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Abstract

Recently, Vision Transformer has achieved great success

in recovering missing details in low-resolution sequences,

i.e., the video super-resolution (VSR) task. Despite its su-

periority in VSR accuracy, the heavy computational bur-

den as well as the large memory footprint hinder the de-

ployment of Transformer-based VSR models on constrained

devices. In this paper, we address the above issue by

proposing a novel feature-level masked processing frame-

work: VSR with Masked Intra and inter-frame Attention

(MIA-VSR). The core of MIA-VSR is leveraging feature-

level temporal continuity between adjacent frames to re-

duce redundant computations and make more rational use

of previously enhanced SR features. Concretely, we propose

an intra-frame and inter-frame attention block which takes

the respective roles of past features and input features into

consideration and only exploits previously enhanced fea-

tures to provide supplementary information. In addition, an

adaptive block-wise mask prediction module is developed

to skip unimportant computations according to feature sim-

ilarity between adjacent frames. We conduct detailed ab-

lation studies to validate our contributions and compare

the proposed method with recent state-of-the-art VSR ap-

proaches. The experimental results demonstrate that MIA-

VSR improves the memory and computation efficiency over

state-of-the-art methods, without trading off PSNR accu-

racy. The code is available at https://github.com/

LabShuHangGU/MIA-VSR.

1. Introduction

Image super-resolution (SR) refers to the process of recov-

ering sharp details in high resolution (HR) images from

low resolution (LR) observations. Due to its great value in

practical usages, e.g., surveillance and high definition dis-

play, SR has been a thriving research topic over the past

twenty years. Generally, compared with single image super-

resolution which only exploits intra-frame information to
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Figure 1. PSNR(dB) and FLOPs(G) comparison on the Vid4

[24] dataset. We compare our MIA-VSR model with the state-of-

the-art temporal sliding-window and recurrent based VSR models,

including EDVR [36], BasicVSR++ [5], VRT [21], RVRT [22] and

PSRT [32]. Our MIA-VSR model outperforms these methods and

strikes a balance between performance and compute efficiency.

estimate the missing details, video super-resolution (VSR)

additionally leverages the temporal information to recover

the HR frames and therefore often leads to better SR results.

The key of VSR lies in making rational use of tempo-

ral information. Researchers in the early stages utilized

convolutional neural networks (CNNs) to extract features

and have investigated advanced information propagation

strategies [4, 5, 8, 13, 32], sophisticated alignment mod-

ules [4, 22, 32, 35, 36, 39], effective training strategies

[23, 38] as well as elaborately designed network architec-

tures [15, 19] for the pursuit of highly accurate VSR re-

sults. Recently, with the rapid development of Transformers

in computer vision, several attempts have been made to ex-

ploit Transformers for better recovering missing details in

LR sequences [21, 22, 25, 30, 32]. Due to the powerful rep-

resentation learning capabilities of self-attention structure,

these Transformer-based approaches have raised the state-

of-the-art in VSR to a new level.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

25399



In spite of its superior SR results, the heavy computa-

tional burden and large memory footprint [21, 22, 32] of

Transformer-based VSR approaches limit their application

to constrained devices. With the common availability of

video cameras, efficient video processing has become an in-

creasingly important research topic in the literature on com-

puter vision. Paralleling to network pruning and quantiza-

tion, which is applicable to all kinds of application, exploit-

ing temporal redundancy for avoiding unnecessary compu-

tation is a specific strategy for accelerating video process-

ing. In their inspiring work, Habibian et al. [10] proposed

a skip-convolution method that restricts the computation of

video processing only to regions with significant changes

while skipping the others. Although the skip-covolution

strategy could save computations without significant per-

formance drop in high-level tasks, e.g. object detection and

human pose estimation, as low-level vision tasks such as

video super-resolution are highly sensitive to minor changes

in image content, whether such a skip-processing mecha-

nism is applicable to VSR is still an open question.

In this paper, we provide an affirmative answer to the

above question with a novel masked VSR framework, i.e.,

Masked Inter&Intra frame Attention (MIA) model. Our

MIA-VSR method could make use of temporal continu-

ity to recover missing HR details, while, at the same time,

leveraging temporal redundancy for reducing unnecessary

computations. Concretely, our MIA-VSR model advances

the existing VSR approaches in the following two aspects.

