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Figure 1. Examples of our method COSALPURE and comparative results before and after purification. COSALPURE comprises two modules: group-image
concept learning and concept-guided purification. Firstly, the concept learning module inputs a group of images that contain some adversarial cases and
obtain their shared co-salient semantic information (i.e., the learned concept), denoted as c. We can validate the effectiveness of the learned c through
the visualization via a text-to-image (T2I) diffusion model. Secondly, steered by the previously learned concept, we employ certain diffusion generation
techniques to purify the entire group of images. Before our purification, the co-salient object detection results are poor, but after purification, the detection
results are satisfactory. Please enlarge to see more details.

Abstract

Co-salient object detection (CoSOD) aims to identify
the common and salient (usually in the foreground) regions
across a given group of images. Although achieving sig-
nificant progress, state-of-the-art CoSODs could be easily
affected by some adversarial perturbations, leading to sub-
stantial accuracy reduction. The adversarial perturbations
can mislead CoSODs but do not change the high-level se-
mantic information (e.g., concept) of the co-salient objects.
In this paper, we propose a novel robustness enhancement
framework by first learning the concept of the co-salient ob-
jects based on the input group images and then leverag-
ing this concept to purify adversarial perturbations, which
are subsequently fed to CoSODs for robustness enhance-
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ingqguo@ieee.org) are corresponding authors.

ment. Specifically, we propose COSALPURE containing two
modules, i.e., group-image concept learning and concept-
guided diffusion purification. For the first module, we adopt
a pre-trained text-to-image diffusion model to learn the con-
cept of co-salient objects within group images where the
learned concept is robust to adversarial examples. For the
second module, we map the adversarial image to the latent
space and then perform diffusion generation by embedding
the learned concept into the noise prediction function as an
extra condition. Our method can effectively alleviate the in-
fluence of the SOTA adversarial attack containing different
adversarial patterns, including exposure and noise. The ex-
tensive results demonstrate that our method could enhance
the robustness of CoSODs significantly. The project is avail-
able at https://v1len.github.io/CosalPure/.
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1. Introduction
Co-salient object detection (CoSOD) plays a pivotal role

in visual information analysis, aiming to identify and ac-
centuate common and salient objects across a set of images
[33]. This study area, crucial for applications like image
segmentation and object recognition, has witnessed con-
siderable advancement with the advent of neural network-
based methodologies. These methods excel in discerning
shared saliency cues among images, offering a significant
leap over traditional saliency detections [20]. However,
their robustness is severely tested under adverse conditions,
such as adversarial attacks and various image common cor-
ruption, including but not limited to motion blur [13].

The susceptibility of CoSOD methods to adversarial per-
turbations, such as those introduced by Jadena [12], poses
a significant challenge. These perturbations, while not al-
tering the high-level semantic information of images, can
drastically reduce the accuracy of co-salient object detec-
tion. The disparity between the corrupted image’s saliency
map and the ground truth, as a result of these attacks, high-
lights a critical vulnerability in current CoSOD approaches.

Currently, there are indeed methods aimed at defending
against adversarial attacks, such as DiffPure, which em-
ploys a noise addition and denoising strategy to eliminate
perturbations. However, when restoring the image, Diff-
Pure does not take into account the identity of the object
within the image (i.e., without object-specific information).
As a result, the restored images produced by DiffPure may
contain artifacts that are artificially generated. These arti-
facts will affect the detection results of the CoSOD method.

To fill this gap, this work introduces a novel robustness
enhancement framework, COSALPURE. The intuitive idea
is to first learn a concept from the group images and then
use it to guide the data purification based on text-to-image
(T2I) diffusion. The ‘concept’ means the high-level seman-
tic information of co-salient objects in the group images and
falls within the text’s latent space. Specifically, this innova-
tive approach comprises two meticulously designed mod-
ules: group-image concept learning and concept-guided dif-
fusion purification. The first module focuses on learning the
concept of co-salient objects from group images, demon-
strating robustness and resilience to adversarial examples.
The second module strategically maps adversarial images
into a latent space, following which diffusion generation
techniques, steered by the previously learned concept, are
employed to purify these images effectively.

