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Abstract

The recovery of occluded human meshes presents chal-
lenges for current methods due to the difficulty in extract-
ing effective image features under severe occlusion. In this
paper, we introduce DPMesh, an innovative framework for
occluded human mesh recovery that capitalizes on the pro-
found diffusion prior about object structure and spatial re-
lationships embedded in a pre-trained text-to-image diffu-
sion model. Unlike previous methods reliant on conven-
tional backbones for vanilla feature extraction, DPMesh
seamlessly integrates the pre-trained denoising U-Net with
potent knowledge as its image backbone and performs a
single-step inference to provide occlusion-aware informa-
tion. To enhance the perception capability for occluded
poses, DPMesh incorporates well-designed guidance via
condition injection, which produces effective controls from
2D observations for the denoising U-Net. Furthermore, we
explore a dedicated noisy key-point reasoning approach to
mitigate disturbances arising from occlusion and crowded
scenarios. This strategy fully unleashes the perceptual
capability of the diffusion prior, thereby enhancing accu-
racy. Extensive experiments affirm the efficacy of our frame-
work, as we outperform state-of-the-art methods on both
occlusion-specific and standard datasets. The persuasive
results underscore its ability to achieve precise and robust
3D human mesh recovery, particularly in challenging sce-
narios involving occlusion and crowded scenes. Code is
available at https://github.com/EternalEvan/
DPMesh.

1. Introduction

The goal of human mesh recovery involves estimating the

3D human pose and shape from either monocular or multi-

view images and videos. Over the past decade, this field has

evolved into a burgeoning and captivating research problem,

gaining prominence for its extensive applications in film-
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Figure 1. Main idea of the proposed DPMesh framework. We

design an innovative framework to fully exploit rich prior knowl-

edge about human structure and spatial interaction of the pre-

trained diffusion model for challenging occluded human mesh re-

covery task. By simply adapting the denoising U-Net as a single-

step backbone with spatial conditions, we achieve accurate human

mesh recovery even under severe occlusions.

making, game development, and sports. In recent years, a

plethora of approaches [5, 8, 21, 23–25, 30, 39, 47, 49, 55]

grounded in deep learning have emerged, paving the way

to address this inherently ill-posed problem by effectively

regressing body parameters from image features.

Nonetheless, extracting more effective information from

monocular images in complex scenarios (e.g., occlusions

and crowded environments), remains a pivotal challenge.

Existing methods address the intricacies of mesh recovery

in complex scenarios by incorporating 2D prior knowledge

as hints, drawing the models’ attention to visible body parts

and reinforcing their 2D alignment proficiency. Follow-

ing this line, mainstream methods [7, 28] intuitively ap-

ply off-the-shelf key-point detectors to achieve coarse hu-

man joints, others such as [24] and [57] introduce partial

segmentation masks and UV maps as pixel-level knowl-
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the final published version of the proceedings is available on IEEE Xplore.

1101



(a) Conventional methods
Diffusion

Denoising

(b) Diffusion-based methods

U-Net

(c) DPMesh

Conditions

U-Net

One-step One-stepMulti-steps

Figure 2. Comparison of current methods and the proposed DPMesh. (a) Conventional methods [21, 25] apply a feature extractor G and

a regressor H to obtain SMPL parameters. (b) Diffusion-based methods [4, 10, 12] propose an iterative framework that harnesses multiple

denoising steps to progressively refine the pose parameters from random noise. (c) Distinct from previous diffusion-based techniques, our

DPMesh employs the pre-trained denoising U-Net as the backbone G, executing a one-step inference to furnish informative features for the

regressor. This novel framework transfers the potent perception knowledge in generative models onto conventional frameworks.

edge. Despite these efforts, persistent shortcomings become

apparent, particularly when confronted with severe occlu-

sion, since they excessively depend on 2D alignment and

disregard the vivid information embedded in natural im-

ages. Consequently, disturbances to the 2D detector due

to noise and occlusion significantly impact accuracy, yield-

ing unsatisfactory outcomes. Recently, Diffusion Models

(DMs) [16, 42] have introduced a step-by-step generation

framework, showcasing remarkable image synthesis capac-

ity and producing visually appealing results. Inspired by

DMs, recent works like [4, 10, 12] utilize the generative

approach proposed by diffusion models for pose estima-

tion, achieving high-accuracy results. However, diffusion-

based methods suffer from repeated iterations and neglect

the learned knowledge for image processing within text-to-

image diffusion models, causing the potential of diffusion

not fully exploited. More recent studies [51, 56, 58] inves-

tigate the pre-trained diffusion model for 3D-related tasks,

e.g., image synthesis from the depth map, text-to-3D gener-

ation and depth estimation. It has been verified that the pre-

trained diffusion model can provide structure-aware knowl-

edge for 3D generation and perception tasks. Although dif-

fusion models possess rich knowledge of 3D structure and

spatial interaction from generative training, the challenge

persists in effectively leveraging these capabilities for com-

plex regression tasks like occluded human mesh recovery.

