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Abstract

Existing few-shot segmentation methods usually extract
foreground prototypes from support images to guide query
image segmentation. However, different background con-
texts of support and query images can cause their fore-
ground features to be misaligned. This phenomenon, known
as background context bias, can hinder the effectiveness of
support prototypes in guiding query image segmentation.
In this work, we propose a novel framework with an it-
erative structure to address this problem. In each itera-
tion of the framework, we first generate a query prediction
based on a support foreground feature. Next, we extract
background context from the query image to modulate the
support foreground feature, thus eliminating the foreground
feature misalignment caused by the different backgrounds.
After that, we design a confidence-biased attention to elim-
inate noise and cleanse information. By integrating these
components through an iterative structure, we create a
novel network that can leverage the synergies between dif-
ferent modules to improve their performance in a mutually
reinforcing manner. Through these carefully designed com-
ponents and structures, our network can effectively elimi-
nate background context bias in few-shot segmentation, thus
achieving outstanding performance. We conduct extensive
experiments on the PASCAL-5i and COCO-20i datasets
and achieve state-of-the-art (SOTA) results, which demon-
strate the effectiveness of our approach.

1. Introduction
Image segmentation [2–6, 10, 11, 24, 35, 39, 46, 49–51] is a
crucial task in computer vision. In recent years, significant
progresses have been made in this field, which are primar-
ily attributed to the development of deep learning models
[4, 25, 46, 50] trained on large-scale datasets [7, 47]. How-
ever, obtaining sufficient labeled data to train a segmenta-
tion model is time-consuming and labor-intensive, since it
usually takes more than 10 minutes to annotate only one
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Figure 1. An example of background context bias in few-shot
segmentation. When the query image shares the same back-
ground as the support image (Query Image I), the segmentation
is high-quality; but when the query image has a different back-
ground (Query Image II), the segmentation is undesirable.

image for getting its ground truth label. To address this is-
sue, Few-Shot Segmentation (FSS) has been proposed as an
alternative solution, which aims to segment a class using a
very small number of annotated images, thus reducing the
need for costly data labeling.

Currently, the prevailing methods for few-shot segmen-
tation [1, 19, 23, 32, 34, 41, 48] typically use the meta-
learning and episodic training strategies, in which the model
is trained to segment a query image based on a few sup-
port images and their ground truth maps in the target class.
To extract useful information that can represent the gen-
eral properties of a class, these methods usually extract one
[8, 16, 28] or a few [17, 41] prototypes from the foreground
region of the support images. These prototypes are then
used to segment query images based on feature concate-
nation [16, 17] or distance calculation [13, 26]. For this
paradigm to be successful, it is necessary to assume that
support and query images posses the similar or aligned fore-
ground features. Only when this assumption holds true, the
support prototypes can capture the query foreground prop-
erties accurately, thus enabling them to guide the segmenta-
tion process effectively.

However, we contend that this assumption may not al-
ways be true, since different backgrounds between sup-
port and query images may cause misalignment of their
foreground features. Specifically, the prototypes for few-
shot segmentation are typically derived from CNN or trans-
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former features, which have a large receptive field that al-
lows background context to be transmitted into foreground.
As a result, different backgrounds can affect support and
query foreground features differently, leading to feature
misalignment that limits support prototypes’ ability to guide
query image segmentation. Fig. 1 shows an example of
this problem. In our experiment, even though the support
and query images contain the identical foreground object,
the query image’s segmentation results become undesired
when the object is placed in different environments in sup-
port and query images. A similar problem of background
context bias has been reported in other domains such as per-
son ReID [33], but to the best of our knowledge, it has not
been explicitly emphasized and addressed by researchers in
the task of few-shot segmentation. Consequently, it remains
a critical yet unresolved challenge that requires attention.

To mitigate the research gap, in this work, we propose
a novel network for few-shot segmentation, which can ef-
fectively alleviate background context bias and demonstrate
improved performance. Specifically, in our method, we em-
ploy query context to modulate support features. Through
this modulation, query background information that influ-
ences the query foreground can be incorporated into the
support prototypes, aligning them more closely with the
query foreground features and therefore improving their
ability to guide query image segmentation. To ensure the
effectiveness of this modulation, we further investigate how
to extract background context with stronger representation
ability. Concretely, to ensure that the extracted context
can adequately capture the influence of the background on
the foreground, we model the input-to-output evolution of
query foreground features within a deep network, and uti-
lize this evolution as a basis for extracting context that is
used in the modulation process. We also propose an in-
formation cleansing method to prevent noise from accumu-
lating during the modulation process. By integrating these
components through an iterative structure, we create a novel
network that can leverage the synergies between different
modules to improve their performance in a mutually rein-
forcing manner. Through these carefully designed com-
ponents and structures, our network can effectively elim-
inate background context bias in few-shot segmentation,
thus achieving outstanding performance as demonstrated by
experiments.