As shown in the left panel of Fig. 1, when a group of im-
ages containing some adversarial examples is passed into
co-salient object detectors, the detection results are poor.
We first apply the concept learning module to obtain the
shared co-salient semantic information c (i.e., the learned
concept). The bottom right corner of Fig. 1 shows the vi-
sualization results of c via a T2I diffusion model. It is evi-

dent that the semantic information in the visualized images
aligns with the original group images, demonstrating the ef-
fectiveness of the concept learning module. Secondly, we
utilize the just-proven effective learned concept c to guide
the purification. From the right panel of Fig. 1, we can ob-
serve that the purified group images via COSALPURE ex-
hibit satisfactory performance in the CoSOD task.

Extensive experimental results substantiate the effective-
ness of COSALPURE. COSALPURE stands as a robust,
concept-driven solution, paving the way for more reliable
and accurate co-salient object detection in an era where im-
age manipulation and corruption are increasingly prevalent.

2. Related Work
Co-salient object detection. Different from single-image
saliency detection [1, 6, 18, 20, 27, 28], the goal of co-
saliency detection is to detect common salient objects in a
group of images [9, 16, 17, 29, 34, 35], evolving from early
feature-based approaches to sophisticated deep learning and
semantic-driven methods. Deciphering correspondences
among co-salient objects across multiple images is pivotal
for co-saliency detection. This challenge can be effec-
tively tackled through optimization-based methods [3, 19],
machine learning-based models [5, 31], and deep neural
networks [29, 34, 35]. GICD [35] employs a gradient-
induced mechanism that pays more attention to discrimi-
native convolutional kernels which helps to locate the co-
salient regions. GCAGC [34] presents an adaptive graph
convolutional network with attention graph clustering for
co-saliency detection.
Adversarial attack for co-salient object detection.
Jadena [12] is an adversarial attack that jointly tunes the
exposure and additive perturbations, which can drastically
reduce the accuracy of co-salient object detection.
Text-to-image diffusion generation model. The popular-
ity of Text-to-Image (T2I) generation [30] is propelled by
diffusion models [7, 15, 23], necessitating training on ex-
tensive text and image paired datasets like LAION-5B [25].
The adeptly trained model demonstrates proficiency in gen-
erating diverse and lifelike images based on user-specific
input text prompts, realizing T2I generation. T2I personal-
ization [10, 24] is geared towards steering a diffusion-based
T2I model to generate innovative concepts.
Diffusion-based image purification methods. DiffPure
[22] is a notable approach in the field of image processing,
specifically designed to enhance the robustness of images
against adversarial attacks. It employs a strategy of intro-
ducing controlled noise via the forward stochastic differen-
tial equation (SDE) [21] and subsequently denoising the im-
age via the reverse SDE to counteract adversarial perturba-
tions. While effective in reducing these perturbations, it is
noteworthy that DiffPure does not explicitly consider object
semantics during the image restoration process. Diffusion-
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Driven Adaptation (DDA) [11] is a test-time adaptation
method that improves model accuracy on shifted target data
by updating inputs through a diffusion model [15], effec-
tively avoiding domain-wise re-training.

3. Preliminaries and Motivation
3.1. Co-salient Object Detection (CoSOD)

We have a group of images I = {Ii ∈ RH×W×3}Ni=1

that contain N images, and these images have common
salient objects. We denote a CoSOD method as COSOD(·),
taking I as input and predicting N salient maps,

S = {Si}Ni=1 = COSOD(I), (1)

where Si ∈ RH×W is a binary map (i.e., the saliency map)
indicating the salient region of the i-th image Ii. We show
an example of co-saliency detection results in Fig. 1.

3.2. Robust Issues of CoSOD

However, at times, part of the acquired images may be
of low quality (i.e., corrupted by some degradation), which
will affect the robustness of CoSOD methods. In partic-
ular, [12] proposes the joint adversarial noise and exposure
attack that can reduce the detection accuracy of state-of-the-
art CoSODs significantly. To be specific, within the entire
group, there are M images that have been added adversarial
perturbations, denoted as {I′j}Mj=1, while the remaining are
considered as clean images {Ik}N−M

k=1 . In this scenario, we
can reformulate Eq. (1) as

S
′
= {S

′

i}Ni=1 = CoSOD({I
′

j}Mj=1 ∪ {Ik}N−M
k=1 ). (2)

The difference between S from Eq. (1) and S ′ indicates the
robustness of the CoSOD method. Previous research find-
ings indicate that existing CoSOD methods are susceptible
to the influence of anomalous data (e.g., adversarial noise
and exposure) [12]. Note that the degraded images (e.g.,
{I′j}Mj=1) may not only affect the saliency maps of them-
selves but also impact the saliency maps of clean images.