First, we develop a tailored inter-frame and intra-frame at-

tention block (IIAB) for making more rational use of previ-

ously enhanced features. Instead of directly inheriting the

Swin-Transformer block [27] to process concatenated hid-

den states and image feature, our proposed IIAB block takes

into account the respective roles of past features and input

features and only utilizes the image feature of the current

frame to generate the query token. As a result, the proposed

IIAB block not only reduces the computational consump-

tion of the original joint self-attention strategy by a large

margin, but also aligns the intermediate feature with spa-

tial coordinates to enable efficient masked processing. Sec-

ondly, we propose a feature-level adaptive masked process-

ing mechanism to reduce redundant computations accord-

ing to the continuity between adjacent frames. Differently

from previous efficient processing models, which simply

determine skipable regions of the whole network according

to pixel intensities, we adopt a feature-level selective skip-

ping strategy and pass by computations of a specific stage

adaptively. The proposed feature-level adaptive masking

strategy enables our MIA-VSR to save computations and at

the same time achieve good VSR results. Our contributions

can be summarized as follows.

• We present a novel feature-level masked processing

framework for efficient VSR, which is able to take ad-

vantage of the temporal continuity to reduce redundant

computations in the VSR task.

• We propose an intra-frame and inter-frame attention

block, which could effectively extract spatial and tempo-

ral supplementary information to enhance SR features.

• We propose an adaptive mask prediction module, which

masks out unimportant regions according to the feature

similarity between adjacent frames for different stages of

processing in the VSR model.

• We compare our proposed MIA-VSR model with state-

of-the-art VSR models against which our approach could

generate superior results with less computations and

memory footprints.

2. Related Work

2.1. Video Super­Resolution

According to how the temporal information is utilized, ex-

isting deep learning based VSR methods can be grouped

into two categories: temporal sliding-window based meth-

ods and recurrent based methods.

Temporal sliding-window based VSR. Given an LR video

sequence, a category of approaches processes the LR frames

in a temporal sliding-window manner which aligns adja-

cent LR frames with the reference frame to estimate a sin-

gle HR output. The alignment module plays an essen-

tial role in temporal sliding-window based method. Ear-

lier work [1, 26, 34] explicitly estimated the optical flow

to align adjacent frames. Recently, implicit alignment

modules [39] were proposed to perform alignment in the

high-dimensional feature space. Dynamic filters [18], de-

formable convolutions [7, 35, 36] and attention modules

[14, 19] have been developed to conduct motion compen-

sation implicitly in the feature space. In addition to the

alignment module, another important research direction is

investigating sophisticated network architectures to process

aligned images. Many works were aimed at estimating HR

images from multiple input images in a temporal sliding-

window manner [2, 19, 21, 36]. Although the alignment

module enables sliding window based VSR networks to bet-

ter leverage temporal information from adjacent frames, ac-

cessible information to the VSR models is limited by the

size of temporal sliding window and these methods could

only make use of temporal information from limited num-

ber of input video frames.

Recurrent framework based VSR. Another category of

approaches applies recurrent neural networks to exploit

temporal information from more frames. FRVSR [31] first

proposed a recurrent framework that utilizes optical flow

to align the previous HR estimation and the current LR in-

put for VSR. RLSP [8] propagates high-dimensional hidden

states instead of the previous HR estimation to better ex-
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Figure 2. The overall architecture of MIA-VSR. We develop a feature-level masked processing framework which uses the mask predic-

tion module (MPM) to reduce redundant computations by leveraging temporal continuity, and propose a masked intra-frame and inter-frame

(MIA) block to make more rational use of previous enhanced features to support the feature enhancement of the current frame. Our MIA-

VSR model can be easily extended to the bi-directional second-order grid propagation framework as [5]. More details of our proposed

MIA-VSR can be found in Section 3.

ploit long-term information. RSDN [13] further extended

RLSP [8] by decomposing the LR frames into structure and

detail layers and introduced an adaptation module to selec-

tively use the information from hidden state. BasicVSR [3]

utilized bi-directional hidden states, and BasicVSR++ [5]

further improved BasicVSR with second-order grid propa-

gation and flow-guided deformable alignment. PSRT [32]

adopted the bi-directional second-order grid propagation

framework of BasicVSR++ and utilized multi-frame self-

attention block to jointly process the outputs of the feature

propagation of the previous frames and the input features.