To overcome the aforementioned challenges, we present

DPMesh, a simple yet effective framework for occluded hu-

man mesh recovery. DPMesh employs a pre-trained text-to-

image diffusion model as the backbone, fully leveraging its

potent knowledge of the 3D structure and spatial relation-

ships learned from generative training, hence yielding a ro-

bust estimator for occluded poses, as illustrated in Figure 1.

Our primary goal is to harness both the high-level and low-

level visual concepts within a pre-trained diffusion model

for the demanding occluded pose estimation task. Instead of

following the time-consuming step-by-step denoising pro-

cess, we replace conventional image backbones with the

pre-trained denoising U-Net and perform an efficient single-

step inference style with designed conditions as guidance,

as depicted in Figure 2. Considering the pre-training of

the diffusion model on text-to-image generation tasks, we

confront two challenges: (1) preserving the learned knowl-

edge within the pre-trained diffusion model and adapting

it to the occluded human mesh recovery task, and (2) de-

signing appropriate conditions and controls to enhance the

model’s perception ability. To address these issues, we in-

troduce an efficient framework to tailor the diffusion model

for mesh recovery, leveraging an effective condition injec-

tion. To align with the original diffusion model and facil-

itate the interaction between image features and 2D prior

information, we refine the spatial information from an off-

the-shelf detector and inject the diffusion model with these

conditions. This yields detailed knowledge of the 2D po-

sition and the key-points uncertainty. The processed 2D

information serves as guidance for the diffusion model, ul-

timately producing rich visual content, encompassing both

human structure and spatial interaction for the subsequent

regressor. Furthermore, we present a noisy key-point rea-

soning approach to improve the robustness of our model,

rendering it more stable for occlusion and crowds.

We conduct extensive experiments on various occlu-

sion benchmarks 3DPW-OC [50, 57], 3DPW-PC [47, 50],

3DOH [57], 3DPW-Crowd [7, 50] and CMU-Panoptic [20],

as well as the standard benchmark 3DPW test split [50]. Re-

markably, without any finetuning on the 3DPW training set,

our DPMesh achieves an exciting performance, surpassing

previous state-of-the-art methods and demonstrating signif-

icantly improved accuracy. Specifically, we achieve MPJPE

values of 70.9, 82.2, 79.9, and 73.6 on 3DPW-OC, 3DPW-

PC, 3DPW-Crowd, and 3DPW test split, respectively, un-

derscoring the proficiency of our framework. Furthermore,

we carry out comprehensive ablation studies to highlight the

effectiveness of the diffusion-based backbone, the condition

construction and the designed noisy key-point reasoning.
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2. Related Work
Human Mesh Recovery. During the past decade, param-

eterized human model [1, 33, 40] has been widely used

to express 3D human pose and shape. Many proceeding

works explore approaches to estimate accurate model pa-

rameters from monocular images [5, 8, 13, 14, 21, 23–

25, 30, 39, 49, 54, 55]. They usually regress parameters

from extracted image features. Some [34, 55] leverage

2D and 3D visual observations to enhance the 2D align-

ment of image features. Nevertheless, they always fall short

when confronted with complex scenarios, e.g. occlusion

and crowded environments since the conventional back-

bones and estimators provide vague information about the

occluded region for the regressor. To handle this challenge,

a series of methods [6, 22, 24, 28, 48, 57] propose effec-

tive approaches involving segmentation masks, center maps

and 3D representations to improve the 2D and 3D align-

ments. However, they have limitations since they pay too

much attention to enhancing the usage of the 2D and 3D ob-

servations and ignore the quality of image features, which

are fundamental and significant. Most recently, methods

based on diffusion models [4, 10, 12] introduce an iterative

framework to estimate human poses in the repeated denois-

ing process. Though they achieve satisfying accuracy, they

suffer from extensive time-consuming and do not fully ex-

ploit the rich knowledge in diffusion models.