Therefore, to enhance the robustness of CoSOD meth-
ods, defense methods should be developed. However, few
works are focusing on this direction. A typical defense
method is to purify the input images to remove the effects of
degradations. In the following, we study the SOTA purifica-
tion method, i.e., DiffPure [22], to enhance the robustness
and show that enhancing the robustness of CoSOD is a non-
trivial task and new technologies should be developed.

3.3. DiffPure and Challenges

A highly intuitive approach is to perform image recon-
struction on input images, hoping to remove degradations.
As an existing method for image reconstruction, DiffPure

DiffPure

GroundtruthGICD GCAGCInput

Co-salient
Object
Detection

Purified Image

Figure 2. CoSOD results for DiffPure.The input images are under the at-
tack method [12]. Processed by DiffPure [22], the purified images perform
inferior in the CoSOD task together with their respective group images.

[22] can remove adversarial perturbations by applying for-
ward diffusion followed by a reverse generative process.
However, DiffPure is limited in its ability to address adver-
sarial additive perturbations. It presents limited capabilities
for handling other degradations like adversarial exposure.
Fig. 2 illustrates two cases, with the upper case depicting
a koala and the lower case representing a train. The in-
put images for both cases are under the attack method [12].
The images processed through DiffPure visually eliminate
perturbations. However, when the purified images under-
went co-salient object detection together with the images
within their respective groups, the detection results are in-
ferior. Fig. 2 illustrates that the DiffPure cannot enhance the
robustness of CoSOD under the attack method [12].

We tend to design a more effective purification method.
DiffPure is specifically designed against adversarial attacks
for image classification and neglects the specific properties
of the CoSOD task: ❶ Only partial images within the group
are attacked, and the clean images contain rich complemen-
tary information, which could help enhance the robustness.
❷ Although the adversarial patterns may affect the semantic
features of images, the fact group images contain co-salient
objects has not changed. How to utilize such a property
should be carefully studied.

4. Methodology: COSALPURE

4.1. Overview

Beyond DiffPure [22], we propose to learn the concept
of co-salient objects from the group images and leverage it
to guide the purification. Specifically, given group images
I ′ = {I′j}Mj=1 ∪ {Ik}N−M

k=1 that contains M degraded im-
ages and N − M clean images, we first learn the concept
from I ′ via the recent developed textual inversion method.
The learned concept is a token and lies in the latent space
of texts. We name it as ‘concept’ since we can use it to
generate new images containing the ‘concept’. Note that
the number of the degraded images (i.e., M ) is unknown
during application. We denote the concept of learning as

c = ConceptLearn(I ′), (3)

and we detail the whole process in Sec. 4.2.
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Figure 3. Overview of COSALPURE. The details of (a) are in Sec. 4.2, while the details of (b) are in Sec. 4.3.
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Figure 4. Demonstration of the effectiveness of concept learning. (a) Five
clean images are utilized for concept learning, and the learned concept can
be reconstructed into an image through a pre-trained text-to-image model.
(b) The first two images are attacked by Jadena [12] while the subsequent
three images are clean, and the learned concept can also be reconstructed
into a high-quality image. (a) and (b) use the same random seed.

After obtaining the concept, we aim to leverage it for
purification by

Î = ConceptPure(c, I), I ∈ I ′, (4)

where the image Î is the purified image of I that may be a
clean image or a perturbed image. We detail the concept-
guided diffusion purification in Sec. 4.3. For each image
in I ′, we can handle it via Eq. (4) and get a novel group
denoted as Î. Then, we feed Î to CoSOD methods to see
whether their robustness is enhanced or not.

The core idea is valid based on a critical assumption: the
perturbed images in I ′ do not affect the concept learning.
We detail this in the Sec. 4.2.

4.2. Group-Image Concept Learning

In this section, we introduce the detail of group-
image concept learning (i.e., Eq (3)), which tends to
utilize a group of input images for learning the text-
aligned embedding of common objects they have, as
shown in Fig. 3 (a). We denote this process as c =

ConceptLearn
(
{I′j}Mj=1 ∪ {Ik}N−M

k=1

)
where c represents

a token aligned with the texts’ latent space and represents
the semantic information of common objects.