We perform extensive experiments on common datasets
including PASCAL-5i and COCO-20i and report state-of-
the-art (SOTA) performance. Our contributions can be sum-
marized as follows: (1) Firstly, we investigate the back-
ground context bias problem in FSS, which we find is a
critical yet unresolved issue. (2) Secondly, we introduce an
iterative approach to address context bias. Each iteration of
our method involves a query prediction step for query seg-
mentation, a support modulation step to enhance the guid-

ance effectiveness of support features, and an information
cleansing step to prevent the accumulation of noisy infor-
mation. (3) Thirdly, our proposed approach achieves state-
of-the-art (SOTA) performance on few-shot segmentation.

2. Related Work

Few-shot segmentation (FSS) aims to segment a class using
a very small number of annotated images. As FSS requires
fewer training data, it holds substantial value in practical
applications, thus attracting considerable attention from re-
searchers [1, 9, 15, 16, 19, 23, 29, 32, 34, 41]. Current
methods typically use the meta-learning and episodic train-
ing strategies, in which one [8, 16, 28] or a few [17, 41]
foreground prototypes are extracted from the support im-
ages and used to segment query images through feature con-
catenation [16, 17] or distance calculation [13, 26]. These
methods, however, suffer from misalignment of foreground
features caused by the different backgrounds. In this paper,
we propose the first framework that can alleviate this prob-
lem through iterative modulation. In our method, we extract
background context to modulate support foreground fea-
tures. Some other FSS methods [8, 21, 41] also take back-
ground into consideration. However, they either employ
background prototypes to eliminate background regions in
query predictions [21], or segment interfering objects be-
longing to other categories in the background [41], without
further considering how background context affects fore-
ground features and the resultant issue of misaligned fea-
tures. In few-shot segmentation, we design the first method
to address this problem. [22, 44] also builds models using
an iterative process, but their internal structures and func-
tionalities are entirely different from our method. By using
context modulation and information cleansing, we construct
a completely new iterative model that is explicitly designed
to deal with background context bias. In contrast, without
problem-tailored designs, [22, 44] cannot address this prob-
lem, thus yielding worse results than our method. Biased
attention is another technique related to our approach. In
our method, biased attention is built based on confidence
variations between two predictions, which is specifically
designed to meet the requirements of our framework, en-
abling effective noise extraction and elimination. Due to
this design, our method is different from other biased at-
tention methods such as masked attention in [6, 22], which
cannot eliminate noisy information.

3. Task Definition

FSS seeks to perform segmentation given only a small num-
ber of annotated images. The target is to train an FSS model
on the training set Dtrain and evaluate it on the test set
Dtest, where the two datasets are disjoint with respect to
object classes. To achieve this, we follow previous works
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Figure 2. Overall structure and different components of our network. First, the backbone generates fs and fq for the support image and
query image respectively. Next, an iterative structure is designed to fully utilize the features for segmentation, which consists of T iterations,
with each iteration containing three successive steps: (a) Query Prediction, (b) Support Modulation, and (c) Information Cleansing. The
output from the Information Cleansing step is input into the Query Prediction step of the subsequent iteration. Segmentation result from
the Query Prediction step in the last iteration serves as the final prediction at the inference stage. The structure of the confidence-biased
ATT in (c) is shown in Fig.4.

[8, 17] under the meta-learning setting and execute episodic
training to optimize our FSS model. Specifically, each set is
partitioned into multiple episodes, where each episode con-
sists of a support set {Iks , Gk

s}Kk=1 and a query set {Iq, Gq},
with I∗ ∈ RH×W×3 and G∗ ∈ RH×W representing the
image and the corresponding ground truth respectively. G∗

is a binary mask indicating pixels within the target class,
which, for convenience, are denoted as foreground in the
subsequent sections, and other pixels outside the target class
are denoted as background. During training, we iteratively
sample an episodic from Dtrain to train a model that pre-
dicts Gq based on {Iks , Gk

s}Kk=1 and Iq . Once the training
is completed, the model is evaluated on Dtest. For the con-
venience of introduction, in the following sections, we de-
scribe our method under the 1-shot setting where only one
support image is available (K=1). In Supp, we elaborate on
how to extend the method to the K-shot setting.

