ↓ 0.303 0.399 0.369 0.352 0.658 0.588 0.249 0.335
E∗

warp ↓ 3.658 3.753 4.131 1.645 0.378 9.659 1.557 1.278

YouHQ40

PSNR ↑ 24.37 19.71 23.77 24.53 24.19 25.37 24.09 25.83
SSIM ↑ 0.710 0.579 0.654 0.711 0.695 0.719 0.689 0.733
LPIPS ↓ 0.272 0.442 0.376 0.271 0.484 0.430 0.306 0.268
E∗

warp ↓ 1.856 3.399 4.426 1.529 0.485 1.149 1.052 0.737

VideoLQ
CLIP-IQA ↑ 0.360 0.158 0.430 0.344 0.211 0.274 0.387 0.530

MUSIQ ↑ 49.48 26.21 40.95 44.23 24.52 29.15 55.33 57.99
DOVER ↑ 7.161 2.884 4.679 6.783 2.531 3.628 7.562 7.811

AIGC30
CLIP-IQA ↑ 0.430 0.329 0.569 0.467 0.276 0.290 0.565 0.674

MUSIQ ↑ 47.09 35.30 43.32 44.93 24.39 27.22 58.87 57.66
DOVER ↑ 9.710 5.646 7.042 9.668 3.285 3.523 10.68 11.67

4. Experiments
4.1. Datasets and Implementation

Training Datasets. We train our Upscale-A-Video using
the following datasets: 1) The subset of WebVid10M [5]
contains around 335K video-text pairs with each resolution
around 336×596, which is commonly used in training video
diffusion models [6, 11, 17, 84]; 2) YouHQ dataset. Due to
the lack of high-quality video data for training, we addi-
tionally collect a large-scale high-definition (1080 × 1920)
dataset from YouTube, containing around 37K video clips
with diverse scenarios, i.e., street view, landscape, animal,
human face, static object, nighttime scene, and among oth-
ers. Training on such high-quality data further enhances the
generation ability of our model for real-world VSR. Fol-
lowing the degradation pipeline of RealBasicVSR [10], we
generate the LQ-HQ video pairs for training.
Testing Datasets. We construct four synthetic testing
datasets (i.e., SPMCS [81], UDM10 [57], REDS30 [45],
and YouHQ40), which follow the same degradation pipeline
in training to generate LQ videos. We split YouHQ40 test
set from the proposed YouHQ dataset, containing 40 videos.
Additionally, we evaluate the models on a real-world dataset
(i.e., VideoLQ [10]) and an AIGC dataset (i.e., AIGC30)
that collects 30 AI-generated videos by popular text-to-
video generation models [1, 3, 6, 17, 25, 41, 68, 84].
Training Details. Our Upscale-A-Video is trained on 32
NVIDIA A100-80G GPUs with a batch size of 384. The
training data is cropped to 80 × 80 with a length of 8.
The learning rate is set to 1 × 10−4 using the Adam [34]

optimizer. We first train the U-Net model on both Web-
Vid10M [5] and YouHQ for 70K iterations. Then we train
another 10K iterations on YouHQ only. Since there are no
text prompts for YouHQ, we use the null prompts during
training. In this way, our model can handle VSR with ei-
ther LQ inputs and prompts or LQ inputs only, leading to
a more flexible use in practice. As for VAE-Decoder fine-
tuning, we follow StableSR [62] to first generate 100K syn-
thetic LQ-HQ video pairs on WebVid10M [5] and YouHQ,
and the finetuned U-Net model is adopted to generate the
corresponding latent codes for the LQ videos.
Evaluation Metrics. We adopt different metrics to evaluate
both the frame quality as well as temporal coherency of the
generated results. For synthetic datasets with LQ-HQ pairs,
we employ PSNR, SSIM, LPIPS [86], and flow warping er-
ror [35] E∗

warp for evaluation. For real-world and AIGC test
data, since no ground-truth videos are available, we conduct
our evaluation on commonly used non-reference metrics,
i.e., CLIP-IQA [61], MUSIQ [33], and DOVER [70].

4.2. Comparisons
We compare Upscale-A-Video with several state-of-the-
art methods, including Real-ESRGAN [65], SD ×4 Up-
scaler [2], ResShift [83], StableSR [62], RealVSR [80],
DBVSR [47], and RealBasicVSR [10].
Quantitative Evaluation. As shown in Table 1, our ap-
proach achieves the highest PSNR across all four synthetic
datasets, suggesting its outstanding reconstruction ability.
Moreover, our approach achieves the lowest LPIPS scores
on both UDM10 and YouHQ40, indicating the high percep-
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“A koala on the tree”

Bicubic OursRealBasicVSR GTStableSR SD ×4 Upscaler

Figure 4. Qualitative comparisons on synthetic low-quality videos from REDS30 [45] and YouHQ40 datasets. Among the tested methods,
only our Upscale-A-Video can recover the accurate wall structure and produce detailed koala fur. (Zoom-in for best view)

Bicubic Real-ESRGAN ResShift StableSR

“A bus and car on the street” Upscale-A-Video (Ours)RealBasicVSRSD ×4 Upscaler DBVSR