To this end, we formulate group-image concept learning
as the personalizing text-to-image problem [10, 24] to en-
able text-to-image (T2I) diffusion models to rapidly swift
new concept acquisition.

Text-to-Image Diffusion Model. We introduce the ar-
chitecture and procedure of a classical T2I diffusion model
[23]. It consists of three core modules: (1) image autoen-
coder, (2) text encoder, (3) and conditional diffusion model.
The image autoencoder module has two submodules: an
encoder E and a decoder D. It serves a dual purpose, where
the encoder maps an input image X to a low-dimensional
latent space with z = E(X), while the decoder transforms
the latent representation back into the image space with
D(E(X)) ≈ X. The text encoder Γ firstly processes a text y
by tokenizing it and secondly translates it into a latent space
text embedding Γ(y). The conditional diffusion model ϵθ
takes the time step t, the noisy latent zt at t-th time step and
the text embedding Γ(y) as input to predict the noise added
on zt, denoted as ϵθ(zt, t,Γ(y)).

Given a pre-trained T2I diffusion model and group im-
ages I ′ = {I

′

j}Mj=1 ∪ {Ik}N−M
k=1 used for CoSOD task, we

aim to learn a concept of the common object within I ′ by

c =argmin
c∗

EX∈I′,z∈E(X),y,ϵ∈N (0,1),t(

∥ϵθ(zt, t,Υ(Γ(y), c∗))− ϵ∥22), (5)

where y is a fixed text (i.e., ‘a photo of S∗’) and the function
Υ(Γ(y), c∗) is to replace the token of ‘S∗’ within Γ(y) with
c∗. Intuitively, Eq. (5) forces the concept c∗ to represent
the co-salient objects within group images and also lies in
the text latent space corresponding to the text ‘S∗’. After
obtaining c, we can embed ‘S∗’ into other texts to generate
new images via the T2I diffusion model. For example, in
Fig. 4 (b), we learn a concept of the co-salient objects (i.e.,
piano), which corresponds to the text ‘S∗’. Then, we feed a
text (e.g., ‘a photo of S∗’) to the T2I model that generates an
image containing the object, which means that the learned
concept represents the salient objects in I ′ very well.
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Robustness of concept learning. It is obvious that the
above method naturally aligns with our objective since we
can exploit it to obtain the common semantic content among
the group images for the CoSOD task. The key problem is
whether the concept learning would be affected by degra-
dations like adversarial perturbation in the group images.
We conduct an empirical study to validate this. Specifi-
cally, given a group of clean images (i.e., I), we use it to
learn a concept via Eq. (5). Meanwhile, we conduct the ad-
versarial CoSOD attack [12] on two images within I and
form a new group I ′. With I ′, we learn another concept via
Eq. (5). Then, we can leverage the two learned concepts to
generate images based on the same text prompt. As shown
in Fig. 4, we find that the two generated images based on
two concepts are similar, demonstrating that the adversarial
examples have limited influence on concept learning. This
inspires us to leverage the learned concept to purify the ad-
versarial examples.

4.3. Concept-guided Diffusion Purification

We propose reconstructing the group images based on
the learned concept c to eliminate the potential adversarial
patterns as shown in Fig. 3 (b). Considering the advantage
of the continuous representation [4, 14] in the smooth image
reconstruction and its ability to remove perturbations, we
employ a continuous representation module for the initial
processing of the input image X, denoted as X̃ = CR(X).
This module not only somewhat denoises X but also ad-
dresses the issue of pre-trained CoSOD models designed
for specific resolutions that do not match the input resolu-
tion of our employed diffusion model. Subsequently, the en-
coder of the image autoencoder module maps X̃ to the latent
space z0 = E(X̃). The following procedure is based on the
diffusion pipeline and needs two procedures: forward pro-
cess and reverse process. The forward diffusion process is
a fixed Markov chain that iteratively adds a Gaussian noise
to the latent z0 over T timesteps, obtaining a sequence of
noised images z1, z2, · · · , zT . In each step of the forward
progress, the latent at time step t ∈ [1, T ] is updated by

zt = atzt−1 + btϵt, ϵt ∼ N (0, I), (6)

where at and bt are coefficients and N (0, I) represents
the standard Gaussian distribution. By superimposing time
steps from t = 1 to T , Eq. (6) can be simplified to

zt =
√
αtz0 +

√
1− αtϵt, ϵt ∼ N (0, I), (7)

where we have a2t + b2t = 1, and αt = a2t , αt =
∏t

τ=1 ατ .
As we set the time step as T , the complete forward process
can be expressed as

zT ∼ q(z1:T |z0) =
T∏

t=1

q(zt|zt−1). (8)

my_aeroplane my_axe my_camel my_dolphin

Processed
Image

Attention
Map

Learned
Concept

Figure 5. Attention maps for learned concepts on processed images.