4. Method
4.1. Overview
Fig. 2 provides an overview of our method. First, a back-
bone network produces features fs and fq for support and
query images respectively. Next, an iterative structure is de-
signed to fully utilize the features for segmentation, which
consists of T iterations, with each iteration containing three
successive steps: Query Prediction (QP), Support Modula-
tion (SM), and Information Cleansing (IC). Considering the
t-th iteration of the structure, the operation is performed as
follows. Firstly, in the QP step, query images are segmented
under the guidance of a support foreground feature St

QP.
Then, in the SM step, query context is extracted and used to
enhance St

QP’s effectiveness for guiding query segmenta-
tion. The enhanced St

SM is obtained in this step. After that,

in the IC step, a biased attention adjusts St
SM from the SM

step to cleanse information, getting the processed St
IC. The

three steps are performed iteratively, where the updated St
IC

from the previous iteration guides the QP step in the subse-
quent iteration (St+1

QP ← St
IC). Query segmentation result

from the last iteration serves as the final prediction at the
inference stage.

The motivation to design an iterative manner is based
on our observation that each of the three steps can have an
influence on one another, so by successively updating the
feature at each step, the network can be forced to refine it-
self towards an optimal solution in a recurrent optimization
manner. Specifically, in every iteration, an improved sup-
port foreground feature St

QP (St−1
IC ), which is modulated

from the SM and IC steps of the previous iteration, can
guide the generation of a more accurate query prediction in
the QP step. By using this query prediction with higher ac-
curacy, the subsequent SM and IC steps can perform better,
thus resulting in an improved St

IC. St
IC is further utilized for

query prediction in the following iteration (St+1
QP ← St

IC).
In this way, a recurrent optimization scheme is created that
can utilize the iterative structure to continuously refine the
query prediction results. In the subsequent sections, we de-
scribe each step of our method in detail.

4.2. Query Prediction Step
As shown in Fig. 2 (a), in this step, query images are seg-
mented under the guidance of a support foreground feature
SQP. In the first iteration, SQP is initialized using the sup-
port backbone features fs. Specifically, each foreground
pixel’s feature in fs is treated as a token, and these tokens
are aggregated to obtain SQP. As a combination of fea-
tures from all foreground pixels, SQP can reflect the gen-
eral properties of support foreground, making it possible to
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guide the segmentation of query foreground belonging to
the same category. For the remaining iterations, SQP is up-
dated as the output from the IC step of the previous itera-
tion. Given SQP and the query backbone features fq , query
segmentation is carried out with the process as follows:

P = ϕp (CAT (AVG(SQP) , fq)) , (1)

where AVG denotes the average over all tokens in SQP,
CAT refers to the channel-wise concatenation, ϕp is a two-
layered 1× 1 convolutions that generates the prediction P .

4.3. Support Modulation Step
As a result of background context bias between support
and query images, their foreground features are misaligned,
which makes the QP step alone insufficient to ensure accu-
rate query image segmentation. To address this problem,
we propose a support modulation (SM) step, which uses
background context from the query image to modulate SQP,
thereby minimizing the feature gap and increasing its effec-
tiveness in guiding query image segmentation. Specifically,
we denote the number of foreground pixels and background
pixels in the query image by Nf and Nb, and as shown in
Fig. 2 (b), we implement the SM step as follows. Firstly, we
extract an evolution feature E ∈ RNf×C that reflects how
the query foreground representation changes from input to
output layers within the backbone network (details are illus-
trated below). Subsequently, we concatenate the features of
all background pixels1 in fq to generate a background rep-
resentation B ∈ RNb×C . By correlating E with B, we then
capture background context C by:

C = ATT(QB,KE,VE) , (2)

where ATT is a cross-attention module in a QKV manner.
Finally, we use query context to modulate SQP through an-
other cross-attention:

SSM = SQP +ATT
(
QSQP

,KC,VC

)
. (3)

The resulted SSM is the output of the SM step. This
step includes an innovative design that extracts background
context via the evolution feature E, which has not been
used previously but has demonstrated success in our ex-
periments. E is a feature that describes how foreground
features change from the input layer to the output layer. Us-
ing it is motivated by the analysis of network inputs and
outputs. Specifically, in a deep neural network, the input
image is context-independent, so its foreground contains no
background information; on the other hand, the output fea-
tures are heavily influenced by long-range context due to the
network’s high-receptive-field property, so its foreground
contains substantial background context. Consequently, by