“A squirrel on a tree” Upscale-A-Video (Ours)RealBasicVSRSD ×4 Upscaler DBVSR

Bicubic Real-ESRGAN ResShift StableSR

Figure 5. Qualitative comparisons on real-world test videos in VideoLQ [10] dataset. Our Upscale-A-Video effectively leverages the
advantages of the diffusion paradigm in generating high-quality results. When compared to existing methods, it notably excels in its
restoration capabilities, successfully recovering the billboard word “EAT IN or TAKEAWAY”. In particular, when guided by text prompts,
Upscale-A-Video showcases promising enhanced results with more details and heightened realism. (Zoom-in for best view)

tual quality of our generated results. In addition, our ap-
proach further obtains the highest CLIP-IQA and DOVER
scores on both the real dataset [10] and AIGC videos. The
superiority across datasets from various sources demon-
strates the effectiveness of our approach.

Qualitative Evaluation. We present visual results on
both synthetic [45, 57, 81] and real-world [10] videos in
Fig. 4 and Fig. 5, respectively. It is observed that our
Upscale-A-Video significantly outperforms existing CNN-
and diffusion-based approaches in both artifact removal and
details generation. Specifically, Upscale-A-Video is capa-
ble of generating more natural details in Fig. 4, and success-

fully recovers the words “EAT IN or TAKEAWAY” on the
billboard in the first example of Fig. 5, while other methods
generate blurry or distorted results. Note that SD ×4 Up-
scaler shows less effectiveness for the real-world VSR since
it does not consider mixed degradation in its training data.

Temporal Consistency. Benefiting from our local-global
temporal strategy, Upscale-A-Video achieves the best opti-
cal flow error score on UDM10 and the second-best scores
on REDS30, SPMCS and YouHQ40, remarkably outper-
forming other diffusion-based approaches, and even beats
the strong CNN-based VSR methods, i.e., RealBasicVSR
and DBVSR. We also visualize the temporal profile in
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Figure 6. Comparison of temporal profile. We examine a row and track changes over time. The profile from existing methods and Exp. (a)
and (c) (w/o latent propagation module) exhibit noise, suggesting the presence of flickering artifacts. Even with the finetuned decoder, the
profile of Exp. (c) still displays some discontinuities. Thanks to long-term latent propagation and aggregation, the profile of our Upscale-
A-Video exhibits a more seamless and smoother transition.

Table 2. Ablation study of finetuned VAE-Decoder and propaga-
tion module on YouHQ40.

Exp. ft-VAE-Dec. Latent Prop. PSNR↑ SSIM↑ E∗
warp ↓

(a) 23.82 0.6385 2.398
(b) ! 25.47 0.7215 1.815
(c) ! 25.75 0.7328 0.842
(d) ! ! 25.83 0.7326 0.737

Fig. 6. It is observed that our approach achieves superior
performance with a more seamless and smoother transition.

4.3. Ablation Study

Effectiveness of Finetuned VAE-Decoder. We first inves-
tigate the significance of the fine-tuned VAE-Decoder. As
shown in Table 2, replacing our finetuned VAE-Decoder
with the original decoder leads to worse PSNR, SSIM, and
E∗

warp. Particularly, the increase of E∗
warp from 0.737 to

1.815 indicates a significant deterioration of temporal co-
herency. The comparisons in Fig. 6 also suggest inferior
temporal consistency without the finetuned VAE-Decoder.
Effectiveness of Propagation Module. In addition to fine-
tuning VAE-Decoder, our proposed flow-guided recurrent
latent propagation module further enhances the stability of
long videos. As shown in Table 2, adopting the propagation
module can further reduce E∗

warp error, effectively improv-
ing temporal consistency while maintaining high PSNR.
Similar phenomena can also be observed in the temporal
profile in Fig. 6, showing a more seamless transition.
Text Prompt. Upscale-A-Video is trained on video data
with either labeled prompts or null prompts and thus can
handle both scenarios. We examine the use of classifier-
free guidance [23] to improve the visual quality during
sampling. As shown in Figure 7, compared with the null
prompt, adopting proper text prompts can significantly en-
hance the perceptual quality with more faithful details.
Noise Level. It is observed that the level of noise added to
the input can affect the performance of our approach. As
shown in Fig. 7, with low noise level, the generated results
tend to be suboptimal with blurry details. However, a noise

“An owl”

Input w/o Text Prompt w/ Text Prompt

Noise Level 0 Noise Level 50 Noise Level 150
Figure 7. Comparison of various conditions of text prompts and
different levels of noise. (Zoom-in for best view)

level that is too large may result in oversharpening.

5. Conclusion
While diffusion models have achieved impressive perfor-
mance on a wide range of image tasks, their applications on
video tasks, particularly real-world VSR remain challeng-
ing and understudied. In this paper, we present Upscale-
A-Video, a novel approach to exploit image diffusion prior
for real-world VSR while avoiding temporal discontinuities
drawn from the inherent randomness during sampling pro-
cess. Specifically, we enhance the temporal coherence by
proposing a novel local-global temporal strategy within the
latent diffusion framework. We additionally devote our ef-
forts to achieving a trade-off between fidelity and quality by
enabling texture creation with text prompts and noise level
control, further facilitating the practical use in real-world
scenarios. We believe that our exploration would lay a good
foundation for future works.
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