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Abstract

Temporal Action Detection (TAD) aims to identify the
action boundaries and the corresponding category within
untrimmed videos. Inspired by the success of DETR in
object detection, several methods have adapted the query-
based framework to the TAD task. However, these ap-
proaches primarily followed DETR to predict actions at the
instance level (i.e., identify each action by its center point),
leading to sub-optimal boundary localization. To address
this issue, we propose a new Dual-level query-based TAD
framework, namely DualDETR, to detect actions from both
instance-level and boundary-level. Decoding at different
levels requires semantics of different granularity, therefore
we introduce a two-branch decoding structure. This struc-
ture builds distinctive decoding processes for different lev-
els, facilitating explicit capture of temporal cues and se-
mantics at each level. On top of the two-branch design, we
present a joint query initialization strategy to align queries
from both levels. Specifically, we leverage encoder propos-
als to match queries from each level in a one-to-one man-
ner. Then, the matched queries are initialized using position
and content prior from the matched action proposal. The
aligned dual-level queries can refine the matched proposal
with complementary cues during subsequent decoding. We
evaluate DualDETR on three challenging multi-label TAD
benchmarks. The experimental results demonstrate the su-
perior performance of DualDETR to the existing state-of-
the-art methods, achieving a substantial improvement under
det-mAP and delivering impressive results under seg-mAP.

1. Introduction

Temporal Action Detection (TAD) [4, 13, 25–27, 45, 55, 64]
is one of the fundamental tasks in video understanding [10–
12, 22, 44, 50, 57, 59, 62, 65], with a wide range of
real-world applications in video editing [18], sports ana-
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Figure 1. DualDETR operates at both the instance level and
boundary level (start, end) by using two groups of queries, with
each group corresponding to one level. To capture specific seman-
tics at each level, we introduce a two-branch decoding structure.
This structure separates the decoding process for each level, al-
lowing queries from each group to focus on their corresponding
encoder feature map. Furthermore, we propose a query alignment
strategy equipped with joint initialization. This strategy aligns the
queries from two groups by matching them with the same detec-
tion goal, as denoted by the bidirectional arrow.

lytics [16, 23], surveillance footage analysis [56], and au-
tonomous driving [1]. TAD aims to identify the starting
and ending time of human actions, and simultaneously rec-
ognize the corresponding action categories. To address the
complex real-world application scenario for TAD, we fo-
cus on the complicated Multi-label Temporal Action Detec-
tion (Multi-label TAD) [6–8, 46, 48], where diverse actions
from different categories co-exist in untrimmed videos, of-
ten with significant temporal overlaps.

Inspired by the success of DETR [2] in object detec-
tion, several approaches [21, 31, 40, 45–47] adopted the
query-based detection pipeline and used a sparse set of
learnable decoder queries to directly predict actions without
NMS post-processing. These approaches commonly fol-
low DETR to detect actions from the instance level. They
identify each action by its center point and predict duration
based on offsets. Although instance-level detection bene-
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fits the capture of the important semantic frames within ac-
tions, such practice overlooks a crucial gap between two
tasks: object locations are mainly decided by their cen-
troids, whereas actions in videos are often defined by the
starting and ending boundaries. Hence, these methods re-
main poor at the precise localization of action boundaries.

To bridge this gap, we propose a novel Dual-level query-
based TAD framework (DualDETR) that integrates both
instance-level and boundary-level modeling into the ac-
tion decoding. As depicted in Fig. 1, DualDETR em-
ploys two groups of decoder queries, namely boundary-
level query group (red and yellow) and instance-level query
group (green), with each group corresponding to one level
of decoding. The instance-level queries capture impor-
tant semantic frames within the proposal, providing a
holistic understanding of the action content. Meanwhile,
the boundary-level queries focus on the details around
proposal boundaries, exhibiting higher sensitivity to the
salient boundary frames. Following the dual-level decod-
ing pipeline, DualDETR can improve the action proposals
by combining reliable recognition from the instance level
and precise boundary refinement from the boundary level.

Simply decoding the two levels of queries via a shared
decoder does not yield optimal performance. In general,
decoding from boundary and instance levels requires se-
mantics of different granularity. Using a shared decoder for
dual levels will fail to focus on specific semantics at each
level, hence hampering the effective decoding for both lev-
els. To address this, we propose the two-branch decoding
structure with feature partition to use a distinctive decoder
for each level. Specifically, we partition the encoder feature
map along the channel dimension to represent the bound-
ary (start, end) and instance levels. The separation bene-
fits the explicit capture of individual characteristics at each
level. This design is especially helpful in multi-label TAD
scenarios where different action instances overlap. For in-
stance, as depicted in Fig. 1, the action “GolfSwing” starts
while the action “TalkToCamera” is ongoing in the back-
ground. Under such complex scenario, it is challenging to
accurately determine the boundaries of each action. Feature
separation enables explicit cues for each action at each level
to be preserved and processed in different feature maps, thus
benefiting the precise localization of overlapping actions.