For the reverse process, it iteratively removes the noise to
generate an image in T timesteps. Unlike doing the reverse
process directly, our method incorporates the obtained se-
mantic embedding c as additional object information into
the pipeline. Then, we can start from zT (alternatively
called ẑT ) and progressively predict

ϵt−1 = ϵθ(ẑt, t, c), (9)

and obtain the latent at time step t− 1 via

ẑt−1 =

√
ᾱt−1(1− αt)

1− ᾱt
z̃0

+

√
αt(1− ᾱt−1)

1− ᾱt
ẑt + σtξ, (10)

with

z̃0 =
ẑt −

√
1− ᾱtϵt−1√
ᾱt

, (11)

where σ2
t = (1−αt)(1−αt−1)

1−αt
and ξ ∼ N (0, I) according

to the sample process of DDPM [15]. We can directly ob-
tain the reconstructed image x̂ by using the decoder with
formula x̂ = D(ẑ0).

To confirm that the concept learned by COSALPURE is
applied accurately in the image reconstruction, we employ
DAAM [26] to establish attention maps for the learned con-
cepts on processed images as shown in Fig. 5. In each
case, the attention map of the semantic embedding c (i.e.,
the learned concept) aligns well with the object itself in the
image, indicating the effectiveness of COSALPURE.

5. Experiment
5.1. Experimental Setup

Datasets. We conduct experiments on Cosal2015 [32],
iCoseg [2], CoSOD3k [8], and CoCA [36]. These four
datasets contain 2,015, 643, 3,316, and 1,295 images of 50,
38, 160, and 80 groups respectively. We apply the SOTA
adversarial attack for CoSOD (i.e., Jadena [12]) to the first
50% of images in each group, while the remaining 50% of
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Table 1. Co-saliency detection performance. “Source-Only” means the group of images before processing, including 50% adversarial images and 50%
clean images. We highlight the top results of each CoSOD method and each dataset in red.

GICD GCAGC PoolNet
SR ↑ AP ↑ Fβ ↑ MAE ↓ SR ↑ AP ↑ Fβ ↑ MAE ↓ SR ↑ AP ↑ Fβ ↑ MAE ↓

C
os

al
20

15 Source-Only 0.3493 0.7306 0.4038 0.1676 0.5285 0.7853 0.6302 0.1570 0.5677 0.7425 0.6095 0.1276
DiffPure 0.4595 0.7478 0.5118 0.1444 0.4987 0.6998 0.5901 0.2162 0.6327 0.7779 0.6714 0.1181
DDA 0.4565 0.7579 0.5158 0.1469 0.5955 0.7928 0.6774 0.1542 0.6233 0.7863 0.6691 0.1181
COSALPURE 0.5602 0.7898 0.6177 0.1296 0.5975 0.7449 0.6521 0.2063 0.6908 0.8268 0.7258 0.1086

iC
os

eg

Source-Only 0.4012 0.7269 0.5063 0.1420 0.6469 0.8237 0.7173 0.1146 0.5847 0.8116 0.6472 0.1057
DiffPure 0.4447 0.7291 0.5503 0.1269 0.6609 0.8043 0.7051 0.1257 0.6796 0.8328 0.7144 0.0905
DDA 0.4665 0.7519 0.5948 0.1280 0.6982 0.8257 0.7390 0.1235 0.6578 0.8483 0.7179 0.0940
COSALPURE 0.5396 0.7611 0.6329 0.1208 0.7060 0.8052 0.7265 0.1413 0.7278 0.8730 0.7577 0.0850

C
oS

O
D

3k Source-Only 0.3281 0.6988 0.4003 0.1439 0.4445 0.7325 0.5702 0.1376 0.4466 0.6606 0.5255 0.1386
DiffPure 0.3887 0.6976 0.4683 0.1342 0.4996 0.7364 0.6279 0.1272 0.5247 0.7021 0.6064 0.1340
DDA 0.3838 0.7083 0.4776 0.1344 0.5337 0.7655 0.6544 0.1251 0.5105 0.7078 0.5875 0.1311
COSALPURE 0.4659 0.7327 0.5487 0.1221 0.5946 0.7999 0.6881 0.1144 0.5859 0.7432 0.6605 0.1215