Diffusion Models. Diffusion denoising probabilistic mod-

els, commonly referred to as diffusion models [16, 42], have

emerged as a prominent family of generative models, show-

casing remarkable synthesis quality and controllability. The

core concept of the diffusion model involves training a de-

noising autoencoder to estimate the inverse of a Marko-

vian diffusion process [45]. Through generative training

on large-scale datasets with image-text pairs (e.g., LAION-

5B [44]), diffusion models acquire a powerful capability to

generate high-quality images with diverse content and rea-

sonable structures. This proficiency is harnessed during dif-

fusion sampling, which can be perceived as a progressive

denoising procedure that necessitates repeated inference of

the denoising autoencoder. Recently, [56] propose a con-

trollable architecture, named ControlNet, to add spatial con-

trols, e.g., depth maps and human poses, to pre-trained dif-

fusion models, broadening their applications to controlled

image generation. Although originally tailored to 2D text-

to-image tasks, pre-trained diffusion models also possess

rich knowledge about object structure and spatial interac-

tion. They can adapt to various 3D-related tasks like image

synthesis from depth map, text-to-3D generation and depth

estimation, as explored in [51, 56, 58]. However, fully ex-

ploiting the structure-aware generative prior in the diffusion

model for complex mesh recovery, especially in occluded

and crowded scenarios, still poses a significant challenge

due to the need for proficient visual perception capability.

3. Methods
In this section, we present DPMesh, an effective framework

for occluded human mesh recovery with the pre-trained dif-

fusion prior and proper conditional control. We will start by

reviewing the background of diffusion models with condi-

tional control and the human body model. Then we will pro-

vide a detailed walkthrough of the entire pipeline to intro-

duce our designs in DPMesh. This includes how we lever-

age the generative diffusion prior for the human recovery

task and inject valuable conditions to guide the denoising

U-Net. Moreover, we will present a noisy key-point reason-

ing approach to enhance the robustness of our model. The

overall framework of our DPMesh is illustrated in Figure 3.

3.1. Preliminaries

Conditional Control for Diffusion Models. Diffusion

models achieve high controllability thanks to the effective

cross-attention layers in the denoising U-Net εθ [43] which

bridges a way for the interactions between image features

and various conditions. Recently, ControlNet [56] success-

fully enhances the fine-grained spatial control on latent dif-

fusion model (LDM) [42] by leveraging a trainable copy

of the encoding layers in the denoising U-Net as a strong

backbone for learning diverse conditional controls. During

the training of the ControlNet framework, images are first

projected to latent representations z0 by a trained VQGAN

consisting of the encoder E and the decoder D. Denoting zt
as the noisy image at t-th timestep, it is produced by:

zt =
√
ᾱtz0 +

√
1− ᾱtε, (1)

where ᾱt =
∏t

s=1 αs and ε ∼ N (0, I). Given the noisy

image and conditions, the training objective of the Control-

Net framework can be derived as:

LCLDM = Ez0,t,ct,cf ,ε

[
‖ε− εθ(zt, t, ct, cf)‖22

]
, (2)

where zt is computed from Equation (1), ct denotes the text

condition embedding extracted from frozen CLIP [41] text

encoder and cf is a task-specific condition, such as human

skeleton poses or canny maps. To prevent harmful noise

that influences the hidden states of neural network layers

at the start of training, ControlNet applies zero convolution

layers for the trainable copy branch. The condition branch

consumes cf as input and injects the outcomes to the out-

put blocks of diffusion model εθ. In order to keep gener-

ation capability and reduce computational costs, it freezes

the parameters in εθ. By utilizing the fine-grained condi-

tions, ControlNet successfully achieves controllable human

image generation with various conditions like 2D skeletons.

Human Body Model. We use SMPL [33] model to pa-

rameterize human body mesh. SMPL represents 3D human

body with three vectors, denoted by pose Θ ∈ R
72, shape
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Figure 3. The overall framework of DPMesh. Given the input image x, pre-detected 2D key-points J2D, and generated heatmap H2D,

our framework begins with the extraction of image features FS through a single denoising step using the pre-trained diffusion model.

This process is guided by the designed spatial conditions. Then, we input FS to the regressor to predict SMPL parameters Θ, β and π,

ultimately generating the final mesh. To further enhance the estimation robustness against noisy 2D observations, we leverage a noisy

key-point reasoning approach. This involves pre-training a teacher model with ground truth heatmaps and then training a student model

using noisy heatmaps by aligning the feature maps computed from the locked teacher and the student.

β ∈ R
10 and camera parameters π ∈ R

3. The body mesh is

generated by a differentiable function M(Θ, β) ∈ R
6890.