1To generate B, the background region of the query image is estimated
from the prediction P of the QP step.
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Figure 3. Generation of the structure-wise evolution feature Es.

modeling the change from input to output, E can capture
the influence of the background on the foreground within
the network, thus enabling it to perform modulation effec-
tively. To capture rich and multi-level information for the
effective context extraction, we sum two types of evolution
features to obtain E, namely pixel-wise evolution feature
Ep and structure-wise evolution feature Es as follow:

Pixel-wise Evolution Feature. First, we extract Ep, which
provides the evolution information for each pixel in the
query foreground. For this, we pass the input query im-
age and its backbone output features through two individ-
ual 1 × 1 convolutions. Through this process, we get a
context-independent input representation FI and a context-
influenced output representation FO, respectively. After
that, by identifying the query foreground region using P
generated by the QP step, we generate foreground tokens
FI ∈ RNf×C and FO ∈ RNf×C , which aggregate the fea-
tures of all foreground pixels in FI and FO, respectively. FI

and FO are concatenated along the channel dimension and
are passed through a two-layered MLP to produce a feature
matrix Ep ∈ RNf×C . In this way, by modeling the interac-
tion between the context-independent input image and the
context-influenced output feature, Ep extracts pixel-wise
evolution features that can be used to model query context.

Structure-wise Evolution Feature. As shown in Fig. 3,
in addition to Ep, motivated by the demonstrated impor-
tance of structural information in the segmentation task
[14, 18], we further introduce a Structure-wise Evolution
Feature denoted by Es. Firstly, We aggregate all foreground
pixels from the query image Iq and its backbone output
fq , getting input tokens TI ∈ RNf×3 and output tokens
TO ∈ RNf×C respectively. Next, we calculate pixel-wise
distances in TI and TO to get affinity maps AI ∈ RNf×Nf

and AO ∈ RNf×Nf . Specifically, each item Ai,j
I on AI

is computed as the cosine similarity between Ti
I and Tj

I ,
where Ti

I refers to the i-th pixel on TI . AO is produced
from TO similarly. We flatten AI and AO to the shape
RN2

f , and then introduce histogram features HI ∈ RL and
HO ∈ RL to capture statistical information from them. For
this, the continuous range [0,1] is subdivided into L dis-
crete bins {Il}Ll=1 with Il = [(l − 1)/L, l/L], then each
dimension Hl

I on HI is calculated as the total number of
dimensions in AI with values falling into the interval Il.
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Figure 4. Illustration figure of the confidence-biased attention used
in the Information Cleansing Step. P , P̂ and fq are flattened along
the spatial dimension before the attention.

Formally,

Hl
I =

N2
f∑

i=1

1

(
l − 1

L
< Ai

I <
l

L

)
, l ∈ [0, L− 1]. (4)

For 1 to be differentiable, we use a spire-shaped judge func-
tion, which is described in Supp. Using the same approach,
we can get HO from AO. Finally, we normalize and con-
catenate HI and HO, followed by a two-layered MLP to
get the Structure-wise Evolution Feature Es ∈ RC .

In the end, E ∈ RNf×C is generated by adding Es ∈
RC to each pixel of the pixel-wise evolution feature Ep ∈
RNf×C , which can then be used to modulate S through Eq.
2 and Eq. 3.
Discussion: Why to Use Affinity Maps and Histograms.
To generate Es, we employ affinity maps followed by his-
tograms to extract structural information. Using affinity
maps is motivated by their strong ability to represent image
structures [16, 20]. Histograms are used for two reasons.
Firstly, histograms can capture structural information like
contrast and smoothness [12], so they are helpful for repre-
senting the structure features of the foreground region at a
particular network layer. Secondly, histograms facilitate the
extraction of features from affinity maps AI ∈ RNf×Nf

and AO ∈ RNf×Nf , which are unfixed in size due to the
variable number of foreground pixels (Nf ) in different im-
ages. Using histograms, AI and AO can be converted into
fixed-shaped representations, thus making it possible to ex-
tract evolution features from them through linear layers that
require a fixed number of input and output channels.