Generally, by passing the high dimensional hidden states

or output feature, the recurrent based VSR could incorpo-

rate temporal information from more frames for estimating

the missing details and therefore achieve better VSR re-

sults. Our proposed MIA-VSR follows the general frame-

work of bi-directional second-order hidden feature propa-

gation while introducing masked processing strategy and

intra&inter-frame attention block for the pursuit of better

trade-off between VSR accuracy, computational burden and

memory footprint.

2.2. Efficient Video Processing

Various strategies of reducing temporal redundancy have

been explored for efficient video processing. A category of

approaches adopts the general network optimization strat-

egy and utilizes pruning [37] or distillation [11] methods to

train light-weight networks for efficient video processing.

In order to take extra benefit from the temporal continuity

of video frames, another category of methods only com-

putes expensive backbone features on key-frames and ap-

plies concatenation methods [16], optical-flow based align-

ment methods [12, 16, 20, 29, 41, 42], dynamic convolu-

tion methods [29] and self-attention methods [12, 25] to

enhance features of other frames with keyframe features.

Most recently, [10] proposed a skip-convolution approach

which only conducts computation in regions with signifi-

cant changes between frames to achieve the goal of efficient

video processing. However, most of the advanced efficient

video processing schemes described above were designed

for high-level vision tasks such as object detection and pose

estimation. To the best of our knowledge, our study is the

first work that leverages the temporal continuity across dif-

ferent areas for each block to reduce redundant computation

for low-level VSR tasks.

3. Methodology

3.1. Overall Architecture

Given T frames of low-resolution video sequence ILR ∈
R

T×H×W×3, our goal is to reconstruct the corresponding

HR video sequence IHR ∈ R
T×sH×sW×3, where s is the

scaling factor and H , W , 3 are the height, width and chan-

nel number of input frames.

The overall architecture of our proposed MIA-VSR

model is shown in Fig.2. We built our MIA-VSR frame-

work upon the bi-directional second-order grid propaga-

tion framework of BasicVSR++ [5], which has also been

adopted in the recent state-of-the-art method PSRT [32].

The whole model consists of three parts, i.e., the shallow
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Figure 3. Illustration of the inter&intra-frame attention block with adaptive masked processing module. The adaptive mask predic-

tion module (b) in the IIAB block acts in the Attention module’s linear layer which produce the Query, the projection layer and the

linear layer in the FFN module during inference to reduce temporal and sptical redundancy calculations (a). Xt
m,n

′

and X
t
m,n

′′

refer to

the processed hidden feature in the Attention and FFN module.

feature extraction part, the recurrent feature refinement part

and the feature reconstruction part. We follow previous

works BasicVSR++ [5] and PSRT [32] which use a plain

convolution operation to extract shallow features and adopt

a pixel-shuffle layer [9, 33] to reconstruct HR output with

refined features. The patch alignment method used in PSRT

[33] is used to align the adjacent frames. We improve the

efficiency of existing works by reducing redundant compu-

tations in the recurrent feature refinement part.

Generally, the recurrent feature refinement part com-

prises M feature propagation modules and each feature

propagation module consists of N cascaded processing

blocks. The feature propagation module takes the enhanced

outputs from previous frames as well as image feature of

the current frame as input. For the t-th frame, let us denote

the input feature for the m-th feature propagation module

as Xt
m. The feature propagation module takes Xt

m, Xt−1

m+1

and Xt−2

m+1 as inputs to calculate the enhanced feature:

Xt
m+1 = FPM(Xt

m,Xt−1

m+1,X
t−2

m+1), (1)

where Xt
m+1 is the enhanced output of the current frame,

Xt−1

m+1 and Xt−2

m+1 are enhanced feature from the past two

frames. To be more specific, in each feature propagation

module, cascaded processing blocks utilize outputs from the

previous frames to enhance input features. In comparison

to the previous methods that directly inherit the Swin trans-

former block to process concatenated features, we propose

a tailored intra&inter frame attention block (IIAB) to more

efficiently enhance Xt
m with the help of Xt−1

m+1 and Xt−2

m+1:

Xt
m,n+1 = IIAB(Xt

m,n,X
t−1

m+1,X
t−2

m+1), (2)

where Xt
m,n is the input to the n-th IIAB in the m-th feature

propagation module, Xt
m,0 = Xt

m and Xt
m,N = Xt

m+1

are the input and output of the whole FPM, respectively.

More details of the proposed IIAB will be introduced in the

following subsection 3.2.

In order to reduce redundant computations according to

temporal continuity, we further develop an adaptive mask

prediction module to generate block-wise masks M t
m,n,

with which we could directly utilize the outputs from past

frame and selectively skip unimportant computation:

X̂t
m,n = M t

m,n »Xt
m,n + (1−M t

m,n)» X̂t−1
m,n, (3)

where X̂t
m,n is the processed hidden feature in the IIAB

block (shown as Xt
m,n

′

and Xt
m,n

′′

in Fig.3) and » is the

point-wise multiplication operation. More details of our

mask predicting module will be presented in Section 3.3.

3.2. Inter&Intra­Frame Attention Block

As introduced in the previous section, cascade process-

ing blocks play a key role in extracting supplementary in-

formation from previous frames to enhance SR features.

To achieve this goal, the previous method [22, 32] simply

adopts the multi-head self-attention block with shifted lo-

cal windows in the Swin Transformer to process concate-

nated hidden states (enhanced features of previous frames)

and the current input feature. In this paper, we take the

respective role of the previously enhanced feature and the

current feature into consideration and propose a intra&inter

frame attention block (IIAB) for efficient VSR. To be more

specific, we think the enhanced features of the previous

frames Xt−1

m+1 and Xt−2

m+1 should only used for providing
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supplementary information and do not need to be further

enhanced. Therefore, we only utilize feature of the current

frame to generate Query Tokens, and adopt enhanced fea-

tures from the previous frames as well as feature of the cur-

rent frame to generate Key and Value Tokens:

Qt
m,n = Xt

m,nW
Q
m,n,

{

Kt,intra
m,n = Xt

m,nW
K
m,n,

Kt,inter
m,n =

[

Xt−1

m+1;X
t−2

m+1

]

WK
m,n,

{

V t,intra
m,n = Xt

m,nW
V
m,n,

V t,inter
m,n =

[

Xt−1

m+1;X
t−2

m+1

]

W V
m,n,

(4)

where WQ
m,n, WK

m,n and W V
m,n are the respective projec-

tion matrices; Qt
m,n represents the Query Tokens generated

from the current input feature; Kt,intra
m,n and Kt,inter

m,n are

the intra-frame and inter-frame Key Tokens and V t,intra
m,n

and V t,inter
m,n are the intra-frame and inter-frame Value To-

kens. IIAB jointly calculates the attention map between

query token and intra&inter-frame keys to generate the up-

dated feature:

IIABAttention = SoftMax(Qt
m,nK

t
m,n

T
/
√
d+B)V t

m,n,
(5)

where Kt
m,n = [Kt,inter

m,n ;Kt,intra
m,n ] and V t

m,n =

[V t,inter
m,n ;V t,intra

m,n ] are the concatenated intra&inter-frame

tokens; d is the channel dimension of the Token and B
is the learnable relative positional encoding. It should

be noted that in Eq.4, all the intermediate inter-frame

tokes {V t,inter
m,n ;Kt,inter

m,n }n=1,...,N are generated from the

same enhanced features
[

Xt−1

m+1;X
t−2

m+1

]

; which means that

we only leverage mature enhanced features from previous

frames to provide supplementary information and do not

need to utilize the time consuming self-attention mecha-

nism to jointly update the current feature and previous fea-

tures. An illustration of our proposed inter-frame and intra-

frame attention (IIAB) block is presented in Fig.3. In addi-

tion to the attention block, our proposed transformer layer

also utilizes LayerNorm and FFN layers, which have been

commonly utilized in other Transformer-based VSR archi-

tectures [22, 32].