Then we can obtain the 3D joint coordinates by J3D =
WM ∈ R

N×3, where W is a pre-trained linear regressor

and N represents the number of joints. With the predicted

camera parameters π, we can obtain reprojected 2D joints

J2D = Π(J3D, π) ∈ R
N×2 by perspective projection.

3.2. Diffusion Prior for Occluded Mesh Recovery

Overview. Our primary goal is to fully exploit the pre-

trained diffusion model’s potential for occluded human

mesh recovery, leveraging its learned knowledge of the ob-

ject structure and spatial interactions. In contrast to previ-

ous methods involving repeated diffusion sampling, our ba-

sic idea is to simply employ the pre-trained diffusion model

as the image backbone, performing a single inference to ex-

tract features from image x. To provide effective guidance,

we adopt the condition injection to play an essential role

in processing pre-detected 2D observations into the condi-

tions. Then we utilize the noisy key-point reasoning ap-

proach to improve the occlusion awareness of our model to

further enhance the robustness of the proposed framework.

In conclusion, we propose DPMesh, which takes the image

and corresponding noisy key-point observations as inputs

and estimates the SMPL parameters Θ, β and π, collectively

denoted as the output y. This process can be formulated as:

pφ(y|x) = pφ3
(y|F)pφ2

(F|x, C)pφ1
(C|x), (3)

where F denotes the extracted feature maps and C repre-

sents the conditions. We will describe the role of each term

in Equation (3) along with their detailed designs.

Condition Injection with 2D HeatMap. pφ1
(C|x) aims to

construct effective conditions, which is significant since it

provides spatial guidance for the denoising U-Net backbone

εθ. Therefore we design the condition injection to introduce

high-level and spatial information that guides the backbone

to focus on the region of interest. For each cropped im-

age, we utilize an off-the-shelf 2D key-point detector [2] to

obtain 2D joints J2D along with their corresponding con-

fidence and generate the heatmaps H2D ∈ R
N×H0×W0 as

conditioning input using 2-dimensional Gaussian kernels,

where N represents the number of detected key-points. Af-

ter that, we concatenate the heatmap H2D with the input

image z0 to obtain cj ∈ R
(N+Cz)×H0×W0 . It is noteworthy

that, in the original ControlNet architecture, the condition-

ing image is fused with z0 by element-wise adding after

passing through convolution layers. However, we observe

that this addition significantly damages the final condition

quality. The preparation for cj can be expressed as:

cj = Concat(z0, H2D), H2D = Gaussian(J2D). (4)

Then we employ the ControlNet architecture to process

fine-grained conditions from cj and inject them to the image

features in the denoising U-Net εθ. The output of the i-th
layer Fi in the decoding layers of εθ is derived as:

Fi = F (Fi−1; θi) + Conv(F (cj; θcond); θConv), (5)

where Fi−1 is the output of the previous block and F (·; θ)
denotes a trained neural network. θi, θcond represent the
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parameters within the denoising U-Net and ControlNet, re-

spectively. θConv is the parameters of zero convolution lay-

ers with both weights and bias initialized to zeros. Note that

in the original ControlNet architecture, θcond is a trainable

copy of the encoding blocks in the denoising U-Net.

Besides the ControlNet that provides controls for the de-

noising U-Net εθ, we also consider using the cross-attention

prompt to pinpoint more accurate spatial information. In

original diffusion models, the prompt ct conditions typi-

cally consist of text embeddings from frozen CLIP. How-

ever, in our framework, we replace text with visible 2D joint

coordinates J2D ∈ R
N×2. We then apply a two-layer MLP

to elevate the dimension of 2D joint coordinates to match

the text token dimension Dt, which is set to 768 in the pre-

trained diffusion model. Thus we obtain the auxiliary spa-

tial condition ct ∈ R
N×Dt . We take ct as prompt guidance

and send it to all cross-attention blocks in the denoising U-

Net. The construction of ct can be formulated as:

ct = MLP(J2D). (6)

To sum up, we construct the condition set C consisting of cj
and ct and inject them into εθ through different passways.

Feature Extraction with Diffusion Prior. pφ2
(F|x, C) is

dedicated to the feature extraction from the input image.

In contrast to previous methods that employ convolution-

based and Transformer-based backbones, we leverage the

pre-trained diffusion model as our backbone, exploiting

the visual perception capability within the denoising U-Net

learned from the generative training. As verified in [58],

there exist enough visual priors about the object structure

and spatial interactions in a pre-trained denoising U-Net εθ.