4.4. Information Cleansing Step
To extract context, in the SM step, we use the prediction P
from the QP step as a foreground-background indicator to
create features like B in Eq.2. However, P is a coarse pre-
diction with some incorrectly segmented pixels, so using
it directly can introduce noise into these features. Conse-
quently, through the processes of the SM step, this noise
can be propagated to the output SSM, finally impeding its
effectiveness in guiding query prediction. To overcome
this issue, we propose an additional step called Informa-
tion Cleansing (IC), which removes the noise from SSM,

thus producing a cleaner SIC that can guide query image
segmentation more effectively. The structure of this step is
shown in Fig. 2 (c). Firstly, we introduce a confidence-
biased attention as shown in Fig.4 to capture the accumu-
lated noisy information, which is inspired by recent semi-
supervised learning study [38] demonstrating that noisy in-
formation can lead to lower prediction certainty. Specifi-
cally, we replace SQP in Eq. 1 with SSM and perform the
QP step. By doing so, in addition to prediction P from SQP,
we get an intermediate prediction P̂ from SSM. Next, we
calculate the entropy confidence for each pixel on P and P̂ ,
resulting in confidence maps C and Ĉ with the same shape
as P and P̂ . A confidence variance map V is then calcu-
lated as the difference between C and Ĉ, i.e., V = Ĉ − C.
We use V as a bias term, adding it to the softmax matrix
of a vanilla attention to derive a modified attention that is
formulated as:

N = softmax
(
Qϕ[SQP,SSM]Kfq + V

)
Vfq , (5)

where ϕ[SQP,SSM] denotes passing the concatenation of
SQP and SSM through a two-layered MLP. The feature pro-
duced by this operation reflects the evolution from SQP to
SSM through the SM step. V and fq are flatten along the
spatial dimension before the attention. For a pixel (i, j) on
V , a higher value of V i,j indicates a sharper decline in its
prediction confidence, and vice versa. By adding V to the
softmax matrix, the attention is encouraged to focus on pix-
els with reduced confidences. In this way, the attention can
capture noisy information N accumulated by the SM step.
Eventually, we remove the noisy information from SSM by:

SIC = SSM − ϕ (N) , (6)

where ϕ is a linear layer. The generated SIC is the output
of the IC step, and also the input for the QP step in the next
iteration (St+1

QP ← St
IC).

4.5. Optimization
We optimize the model with the following loss function:

L =

T∑
t=1

LCE (Pt, Gq) + λ

T−1∑
t=1

LCE

(
P̂t, Gq

)
, (7)

where T refers to the number of iterations. Gq is the ground
truth of the query image. Pt denotes the query prediction
from the QP step in the t-th iteration. P̂t denotes the in-
termediate prediction from the IC step in the t-th iteration.
LCE refers to the cross-entropy loss function. λ is a hyper-
parameter.

5. Experiments
5.1. Datasets
We evaluate our method on two widely-used datasets:
PASCAL-5i and COCO-20i. The PASCAL-5i dataset con-
tains images from PASCAL VOC 2012, with annotations
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Backbone Method Conference 1-shot 5-shot
Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

ResNet50

NTRENet [21] CVPR2022 65.4 72.3 59.4 59.8 63.2 66.2 72.8 61.7 62.2 65.7
BAM[16] CVPR2022 69.0 73.6 67.5 61.1 67.8 70.6 75.1 70.8 67.2 70.9
AAFormer[37] ECCV2022 69.1 73.3 59.1 59.2 65.2 72.5 74.7 62.0 61.3 67.6
SSP[8] ECCV2022 60.5 67.8 66.4 51.0 61.4 67.5 72.3 75.2 62.1 69.3
IPMT[22] NeurIPS2022 72.8 73.7 59.2 61.6 66.8 73.1 74.7 61.6 63.4 68.2
ABCNet[36] CVPR2023 68.8 73.4 62.3 59.5 66.0 71.7 74.2 65.4 67.0 69.6
HDMNet [30] CVPR2023 71.0 75.4 68.9 62.1 69.4 71.3 76.2 71.3 68.5 71.8
MIANet[42] CVPR2023 68.5 75.8 67.5 63.2 68.7 70.2 77.4 70.0 68.8 71.7
MSI[27] ICCV2023 71.0 72.5 63.8 65.9 68.5 73.0 74.2 70.5 66.6 71.1
SCCAN[40] ICCV2023 68.3 72.5 66.8 59.8 66.8 72.3 74.1 69.1 65.6 70.3
ABCB (Ours) CVPR2024 72.9 76.0 69.5 64.0 70.6 74.4 78.0 73.9 68.3 73.6