In our implementation, we also adopt the Shift-window

strategy to process the input LR frames and the above self-

attention calculation is conduct in W ×W non-overlapping

windows. Denote our channel number by C, Qt
m,n, Kt

m,n

and V t
m,n in Eq.5 are with sizes of N2 × C, 3N2 × C and

3N2 × C, respectively. Therefore, Eq.5 only suffers the

calculation 1/3 in the self-attention calculation procedure

in comparison with the joint self-attention processing strat-

egy. Moreover, as we will validate in the ablation study

section, our strategy not only avoids unnecessary computa-

tion in jointly updating previous features, but also provides

better features for the final VSR task.

3.3. Adaptive Masked Processing in the Recurrent
VSR Transformer

In this subsection, we present details of how we generate

block-wise masks M t
m,n in Eq.3 to further reduce unim-

portant computations. Habibian et al. [10] first proposed a

skip convolution mechanism to reduce redundant computa-

tions based on differences between pixel values in adjacent

frames. However, for the VSR task, skipping the whole

computation process of a certain region according to the in-

tensity differences between adjacent input frames will in-

evitably affect the accuracy of the model. In this paper, we

leverage the temporal continuity to reduce the computation

of the VSR model in a subtler way: by exploiting feature

differences between adjacent frames to select less important

computations for each block.

Since features of different stages have various contribu-

tions to the final VSR result, using feature differences be-

tween adjacent frames to generate binary masks through

a uniform threshold is non-trivial. Therefore, we propose

an adaptive masked processing scheme which jointly trains

tiny mask predicting networks with VSR feature enhance-

ment blocks. To be more specific, in each stage of pro-

cessing, the mask predicting network takes the difference

between normalized features as input:

∆Xt−1→t
m,n = ∥norm(Xt

m,n)− norm(Xt−1
m,n)∥1. (6)

Then, we employ a Gumbel-softmax [17] gate to sample

masking features:



















Mask(∆Xt−1→t
m,n )) =

exp ((log (Ã1) + g1) /Ä)
∑2

i=1
exp ((log (Ãi) + gi) /Ä)

,

Ã1 = Sigmoid(f(∆Xt−1→t
m,n )),

Ã2 = 1− Sigmoid(f(∆Xt−1→t
m,n )),

(7)

where f(·) is a 1 × 1 convolution layer to weighted sum

feature differences from different channels; Ã1 could be in-

terpreted as the probability of whether a position should be

preserved; and g1, g2 are noise samples drawn from a Gum-

bel distribution, Ä is the temperature coefficient and we set

it as 2/3 in all of our experiments. With the masking feature

Mask(∆Xt−1→t
m,n )), we could directly set a threshold value

to generate the binary mask:

M t
m,n =

{

1, if Mask(∆Xt−1→t
m,n ) > 0.5;

0, else.
(8)

The above Gumbel-softmax trick enables us to train mask

predicting networks jointly with the VSR network, for

learning diverse masking criterion for different layers from

the training data. In the inference phase, we do not add

Gumbel noise to generate the masking feature and directly

generate binary masks with f(∆Xt−1→t
m,n ).
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We apply the same mask to save computations in the

IIABAttention part and the following FFNs in the feature

projection part. The above masked processing strategy al-

lows us to generate less Query tokens in the IIABAttention
part and skip projections in the feature projection part. Let’s

denote ³ ∈ [0, 1] as the percentage of non-zeros in M t
m,n,

our Masked Intra&Inter-frame Attention Block is able to

reduce the computational complexity of each IIAB from

12HWC2 + (4 + 12N2)HWC to (6 + 6³)HWC2 +
(3³N2 + 9N2 + 4)HWC. The saved computations over-

whelm the extra computations introduced by the tiny mask

predicting networks, which only use one layer of 1×1 con-

volution to reduce the channel number of the feature differ-

ence tensor from C to 1.