By unlocking the potential of εθ, we can tune the generative

capability in the pre-trained diffusion model to address the

human mesh recovery task. Motivated by this perspective,

we design a straightforward feature extractor implemented

by the pre-trained denoising U-Net, which receives effec-

tive guidance C from the condition injection. To prepare the

input images, we convert the cropped image x ∈ R
H×W×C

from pixel space to the latent space with the frozen encoder

E to obtain the latent representation z0 ∈ R
H0×W0×Cz .

Then we feed z0 into the pre-trained U-Net εθ and extract

the multi-scale feature maps Fi, where i ∈ {1, 4, 7}, from

the decoding layers as the implicit image features. Further-

more, we empirically observe that the cross-attention maps

Ti ∈ R
|ct|×Hi×Wi can provide significant occlusion-aware

information indicating the invisible parts and explicit ob-

ject structure knowledge about the human pose and shape.

Therefore we concatenate the cross-attention maps with the

feature maps Fi and obtain the hierarchical feature maps

F ← {[Fi, Ti]}, which incorporate both implicit and ex-

plicit diffusion priors for subsequent regression.

SMPL Mesh Regressor. pφ3
(y|F) represents the regressor

responsible for predicting the parameters of the body model

from feature maps F . To capture the body information in F ,

we employ a cascade Transformer decoder for the regressor.

In order to provide sufficient human pose priors and main-

tain the symmetry of the VQGAN framework, we train a

VQVAE on a large motion dataset [35] with massive SMPL

pose parameters to learn discrete representations for human

poses. During the final regression, we predict the entry in-

dices of the learned codebook and feed the corresponding

pose embedding to the decoder D of the VQVAE to attain

the pose parameters Θ. As for shape and camera param-

eters (i.e. β and π), which are highly dependent on image

features, we directly regress them using linear layers.

3.3. Noisy Key-point Reasoning

As we introduce an off-the-shelf 2D key-point detector

for providing 2D observation hints, there naturally arises

a problem: How robust is our framework in the presence
of noisy key-points? The noisy key-points, often arising

from severe occlusion, can adversely impact the model’s

performance during evaluation. This consideration moti-

vates us to reinforce our backbone with extra supervision

to mitigate the model’s reliance on noisy key-points. To

achieve this, we leverage a self-supervised distillation ap-

proach, called Noisy Key-point Reason (NKR), that focuses

on 2D detection errors, including missing key-points, jitters

and mismatch. The core concept involves training a teacher

model adept at accurately encoding feature maps with pre-

cise ground truth key-points. Then we utilize the teacher’s

feature maps FT to guide and supervise the student’s fea-

ture maps FS . During the distillation process, we minimize

both the SimCLR loss [3] and MSE loss:

LNKR = LSimCLR + LMSE, (7)

where the SimCLR loss is computed by:

LSimCLR = log
exp(Dist(FS

i , FT
i ))∑

i �=j exp(Dist(FS
i , FT

j ))
. (8)

The SimCLR loss extends the distance between the two

models’ features for different inputs while minimizing the

distance for the same input. The MSE loss also provides

additional supervision to align features between teacher and

student. This noisy key-point reasoning approach enhances

the robustness of our framework against 2D detection er-

rors, ensuring its stability under challenging occlusion.

3.4. Implementation

We use Stable Diffusion V1-5 [42] with ControlNet [56],

pre-trained for human-like image generation from 2D skele-

tons, as our image backbone. Following [7, 28], we take the

cropped image in 256 × 256 resolution as input and en-

code it into the latent code z0 ∈ R
4×32×32. We extract fea-

ture maps with the size 8, 16 and 32 and the cross-attention
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Table 1. Quantitative comparisons on occlusion benchmarks. The units for mean joint and vertex errors are in millimeters. Our DPMesh

demonstrates outstanding estimation accuracy across diverse occlusion conditions, underscoring the efficacy of our framework.