C
oC

A

Source-Only 0.1837 0.5490 0.3402 0.1168 0.2339 0.5177 0.4698 0.1227 0.2239 0.4296 0.4082 0.1500
DiffPure 0.1706 0.5362 0.3492 0.1213 0.2231 0.5051 0.4995 0.1190 0.2185 0.4426 0.4286 0.1649
DDA 0.2054 0.5543 0.3668 0.1156 0.2671 0.5476 0.5165 0.1129 0.2416 0.4503 0.4470 0.1548
COSALPURE 0.2409 0.5753 0.3976 0.1119 0.3057 0.5884 0.5512 0.1040 0.2633 0.4681 0.4745 0.1604

Table 2. Co-saliency detection success rates (SR) of entire group of images, only adversarial images and only clean images. This table is to intuitively
illustrate the impact of different methods on the adversarial and clean portions of group images.

GICD GCAGC PoolNet
avg ↑ adv ↑ clean ↑ avg ↑ adv ↑ clean ↑ avg ↑ adv ↑ clean ↑

C
os

al
20

15 Source-Only 0.3493 0.1053 0.5884 0.5285 0.3741 0.6797 0.5677 0.3671 0.7642
DiffPure 0.4595 0.3560 0.5609 0.4987 0.4533 0.5432 0.6327 0.5636 0.7003
DDA 0.4565 0.3079 0.6021 0.5955 0.4924 0.6964 0.6233 0.5185 0.7259
COSALPURE 0.5602 0.5416 0.5785 0.5975 0.5977 0.5972 0.6908 0.6569 0.7239

iC
os

eg

Source-Only 0.4012 0.1516 0.6336 0.6469 0.6161 0.6756 0.5847 0.3451 0.8078
DiffPure 0.4447 0.3161 0.5645 0.6609 0.6258 0.6936 0.6796 0.5741 0.7777
DDA 0.4665 0.3483 0.5765 0.6982 0.6903 0.7057 0.6578 0.5419 0.7657
COSALPURE 0.5396 0.5129 0.5645 0.7060 0.7064 0.7057 0.7278 0.6645 0.7867

C
oS

O
D

3k Source-Only 0.3281 0.1118 0.5364 0.4445 0.2901 0.5932 0.4466 0.2354 0.6500
DiffPure 0.3887 0.2987 0.4754 0.4996 0.4333 0.5636 0.5247 0.4462 0.6003
DDA 0.3838 0.2606 0.5026 0.5337 0.4394 0.6246 0.5105 0.3945 0.6222
COSALPURE 0.4659 0.4597 0.4718 0.5946 0.5955 0.5938 0.5859 0.5703 0.6009

C
oC

A

Source-Only 0.1837 0.0877 0.2739 0.2339 0.1818 0.2829 0.2239 0.1371 0.3053
DiffPure 0.1706 0.1212 0.2170 0.2231 0.1802 0.2634 0.2185 0.1754 0.2589
DDA 0.2054 0.1499 0.2574 0.2671 0.2264 0.3053 0.2416 0.1897 0.2904
COSALPURE 0.2409 0.2360 0.2455 0.3057 0.2998 0.3113 0.2633 0.2264 0.2979

images are kept in the clean state. We select the “augment”
version of Jadena and follow the settings[12].

Evaluation settings. We choose GICD [35] and GCAGC
[34] to evaluate our method as they are commonly used
state-of-the-art CoSOD methods. Additionally, we take
PoolNet [20] into consideration, assessing the performance
in salient object detection.

Baseline methods. Indeed, there is currently no spe-
cific image processing method designed for CoSOD at-
tacks. Hence, we employ two alternative approaches as
baselines. DiffPure [22] is a method that utilizes a dif-
fusion model for purifying perturbation-based adversarial
images. Diffusion-Driven Adaptation (DDA) [11] builds
upon a diffusion-based model by introducing a novel self-
ensembling scheme, enhancing the adaptation process by
dynamically determining the degree of adaptation. DiffPure

and DDA employ the same sampling noise scale as our pro-
posed COSALPURE.