3.4. Training Objectives

We train our network in a supervised manner. Following

recent state-of-the-art approaches, we utilize the Charbon-

nier loss [6] Lsr =
√

∥ ÎHQ − IHQ ∥2 +ε2 between the

estimated HR image ÎHQ and the ground truth image IHQ

to train our network; where ϵ is a constant and we set it as

10−3 in all of our experiments. Moreover, In order to push

our mask predicting networks to mask out more positions,

we apply a ℓ1 loss on the masking features:

Lmask =
1

MNZ

∑M

m=1

∑N

n=1
∥Mask(∆Xt−1→t

m,n ))∥1,
(9)

where Z is the number of pixels for each masking feature.

Our network is trained by a combination of Lsr and Lmask:

L = Lsr + ¼Lmask, (10)

¼ is a factor for masking ratio adjustment. More details can

be found in our experimental section.

4. Experiments

4.1. Experimental Settings

Following the experimental settings of recently proposed

VSR methods [2, 5, 21, 22, 32], we evaluate our MIA-VSR

model on the REDS [28], Vimeo90K [40] and the com-

monly used Vid4 [24] datasets. We train two models on

the REDS dateset and the Vimeo90K dataset, respectively.

The model trained on the REDS dataset is used for evaluat-

ing the REDS testing data and the Viemo90K model is used

for evaluating the Vimeo90K and Vid4 testing data. For our

proposed adaptive mask prediction module, we fine-tune it

with the pre-trained VSR model for another 100K iterations.

We implement our model with Pytorch and train our mod-

els with RTX 4090 GPUs. The respective hyper-parameters

used for ablation study and comparison with state-of-the-art

methods will be introduced in the following subsections.

Table 1. Ablation studies on the processing blocks and the pro-

posed adaptive mask prediction module. More details can be

found in our ablation study section.

Model ¼
Params REDS4

(M) PSNR SSIM FLOPs(G)

MFSAB-VSR - 6.41 31.03 0.8965 871.59

IIAB-VSR - 6.34 31.12 0.8979 518.92

IIAB-VSR + HM - 6.34 29.83 0.8390 420.53

MIA-VSR 1e-4 6.35 31.11 0.8978 506.28

MIA-VSR 3e-4 6.35 31.07 0.8972 469.78

MIA-VSR 5e-4 6.35 31.01 0.8966 442.32

MIA-VSR 1e-3 6.35 30.76 0.8773 426.84

MIA-VSR

Results

Frame 001 Frame 002 Frame003 Frame004

Figure 4. Visualization of predicted masks for a sequence in the

REDS dataset.

4.2. Ablation Study

The effectiveness of IIAB In order to show the advan-

tages of the proposed IIAB, we firstly compare the proposed

intra&inter-frame attention block (IIAB) with the multi-

frame self-attention block (MFSAB) which was adopted

in PSRT [32]. We use 6 IIAB or MFSAB blocks to build

feature propagation modules and instantialize VSR models

with 4 feature propagation modules. The channel number,

window size and the head number for the two models are

set as 120, 8 and 6, respectively. We denote the two VSR

models as IIA-VSR, MFSA-VSR, and train the two models

with 6 frame training data for 300K iterations. The super-

resolution results of the two models are shown in Table3.

The number of parameters and computational consumption

(FLOPs) of the two models are also reported for reference.

The number of FLOPs is calculated on the REDS dataset,

which super-resolve 180×320 video sequences to a resolu-

tion of 720 × 1280, we report the average FLOPs for each

frame of processing. As shown in Table 1, it is clear that

the proposed IIAB could generate better VSR results with

less computational consumption than the MFSAB block.
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Table 2. Quantitative comparison (PSNR/SSIM) on the REDS4[28], Vimeo90K-T[40] and Vid4[24] dataset for 4× video super-resolution

task. For each group of experiments, we color the best and second best performance with red and blue, respectively.