Method
3DPW-OC 3DPW-PC 3DOH 3DPW-Crowd

MPJPE↓ PA-MPJPE↓ MPVE↓ MPJPE↓ PA-MPJPE↓ MPVE↓ MPJPE↓ PA-MPJPE↓ MPVE↓ MPJPE↓ PA-MPJPE↓ MPVE↓
SPIN [25] 95.5 60.7 121.4 122.1 77.5 159.8 110.5 71.6 124.2 121.2 69.9 144.1

PyMAF [55] 89.6 59.1 113.7 117.5 74.5 154.6 101.6 67.7 116.6 115.7 66.4 147.5

ROMP [47] 91.0 62.0 - 98.7 69.0 - - - - 104.8 63.9 127.8

OCHMR [22] 112.2 75.2 145.9 - - - - - - - - -

PARE [24] 83.5 57.0 101.5 95.8 64.5 122.4 109.0 63.8 117.4 94.9 57.5 117.6

3DCrowdNet [7] 83.5 57.1 101.5 90.9 64.4 114.8 102.8 61.6 111.8 85.8 55.8 108.5

JOTR [28] 75.7 52.2 92.6 86.5 58.3 109.7 98.7 59.3 104.8 82.4 52.0 103.4

DPMesh (Ours) 70.9 48.0 88.0 82.2 56.6 105.4 97.1 59.0 106.4 79.9 51.1 101.5

maps in the same resolution from the denoising U-Net. To

maintain the learned knowledge in the pre-trained diffusion

model, we use LoRA [17] to unfreeze the linear layers in

cross-attention blocks, setting the rank of LoRA modules to

64. We find that even fine-tuning a small number of param-

eters via LoRA yields satisfying results. More details are

shown in the appendix file.

Finally, we obtain mesh vertices M(Θ, β) ∈ R
6890 and

3D joints J3D = WM ∈ R
N×3 with functions men-

tioned in 3.1. We reproject the body joints to the image

by J2D = Π(J3D, π) ∈ R
N×2. In the reprojection process,

we approximately estimate the focal length with the length

of the image diagonal following [29]. For the training ob-

jectives, we utilize wide-used losses on SMPL parameters,

2D joints and 3D joints when 3D joint annotations are avail-

able to optimize our framework. In conclusion, the entire

loss function can be formulated as:

L = λ2DL2D + λ3DL3D+

λSMPLLSMPL + λNKRLNKR.
(9)

The first three terms are computed by:

L2D = ‖J2D − Ĵ2D‖, L3D = ‖J3D − Ĵ3D‖, (10)

LSMPL = ‖Θ− Θ̂‖+ ‖β − β̂‖, (11)

where Ĵ2D, Ĵ3D, Θ̂ and β̂ represent the ground truth anno-

tations of 2D joints, 3D joints, SMPL body pose parameters

and shape parameters, respectively.

4. Experiments
To verify the effectiveness of our proposed DPMesh, we

conduct comprehensive experiments and ablation studies

on the standard benchmark and various occlusion datasets.

We will introduce the experimental settings including the

implementation for training and evaluation. Subsequently,

we will present our main results and offer a comprehensive

analysis through detailed ablations.

4.1. Experiment Setup

Training Details. In alignment with previous works [7, 28],

we train our model on a hybrid dataset with 2D or 3D an-

noations, including Human3.6M [18], MuCo-3DHP [36],

MSCOCO [31], and CrowdPose [27]. We exclusively uti-

lize the training sets of these datasets, adhering to standard

split protocols. For the 2D dataset, we utilize their pseudo

ground-truth SMPL parameters [38]. During training, we

add realistic errors on the ground truth (GT) 2D pose fol-

lowing [5, 37] to simulate erroneous 2D pose, rather than

generating detected key-point results. We use AdamW opti-

mizer with a batch size of 16 and a weight decay of 1e-6.We

set the initial learning rate to 1e-4 and cut it to 1e-5 in the

last 5 epochs.

Evaluation Details. We evaluate our model on 3DPW [50]

test split, 3DOH [57] test split, 3DPW-PC [47, 50], 3DPW-

OC [50, 57], 3DPW-Crowd [7, 50] and CMU-Panoptic

dataset [20]. 3DPW-PC is the person-person occlusion sub-

set of 3DPW and 3DPW-OC is the person-object occlusion

subset of 3DPW. 3DOH is another person-object occlusion

dataset. The metrics we use are mean per joint position error

(MPJPE) in mm, Procrustes-aligned mean per joint position

error (PA-MPJPE) in mm for evaluating the accuracy of 3D

joints and mean per vertex error (MPVE) in mm for evaluat-

ing 3D mesh error. For the CMU-Panoptic dataset, we only

evaluate MPJPE following previous work [11, 21, 52, 53].

4.2. Comparisons on Occlusion Benchmark

3DPW-OC [50, 57] is a person-object occlusion subset of

3DPW and contains 20243 persons. Table 1 shows that our

DPMesh outperforms all competitors with 70.9 mm MPJPE

and 48.0 mm PA-MPJPE, demonstrating its promising ca-

pability in effectively handling complex in-the-wild scenes.