ResNet101

NTRENet[21] CVPR2022 65.5 71.8 59.1 58.3 63.7 67.9 73.2 60.1 66.8 67.0
DCAMA[31] ECCV2022 62.5 70.8 64.5 56.4 63.5 70.0 73.8 66.8 65.0 68.9
VAT[13] ECCV2022 68.1 71.7 64.8 63.3 67.0 72.6 74.1 69.5 69.5 71.4
ABCNet[36] CVPR2023 65.3 72.9 65.0 59.3 65.6 71.4 75.0 68.2 63.1 69.4
MSI[27] ICCV2023 73.1 73.9 64.7 68.8 70.1 73.6 76.1 68.0 71.3 72.2
SCCAN[40] ICCV2023 70.9 73.9 66.8 61.7 68.3 73.1 76.4 70.3 66.1 71.5
ABCB (Ours) CVPR2024 73.0 76.0 69.7 69.2 72.0 74.8 78.5 73.6 72.6 74.9

Table 1. Performance comparison with other methods on PASCAL-5i.

Backbone Method Conference 1-shot 5-shot
Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

ResNet50

NTRENet[21] CVPR2022 36.8 42.6 39.9 37.9 39.3 38.2 44.1 40.4 38.4 40.3
BAM[16] CVPR2022 43.4 50.6 47.5 43.4 46.2 49.3 54.2 51.6 49.6 51.2
SSP[8] ECCV2022 35.5 39.6 37.9 36.7 47.4 40.6 47.0 45.1 43.9 44.1
MM-Former[45] NeurIPS2022 40.5 47.7 45.2 43.3 44.2 44.0 52.4 47.4 50.0 48.4
ABCNet[36] CVPR2023 42.3 46.2 46.0 42.0 44.1 45.5 51.7 52.6 46.4 49.1
MIANet[42] CVPR2023 42.5 53.0 47.8 47.4 47.7 45.8 58.2 51.3 51.9 51.7
MSI[27] ICCV2023 42.4 49.2 49.4 46.1 46.8 47.1 54.9 54.1 51.9 52.0
SCCAN[40] ICCV2023 40.4 49.7 49.6 45.6 46.3 47.2 57.2 59.2 52.1 53.9
ABCB (Ours) CVPR2024 44.2 54.0 52.1 49.8 50.0 50.5 59.1 57.0 53.6 55.1

ResNet101

NTRENet[21] CVPR2022 38.3 40.4 39.5 38.1 39.1 42.3 44.4 44.2 41.7 43.2
SSP[8] ECCV2022 39.1 45.1 42.7 41.2 42.0 47.4 54.5 50.4 49.6 50.2
IPMT[22] NeurIPS2022 40.5 45.7 44.8 39.3 42.6 45.1 50.3 49.3 46.8 47.9
ABCNet[36] CVPR2023 36.5 35.7 34.7 31.4 34.6 40.1 40.1 39.0 35.9 38.8
MSI[27] ICCV2023 44.8 54.2 52.3 48.0 49.8 49.3 58.0 56.1 52.7 54.0
SCCAN[40] ICCV2023 42.6 51.4 50.0 48.8 48.2 49.4 61.7 61.9 55.0 57.0
ABCB (Ours) CVPR2024 46.0 56.3 54.3 51.3 51.5 51.6 63.5 62.8 57.2 58.8

Table 2. Performance comparison with other methods on COCO-20i.

Method mIoU

Baseline (Backbone + QP) 61.48

Baseline + SM 68.20
Baseline + SM + IC 72.92

Table 3. Ablation of different compo-
nents in our method.

Method mIoU

Ours 72.92

Ours w/o Ep 68.85
Ours w/o Es 70.29

Table 4. Ablation of Ep and Es used
in support modulation step

Number of Iterations (T ) mIoU MACs (G)

1 61.48 225.8
2 69.82 241.3
3 72.92 257.0
4 72.99 272.7
5 73.05 288.2

Table 5. Ablation for the number of
iterations.

Iteration (t) mIoU

1 63.08
2 70.76
3 72.92

Table 6. The mIoUs of predictions
from different iterations.

extended from the SDS to include 20 categories. The
COCO-20i dataset is based on the MSCOCO dataset and in-
cludes 80 categories. To be consistent with previous works,
we divided the overall categories into four folds and con-
duct experiments in a cross-validation manner, i.e., to use
three folds for training and the remaining one for testing.