Method
Frames REDS4 Vimeo-90K-T Vid4

REDS/Vimeo PSNR SSIM FLOPs PSNR SSIM FLOPs PSNR SSIM FLOPs

TOFlow[40] 5/7 27.98 0.7990 - 33.08 0.9054 - 25.89 0.7651 -
EDVR[36] 5/7 31.09 0.8800 2.95 37.61 0.9489 0.367 27.35 0.8264 1.197

MuCAN[19] 5/7 30.88 0.8750 1.07 37.32 0.9465 0.135 - - -
VSR-T[2] 5/7 31.19 0.8815 - 37.71 0.9494 - 27.36 0.8258 -

PSRT-sliding[32] 5/- 31.32 0.8834 1.66 - - - - - -
VRT[21] 6/- 31.60 0.8888 1.37 - - - - - -

PSRT-recurrent[32] 6/- 31.88 0.8964 2.39 - - - - - -
MIA-VSR(ours) 6/- 32.01 0.8997 1.50 - - - - - -

BasicVSR[3] 15/14 31.42 0.8909 0.33 37.18 0.9450 0.041 27.24 0.8251 0.134
IconVSR[3] 15/14 31.67 0.8948 0.51 37.47 0.9476 0.063 27.39 0.8279 0.207
TTVSR[25] 50/- 32.12 0.9021 0.61 - - - - - -

BasicVSR++[5] 30/14 32.39 0.9069 0.39 37.79 0.9500 0.049 27.79 0.8400 0.158
VRT[21] 16/7 32.19 0.9006 1.37 38.20 0.9530 0.170 27.93 0.8425 0.556

RVRT[22] 30/14 32.75 0.9113 2.21 38.15 0.9527 0.275 27.99 0.8462 0.913
PSRT-recurrent[32] 16/14 32.72 0.9106 2.39 38.27 0.9536 0.297 28.07 0.8485 0.970

MIA-VSR(ours) 16/14 32.78 0.9220 1.61 38.22 0.9532 0.204 28.20 0.8507 0.624

LQ (x4) EDVR BasicVSR++ VRT

RVRT PSRT-recurrentFrame 094, Clip 011, REDS MIA-VSR (Ours) GT

Frame 003, Clip city, Vid4

LQ (x4) EDVR BasicVSR++ VRT

RVRT PSRT-recurrent MIA-VSR (Ours) GT

Figure 5. Visual comparison for 4× VSR on REDS4 dataset and Vid4 dataset.

Masked processing strategy In this part, we validate the

effectiveness of the proposed masked processing strategy.

Our basic experimental settings are the same as our exper-

iment to validate IIAB. We firstly present experimental re-

sults to test whether we could get good experimental results

by setting a uniform threshold to generate masks based on

feature differences. We denote the model as IIAB-VSR +

HM and set the threshold value as 0.2, where HM is the

abbreviation for the handcrafted mask.

As can be found in Table 1, adopting a uniform threshold

for different layers will lead to a significant accuracy drop

of the VSR model. Then we validate the effectiveness of

our proposed adaptive mask prediction module and analyze

the effects of different ¼ values in Eq.10. Concretely, we set

¼ as 1e−4, 3e−4, 5e−4 and 1e−3 and train four different

models. Generally, setting a larger weight for the sparsity

loss could push the network to mask our more computations

but also results in less accurate VSR results. By setting ¼ as

5e− 4, we could further save approximately 20% computa-

tions from the highly efficient IIAB-VSR model without a
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significant performance drop. The much better trade-off be-

tween accuracy and computation by our MIA-VSR model

over IIA-VSR + Handcraft Mask clearly validated the su-

periority of our adaptive mask predicting network. Some

visual examples of the masks generated in our MIA-VSR

model can be found in Fig.4. The network tends to skip a

large portion of computations in the early stage and could

mask fewer positions for deeper layers.

4.3. Comparison with State­of­the­art Methods

In this subsection, we compare the proposed MIA-VSR

model with state-of-the-art VSR methods. We compare the

MIA-VSR with representative sliding-window based meth-

ods TOFlow [40], EDVR [36], MuCAN [19], VSR-T [2],

VRT [21], RVRT [22] and representative recurrent-based

methods BasicVSR [3], BasicVSR++ [5], TTVSR [25],

PSRT-recurrent [32]; among which VRT, RVRT, TTVSR

and PSRT-recurrent are Transformer-based approaches and

the other approaches are CNN-based models.