Metrics. We employ four metrics to evaluate the co-
salient object detection result, including detection success
rate (SR), average precision (AP) [33], F-measure score Fβ

with β2 = 0.3 [1] and mean absolute error (MAE) [33]. For
the detection success rate, we calculate the intersection over
union (IOU) between each co-salient object detection result
of the reconstructed image and the corresponding ground-
truth map. We divide the number of successful results (IOU
> 0.5) by the total number of results to calculate SR. In addi-
tion, to intuitively illustrate the impact of different methods
on CoSOD results, we not only compute SR for the entire
group of images but also separately calculate SR for only
adversarial images and only clean images.

Implementation details. In the group-image concept learn-
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Figure 6. Visualization of co-salient object detection results. We show four visualized cases in this figure, with the source-only/purified image, the ground-
truth of the co-saliency map, and the results of GICD, GCAGC, and PoolNet in the columns. Our method, COSALPURE, is highlighted in green.

ing procedure, the sampled images are simply resized from
224 × 224 resolution to 768 × 768 resolution before being
passed into the image encoder. For the continuous represen-
tation [4, 14] module employed in the concept-guided diffu-
sion purification procedure, we constructed a dataset to train
it. We select 50,000 samples with a resolution of 224× 224
from ImageNet (1,000 categories, each with 50 samples)
and apply noise with the intensity of 16/255 via the PGD
attack to these samples to construct the inputs of the contin-
uous representation module. For the ground truth images,
we apply clean images with a resolution of 768 × 768 cor-
responding to the input images. We follow the experimental
setup of [14] and trained for 10 epochs to obtain the required
module. The group-image concept learning procedure and
the concept-guided purification procedure utilize the same
pre-trained image encoder and conditional diffusion model.
For the concept-guided purification procedure, we set the
number of timesteps T to 250, and the same configuration
is applied to baseline methods.

5.2. Comparison on Adversarial Attacks

We denote the images before reconstruction (contain-
ing 50% adversarial images and 50% clean images) as
"Source-Only". The comparison between our proposed
COSALPURE and baselines are shown in Table 1. We con-
sider an image to be successfully detected in the co-salient
object detection (CoSOD) task if the IOU of its CoSOD
result and the ground-truth map exceed 0.5. Compared
to DiffPure [22] and DDA [11], COSALPURE outperforms
them in terms of co-salient object detection success rates
(SR) across all four datasets. For the other three metrics
(i.e., AP [33], Fβ [1] and MAE [33]), COSALPURE remains

the best at most of the time. We show four visualized cases
in Fig. 6. For each case, we present the generated images of
COSALPURE and two baselines, DiffPure and DDA. Obvi-
ously COSALPURE generates higher-quality images, as it
leverages the intrinsic commonality of objects across the
group of images. Additionally, we showcase the compar-
ison of the detection results on GICD, GCAGC, and Pool-
Net. The results from COSALPURE closely approximate
the ground-truth map, while the baseline methods struggle
to display the correct results.

To intuitively illustrate the impact of different methods
on the adversarial and clean portions of group images, we
measure the co-salient object detection success rate from
three perspectives. In Table 2, "avg" represents the evalu-
ation across the entire group of images, "adv" and "clean"
correspond to evaluations on only the 50% images that are
under the SOTA attack [12] and on only the 50% images
that remain clean. COSALPURE at some times have a lower
“clean” SR compared to DDA or source-only. However,
DiffPure and DDA are unsatisfactory in “adv” SR, while
COSALPURE exhibits a significant lead in “adv” SR, result-
ing in it consistently performing the best in “avg” SR.

5.3. Ablation Study

To validate the effect of the learned concepts on CoSOD
results, we conduct ablation studies on Cosal2015 [32] and
CoSOD3k [8]. In Table 3, “w/o concept inversion” repre-
sents only utilizing the continuous representation module
and not applying the subsequent purification process. “w/
None concept” denotes passing a meaningless “None” as
the concept during the purification. “w/ learned concept”
denotes the complete pipeline, firstly learning the concept
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Table 3. Ablation study. “w/o concept inversion” represents only utilize the continuous representation module and not apply the subsequent purification
process. “w/ None concept” denotes passing a meaningless “None” as the concept during the purification procedure. “w/ learned concept” denotes the
complete pipeline, firstly learning the concept from the entire group of images and secondly passing in the learned concept during the purification procedure.