5.2. Implementation Details
We employ ResNet50 and ResNet101 pretrained on Ima-
geNet as the network backbone with the structure in [26] to
enhance feature effectiveness, followed a correlation mod-
ules in [30] to fuse information. L discrete bins is used
to generate histograms for the structure-wise evolution fea-
ture, where L is set to 16. T indicating the number of iter-
ations for the iterative structure is 3. The model is trained
for 250 epochs on PASCAL-5i and 70 epochs on COCO-
20i. λ in Eq. 7 is set to 0.2. We use SGD as the optimizer
with momentum and weight decay set to 0.9 and 0.0001,
respectively. We set the initial learning rate to 0.002 and
batch size to 16 for PASCAL-5i, and 0.005 with batch size
8 for COCO-20i. We adopt ‘poly’ policy as the learning
rate decay strategy, where the learning rate for each itera-
tion equals to initial rate multiplied by

(
1− iter

max iter

)0.9
.

For the input images, we employ random scaling and hori-
zontal flipping for data augmentation, and then crop images

to the size 473 × 473 for PASCAL-5i and 641 × 641 for
COCO-20i to get the training samples. The experiments are
implemented using Pytorch on NVIDIA Tesla V100 GPUs.

5.3. Comparison to State-of-the-art
To evaluate the effectiveness of our method, we compare
it with other state-of-the-art methods under different back-
bones, including ResNet50 and ResNet101, and on a variety
of few-shot settings, including 1-shot and 5-shot. For each
setting, we report the results of using different folds as the
test set as well as their mean result. All the compared meth-
ods are published in the past 2 years.

The results on PASCAL-5i are shown in Table. 1. Un-
der both 1-shot and 5-shot settings, our method can signifi-
cantly outperform existing methods for both ResNet50 and
ResNet101 backbones. To be specific, for the ResNet101
backbone, our method achieves 72.0% and 74.9% mIoUs
on the 1-shot and 5-shot settings, outperforming the second-
place method by 1.9% and 2.7%, respectively. The results
demonstrate that our method can work well and achieve out-
standing performance for both 1-shot and multi-shot seg-
mentation. It is worth noting that some of the compared
methods [8, 16, 40] also make use of image background in-
formation. Our method differs from them by addressing the
problem of background context bias for the first time, thus
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achieving the best performance.
The results on COCO-20i are shown in Table. 2.

Based on ResNet101, our approach performs better than the
second-place method by 1.7% and 1.8%, reaching 51.5%
and 58.8% mIoUs on the 1-shot and 5-shot settings re-
spectively. Compared to PASCAL-5i, COCO-20i is more
challenging due to its more complicated backgrounds. De-
spite these challenges, our method still shows significant
advantages benefiting from the context-based modulation,
as demonstrated by the excellent results in various settings.

5.4. Ablation Study
We conduct several ablation studies to verify the effective-
ness of our designs. The experiments in this section are per-
formed on PASCAL-5i fold-0 with the ResNet50 backbone.
Due to the paper length limitation, more ablation study re-
sults are presented in Supp.
Ablation of Different Components. Our method is struc-
tured as an iterative process with three successive steps:
Query Prediction (QP), Support Modulation (SM), and In-
formation Cleansing (IC). We conduct experiments to eval-
uate the effectiveness of each component, and the results
are shown in Table. 3. A network only comprising a back-
bone and a QP step is used as the baseline, which achieves
61.48% mIoU. Incorporating the SM step on the baseline re-
sults in a performance boost, achieving a mIoU of 68.20%,
6.72% higher than the baseline. The further usage of IC step
improves mIoU to 72.92%. The results demonstrate that
each component can contribute to performance improve-
ment in our method.
Ablation of Support Modulation step. To improve the
effectiveness of support foreground features, we use con-
text information extracted from query images for modula-
tion. To capture a comprehensive context, we generate two
query evolution features: pixel-wise evolution feature Ep

and structure-wise evolution feature Es, which capture the
evolution of pixels and global structures respectively. To
verify the necessity of these representations, we conduct ex-
periments and present the results in Table 4. By removing
Ep and Es, performance is decreased by 4.07% and 2.63%
respectively. These results suggest that both features are im-
portant to capture a comprehensive evolution feature, which
is crucial for ensuring an effective context extraction.
Ablation of Number of Iterations. An iterative structure
is employed in our method with T iterations. We perform
experiments to determine the best choice for the hyperpa-
rameter T and present the results in Table 5, which shows
the mIoUs and MACs for different settings. As shown in
the table, the mIoU improves from 61.48% to 72.92% as T
increases from 1 to 3. When T is higher than 3, further in-
creasing T does not significantly improve performance, but
rather increases computation burden. Therefore, we choose
T = 3 as the optimal number of iterations.
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Figure 5. Statistical distribution of distances between the sup-
port foreground features and query foreground features across all
episodes. Baseline refers to backbone with a single QP step.