3DOH [57] is a person-object occlusion-specific dataset

that encompasses 1290 images in the test split. All meth-

ods we report are not fine-tuned on the training split for fair

comparison. We achieve the best results on 97.1 MPJPE

and 59.0 PA-MPJPE, as shown in Table 1. We further ex-

hibit the qualitative findings in Figure 5. Our DPMesh pro-

ficiently manages heavy occlusion situations.

3DPW-PC [47, 50] is a person-person occlusion subset of

3DPW, comprising 2218 individuals. Images within this

dataset contain annotations for multiple persons, potentially

distracting the feature extractor. As shown in Table 1,

DPMesh exhibits superior performance compared to previ-

ous methods with 82.2 MPJPE and 56.6 PA-MPJPE.
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Figure 4. Qualitative comparisons on 3DPW dataset [50]. Our DPMesh recovers accurate human meshes under challenging occlusions

and demonstrates an adept understanding of 3D body structures and spatial relationships. Notably, our method also excels in generating

plausible details for the obscured body parts, e.g., hands and legs, proving the robustness of DPMesh in handling complex scenarios.

Table 2. Quantitative comparisons on 3DPW [50] test split.
DPMesh seamlessly generalizes to previously unseen distribu-

tions, yielding robust results on real-world RGB videos.

Method MPJPE↓ PA-MPJPE↓ MPVE↓
HMR [21] 130.0 76.7 -

GraphCMR [26] - 70.2 -

SPIN [25] 96.9 56.2 116.4

PyMaf [55] 92.8 58.9 110.1

OCHMR [22] 89.7 58.3 107.1

ROMP [47] 89.3 53.5 105.6

PARE [24] 82.9 52.3 99.7

3DCrowdNet [7] 81.7 51.2 98.3

JOTR [28] 76.4 48.7 92.6

DPMesh (Ours) 73.6 47.4 90.7

3DPW-Crowd [7, 50] is a person crowded subset of 3DPW

and contains 1923 persons. DPMesh exceeds state-of-the-

art methods across all metrics. As demonstrated in Ta-

ble 1, we reach the best result on 79.9 MPJPE and 51.1

PA-MPJPE compared with previous methods.

CMU-Panoptic [20] dataset is a multi-person indoor

dataset collected with multi-view cameras. In order to en-

sure a fair comparison, we choose 4 scenes for evaluation,

following [7, 19]. Results are shown in Table 3, and we

outshine other competitors on all video clips.

4.3. Comparisons on Standard Benchmark

3DPW [50] is a widely-used benchmark for human mesh

recovery, featuring 60 videos and 3D annotations of 35,515

individuals in its test split. For a fair comparison with other

methods, we do not fine-tune our model on the 3DPW train

split. As presented in Table 2, our method achieves state-

of-the-art performance on the test split. We also show the

qualitative results in Figure 4, which demonstrate that our

DPMesh is robust in complex, wild scenes.

3DCrowdNet JOTR DPMeshInput image

Figure 5. Qualitative results on 3DOH dataset [50]. Our

DPMesh obtains satisfying estimation for complex poses.

4.4. Analysis

Effective Backbone with Diffusion Prior. We engage in

a comparative study between our diffusion-based backbone

with convolution-based backbones such as ResNet50 [15]

and HRNet-W48 [46], as well as transformer-based back-

bones like ViT-L-16 [9] and Swin-V2-L [32]. Note that

our selection includes both supervised pre-trained mod-

els (e.g., ResNet50) and self-supervised pre-trained mod-

els (e.g., Swin-V2-L). To implement our comparison, we

concatenate pre-detected heatmaps with early-stage image

features and fine-tune each backbone for 30 epochs. As

revealed in Table 4, our diffusion-based backbone exhibits

superior performance compared to other competitors, prov-

ing its exceptional perception capability for occluded hu-

man mesh recovery. Furthermore, as illustrated in Fig-

ure 6, our diffusion-based backbone accurately captures the

occlusion-aware information in the cross-attention maps,

which provides explicit guidance for the subsequent regres-
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Table 3. Quantitative comparison on CMU-Panoptic [20]. We

measure the MPJPE across different subsets and calculate the

overall mean result. DPMesh obtains precise estimation for multi-

person scenarios, showing its adaptability to various occlusions.