GICD GCAGC PoolNet
SR ↑ AP ↑ Fβ ↑ MAE ↓ SR ↑ AP ↑ Fβ ↑ MAE ↓ SR ↑ AP ↑ Fβ ↑ MAE ↓

C
os

al
20

15 Source-Only 0.3493 0.7306 0.4038 0.1676 0.5285 0.7853 0.6302 0.1570 0.5677 0.7425 0.6095 0.1276
COSALPURE w/o concept inversion 0.5186 0.7791 0.5809 0.1350 0.5528 0.7322 0.6430 0.2145 0.6843 0.8241 0.7225 0.1098
COSALPURE w/ None concept 0.5225 0.7784 0.5886 0.1354 0.5334 0.7091 0.6132 0.2263 0.6774 0.8172 0.7160 0.1110
COSALPURE w/ learned concept 0.5602 0.7898 0.6177 0.1296 0.5975 0.7449 0.6521 0.2063 0.6908 0.8268 0.7258 0.1086

C
oS

O
D

3k Source-Only 0.3281 0.6988 0.4003 0.1439 0.4445 0.7325 0.5702 0.1376 0.4466 0.6606 0.5255 0.1386
COSALPURE w/o concept inversion 0.4424 0.7314 0.5317 0.1243 0.5753 0.7923 0.6804 0.1170 0.5747 0.7424 0.6508 0.1223
COSALPURE w/ None concept 0.4297 0.7216 0.5158 0.1273 0.5488 0.7715 0.6584 0.1288 0.5711 0.7373 0.6453 0.1231
COSALPURE w/ learned concept 0.4659 0.7327 0.5487 0.1221 0.5946 0.7999 0.6881 0.1144 0.5859 0.7432 0.6605 0.1215
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Figure 7. Visualization for ablation study.

Table 4. Extension to motion blur.

SR ↑ AP ↑ Fβ ↑ MAE ↓
Source-Only 0.3915 0.7408 0.4373 0.1590
DiffPure 0.3146 0.6774 0.3763 0.1738
DDA 0.3900 0.7381 0.4425 0.1579
COSALPURE 0.4575 0.7419 0.5241 0.1505

from the entire group of images and secondly passing the
learned concept during the purification procedure to accom-
plish image reconstruction. From Table 3, it is evident that
the learned concept contributes to significant improvements
in various metrics. As shown in Fig. 7, when we do not
apply the concept-guided purification or when we pass in a
meaningless concept, the generated image performs poorly
in the CoSOD task. This improves when we pass in the
learned effective concept which includes object semantics.
The example proves that the learned concept contributes to
the reconstruction of images used for the CoSOD task.

5.4. Extention to Common Corruption

In addition to adversarial attacks on CoSOD, we also
broaden our experiments to include a common corruption
type: motion blur. We select the Cosal2015 dataset [32]
and, similar to the adversarial experiments, apply motion
blur [13] to the first 50% of images in each group while
keeping the remaining 50% of images clean. Here we

set the number of timesteps T to 500 and do not employ
the continuous representation module. As shown in Ta-
ble 4, COSALPURE performs better than other diffusion-
based image processing methods at all four metrics.

6. Conclusions
This paper presented COSALPURE, an innovative frame-

work enhancing the robustness of co-salient object detec-
tion (CoSOD) against adversarial attacks and common im-
age corruptions. Central to our approach are two key
innovations: group-image concept learning and concept-
guided diffusion purification. Our framework effectively
captures and utilizes the high-level semantic concept of co-
salient objects from group images, demonstrating notable
resilience even in the presence of adversarial examples.

Empirical evaluations across datasets like Cosal2015,
iCoseg, CoSOD3k, and CoCA showed that COSALPURE
significantly outperforms existing methods such as DiffPure
and DDA in CoSOD tasks. Not only did it achieve higher
success rates, but it also excelled in performance metrics
like AP, F-measure, and MAE. Additionally, its effective-
ness against common image corruptions, like motion blur,
underscores its versatility.

Our COSALPURE represents a substantial advancement
in CoSOD, offering robust, concept-driven image purifica-
tion. It opens avenues for more resilient co-salient object
detection, vital in today’s landscape of sophisticated image
manipulation and corruption. Future work might extend this
framework to broader image analysis applications and ex-
plore its adaptability to real-world scenarios.
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