5.5. Predictions at Different Iterations
To gain a deeper evaluation of our iterative structure, we
analyze the segmentation results from different iterations.
The total number of iterations T is set to 3. The results are
presented in Table.5, which shows the mIoUs of predictions
generated at different iterations (t=1,2,3). As t increases,
the segmentation results continue to improve. In the first
iteration, we obtain suboptimal predictions because the fea-
ture misalignment is caused by the different backgrounds,
which results in the low mIoU scores. By using the iterative
structure, the performance is improved significantly, result-
ing in a 9.84% increase in mIoU from the first to the final
iteration.
5.6. Mitigation of the Feature Misalignment
To demonstrate that our method can eliminate foreground
feature misalignment caused by background context bias,
for all episodes of the test set, we compute the cosine dis-
tance between foreground average features of support and
query images. This evaluation is conducted on both the
baseline and our method for comparison. The distribution
of these distance values is shown in Fig.5, where the hor-
izontal axis represents different distance intervals, and the
vertical axis indicates the proportion of episodes falling into
each interval. Compared to the baseline, when our method
is used, there are more episodes with lower foreground fea-
ture distances. This shows that our method can effectively
narrow foreground feature distances between support and
query images, thereby enhancing the effectiveness of sup-
port foreground features in guiding query segmentation.
5.7. Visualizations
In order to illustrate the effectiveness and advantages of our
method, in Fig.6 and Fig.7, we present the following two
types of visualizations:
Visualization Comparisons with SOTA methods. In
Fig.6, we provide prediction visualizations of different
methods when the support and query images have signif-
icantly different backgrounds. The compared methods in-
clude CANet [43], SSP [8], and IPMT [22]. Under this
challenging scenario, all the compared methods encounter
the background context bias issue, which results in unsat-
isfactory predictions. In contrast, our method effectively
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(a) Support Image (b) Query Image (c) Ground Truth (d) Ours (e) CANet (f) SSP (g) IPMT

Figure 6. Prediction visualizations of different methods when the support and query images have significantly different backgrounds.

(a) Support Image (b) Query Image (c) Ground Truth (d) After QP Step (e) After SM Step (f) After IC Step

Figure 7. Prediction visualizations by using the output features after each of the QP, SM, and IC steps in an iteration for query guidance.

addresses this issue and produces significantly better pre-
dictions. These results demonstrate that our method can
achieve robust results when support and query images have
different backgrounds and outperforms the other methods.
Prediction Visualizations of Using Features After Each
Step. In Fig.7, we present the prediction results by using
the support features SQP, SSM and SIC after each of the QP,
SM, and IC steps in an iteration as the guidance feature used
in Eq.1. It can be observed that the prediction gradually
refines after each step, which demonstrates the benefit of
using each step proposed in our method.

5.8. Computation Cost and Parameter Number
Our method is both effective and efficient. Compared to the
baseline, which comprises a backbone network followed by
a single QP step, our methods only increase computation
and memory usage slightly. Specifically, on the PASCAL-
5i dataset with the ResNet50 backbone, the baseline con-
sumes 210.3G MACs of computation, requiring 27.6M pa-
rameters. Our method consumes 257.0G MACs of compu-
tation, requiring 33.5M parameters. Compared to the base-
line, our method significantly improves mIoU (+16.50%)
while only increasing computation and memory by 22.2%
and 21.4%, respectively. We also calculate the parameter
usage of each step in our method. Specifically, the QP step,

SM step, and IC step require 0.6M, 3.9M, and 2.0M param-
eters, respectively. It is worth noting that different iterations
share the same parameters, thus avoiding the huge memory
cost caused by the iterative structure.

6. Conclusion
This paper presents a novel method to address background
context bias in few-shot segmentation. In our method,
we employ an iterative structure involving three succes-
sive steps: Query Prediction, Support Modulation, and In-
formation Cleansing. This structure can address the mis-
alignment of foreground features and reduce the noise ac-
cumulation, creating a recurrent optimization scheme that
can continuously refine the segmentation results. Experi-
ments on PASCAL-5i and COCO-20i demonstrate the high
effectiveness of our method in achieving SOTA segmenta-
tion results. We believe that our research provides valuable
insights and advancements in the field of few-shot segmen-
tation, which can contribute to the development of segmen-
tation algorithms with higher accuracy and robustness.
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