In order to achieve comparable VSR results with state-

of-the-art methods, we instantialize our MIA-VSR model

with 4 feature propagation modules and each feature prop-

agation module contains 24 MIIA blocks. Among them,

we set the interval of skip connections to [6,6,6,6]. The

spatial window size, head size and channel size are set to

8 × 8, 6 and 120 accordingly. The number of parame-

ters in our model is on par with the recent state-of-the-

art methods RVRT [22] and PSRT-recurrent [32]. Previ-

ous works [21, 22, 25, 30, 32] have figured out that mod-

els trained with longer sequences could achieve better VSR

results. For a fair comparison, we follow the experimen-

tal setting of [21, 22, 32] and train the VSR model with

short sequences (6 frames from the REDS dataset) and long

sequences (16/14 frames from the REDS dataset and the

Vimeo-90K dataset).

The VSR results by different methods can be found

in Table 2. As the number of FLOPs(T) for our MIA-

VSR model is related to the content of video sequences,

we therefore report the average per frame FLOPs on dif-

ferent datasets. In terms of the results trained with short

sequences, the proposed MIA-VSR outperforms the com-

pared methods by a large margin. Our model improves

the PSNR of the state-of-the-art PSRT-recurrent model by

0.13 dB with a reduction in the number of FLOPs of al-

most 40%. As for the models trained with longer train-

ing sequences, our MIA-VSR still achieves a better trade-

off between VSR accuracy and efficiency over recent state-

of-the-art approaches. With more than 40% less compu-

tations on the RVRT and PSRT-recurrent approaches, our

model achieved the best VSR results on the REDS and

Vid4 datasets and the second-best results on the Vimeo-90K

dataset. Some visual results from different VSR results can

be found in Fig.5, our proposed MIA-VSR method is able

Table 3. Comparison of model size, testing memory and complex-

ity of different VSR models on the REDS[28] dataset.

Model Params(M) FLOPs(T) Memory(M) Runtime(ms) PSNR(dB)

VRT 35.6 1.37 2149 888 32.19

RVRT* 10.8 2.21 1056 473 32.75

PSRT 13.4 2.39 190 1041 32.72

MIA-VSR 16.5 1.61 206 822 32.78

* means that uses customized CUDA kernels for better performance.

to recover more natural and sharp textures from the input

LR video sequences.

In our supplementary file, we also provide other instan-

tializations of our proposed MIA-VSR model to show the

scalability of our approach and compare our method with

efficient VSR models. More visual examples are also pro-

vided for different datasets.

4.4. Complexity and Memory Analysis

In this part, we compare the complexity and memory foot-

print of different Transformer-based state-of-the-art VSR

methods. In Table 3, we report the number of parameters,

the peak GPU memory consumption, the number of FLOPs,

the Runtime and the PSNR by different VSR methods. In

comparison with other Transformer-based VSR methods,

our MIA-VSR method has a similar number of parameters

and requires much less number of FLOPs for processing

the video sequence. In addition, the peak GPU memory

consumption, which is critical factor for deploying model

on terminal equipment, by our model is much less than

the VRT and RVRT approaches. As for the runtime, our

model is not as fast as RVRT, because the authors of RVRT

have implemented the key components of RVRT with cus-

tomized CUDA kernels. As the acceleration and optimiza-

tion of Transformers are still to be studied, there is room for

further optimization of the runtime of our method by our

relatively small FLOPs.

5. Conclusion

In this paper, we proposed a novel Transformer-based recur-

rent video super-resolution model, named MIA-VSR. We

proposed a masked processing framework to leverage the

temporal continuity between adjacent frames to save com-

putations for the video super-resolution model. An Intra-

frame and Inter-frame attention block is proposed to make

better use of previously enhanced features to provide sup-

plementary information; and an adaptive mask prediction

module is developed to generate block-wise masks for each

stage of processing. Furthermore, we evaluated our MIA-

VSR model on various benchmark datasets. Our model is

able to achieve state-of-the-art video super-resolution re-

sults with less computational resources.
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