Method Haggl. Mafia Ultim. Pizza Mean

Zanfir et al. [52] 140.0 165.9 150.7 156.0 153.4
Zanfir et al. [53] 141.4 152.3 145.0 162.5 150.3
Jiang et al. [19] 129.6 133.5 153.0 156.7 143.2
ROMP [47] 111.8 129.0 148.5 149.1 134.6
REMIPS [11] 121.6 137.1 146.4 148.0 138.3
3DCrowdNet [7] 109.6 135.9 129.8 135.6 127.6
JOTR [28] 99.9 113.5 115.7 123.6 114.7

DPMesh (Ours) 97.2 109.8 114.3 120.5 110.4

Table 4. Ablation studies. We conduct ablations on 3DPW [50]

and 3DPW-OC [50, 57] to validate the effectiveness of the

diffusion-based backbone, the designed conditions and noisy key-

point reasoning. Notably, unlike other backbones that are pre-

trained on perception tasks, we find that DPMesh yields com-

mendable results utilizing a generative pre-trained denoising U-

Net. Furthermore, our designed condition injection and noisy key-

point reasoning also enhance overall accuracy.

Settings
3DPW 3DPW-OC

MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓
type of conditioning inputs
z0 87.6 54.9 89.6 60.7
z0 + cj 75.1 49.8 73.7 50.6
z0 + caddj 100.3 62.0 109.0 73.4

z0 + cj + ct 73.6 47.4 70.9 48.0
noisy key-point reasoning
ResNet50 [15] w/o NKR 80.2 52.4 78.9 52.8
HRNet-W48 [46] w/o NKR 78.7 50.9 76.9 51.8
ViT-L-16 [9] w/o NKR 76.9 49.3 75.6 52.0
Swin-V2-L [32] w/o NKR 77.0 48.8 76.1 52.2
DPMesh w/o NKR 74.9 48.2 73.9 49.9
type of backbones
ResNet50 [15] 79.4 51.8 76.1 50.9
HRNet-W48 [46] 77.2 50.8 75.6 50.1
ViT-L-16 [9] 75.2 48.5 73.1 49.6
Swin-V2-L [32] 77.3 48.5 73.5 49.8
DPMesh (Ours) 73.6 47.4 70.9 48.0

sor by recognizing the target from various occlusions.

Designs of Conditions. We investigate the effects of dif-

ferent designs for conditioning inputs in our model. The

results are presented at the top of Table 4. We find that both

the spatial heatmap condition cj and the joint coordinates

prompt ct can improve performance. This demonstrates the

effectiveness of these conditions in helping our model fo-

cus on critical areas. Moreover, we experiment with an-

other way to incorporate cj by element-wise adding it to the

image z0. However, this approach (z0 + caddj ) yields ter-

rible results that are even worse than the baseline without

cj condition. We assume that simply adding a highly ab-

stracted latent code with the heatmap is meaningless in the

latent space and introduces a misleading hint for the model

to learn. Consequently, we concatenate z0 and heatmap on

the channel dimension to reduce mutual interference.

Noisy Key-point Reasoning. We further investigate the ef-

fectiveness of our designed NKR approach. As shown in the

Cross-Attention MapsInput Image Predicted Meshes

Figure 6. Visualization of the cross-attention map. We demon-

strate that DPMesh successfully extracts occlusion-aware knowl-

edge. In the given examples, the male subject is partially occluded

by the female subject. The results demonstrate that our DPMesh

can precisely capture the spatial relationship and distinguish both

targets in cross-attention maps, even when one target is occluded

by the other. This enables proficient recovery of occluded meshes.

middle part of Table 4, we disable NKR on various back-

bones and evaluate their performance. The results indicate

that all backbones without NKR perform worse in occlu-

sion scenes. For the diffusion backbone in DPMesh, NKR

approach provides a slight improvement, which confirms its

capability to reduce the disturbance of noisy 2D observa-

tion. This demonstrates that NKR results in a more robust

framework, enabling DPMesh to handle challenging occlu-

sion scenarios and produce more accurate reconstructions.

5. Conclusion
In this paper, we introduce DPMesh, a simple yet effec-

tive framework for occluded human mesh recovery, which

fully exploits the rich knowledge about object structure and

spatial interaction within the pre-trained diffusion model.

We successfully tame the diffusion model with the designed

condition injection to perform accurate occluded mesh re-

covery in a single step. Furthermore, we leverage a noisy

key-point reasoning approach to enhance the robustness of

our model. Extensive experiments demonstrate our frame-

work can achieve accurate estimation even in severe occlu-

sion and crowded environments. We hope our work will

provide a new perspective for occluded human mesh recov-

ery and inspire more research in employing diffusion mod-

els for perception tasks.
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