With the two-branch design for dual levels, we present a
novel joint query initialization strategy to align queries from
both levels and achieve complementary refinement of action
proposals during subsequent decoding. First, we establish
the alignment from action proposals predicted by the en-
coder. Each action proposal is paired with a starting bound-
ary query, an ending boundary query, and an instance query.
This alignment allows for a one-to-one matching between
boundary and instance queries, enabling joint updates of
the matched proposal during decoding. Second, similar to

[30, 63], each query is constructed as a pair of position and
content vectors. On top of this, instead of learning sample-
agnostic priors from training [31, 45], the position and con-
tent vectors are initialized with the position and semantic
priors from their matched proposal. Thanks to the joint
query initialization, the position vectors guide the queries
to explicitly focus on the matched proposal, while the con-
tent vectors provide semantic guidance for both pair-wise
relation modeling and global feature refining.

We conduct extensive experiments on three challenging
multi-label TAD benchmarks, MultiTHUMOS [58], Cha-
rades [43] and TSU [9]. Our proposed DualDETR outper-
forms the previous state-of-the-art methods by a large mar-
gin under detection-mAP, demonstrating its fine-grained
recognition and precise localization abilities. Notably, Du-
alDETR showcases impressive per-frame detection accu-
racy under the segmentation-mAP, comparing with both
detection-based methods and segmentation-based methods.

In summary, our contributions are threefold:
• We identify the sub-optimal localization issue from the

instance-level detection paradigm in previous query-
based TAD approaches and present a novel dual-level
query-based action detection framework (DualDETR).

• To facilitate effective dual-level decoding, we devise a
two-branch decoding structure and joint query initializa-
tion strategy to align dual-level queries and refine propos-
als with complementary efforts.

• Extensive experiments demonstrate that DualDETR sur-
passes the previous state-of-the-art on three challenging
benchmarks under det-mAP and achieves impressive re-
sults under seg-mAP, compared with both detection meth-
ods and segmentation methods.

2. Related Work
Multi-Label Temporal Action Detection. Prior stud-
ies [38] in multi-label TAD have primarily formulated the
problem as a frame-wise classification (segmentation) task,
with an emphasis on action class recognition rather than
precise action boundary localization for all action instances.
Early research [35, 36] sought to capture temporal context
through carefully designed Gaussian kernels. Other works
captured and modeled temporal relations with dilated atten-
tion layers [7] or a combination of convolution and self-
attention blocks [8]. Coarse-Fine [20] adopted a two-stream
architecture, facilitating the extraction of features from dis-
tinct temporal resolutions. MLAD [48] leveraged the at-
tention mechanism to model actions occurring at the same
and across different time steps. PointTAD [46] marked a
return of multi-label TAD to the domain of action detection
task [15, 39, 41, 46]. In this paper, we present a dual-level
framework to further explore the potential of the query-
based framework, with a specific focus on the precise lo-
calization of action instances in the multi-label TAD task.
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Boundary Information in TAD. Previous studies [34, 42,
51, 53] on action boundaries primarily focused on extract-
ing high-quality boundary features for proposal generation
or evaluation. The early methods [24, 26, 27, 29, 64]
employed convolutional networks to extract boundary fea-
tures. MGG [32] refined proposal boundaries by identify-
ing positions with higher boundary scores. Temporal ROI
Align [17] or boundary pooling techniques were adopted by
TCANet [37] and AFSD [25] to retrieve features for bound-
ary refinement. Regarding the query-based methods, RTD-
Net [45] multiplied the boundary scores with the original
video features. However, RTDNet encountered difficulties
in achieving reliable recognition scores thus leading to un-
satisfactory detection performance, leaving the appropriate
way to incorporate boundary information into the query-
based framework as an open problem. In this paper, we aim
to tackle this problem by proposing a dual-level framework
to carefully addresses these challenges with its design.
Query Formulation in DETR. The formulation of de-
coder queries was widely studied in the objection detec-
tion domain. DETR [2] utilized randomly initialized object
queries during training to learn dataset-level object distribu-
tion. Anchor DETR [52] initialized queries based on anchor
points to establish a specific detection mode. Deformable
DETR [5] and Conditional DETR v2 [5] leveraged the en-
coder proposals to provide positional priors for decoder
queries. DAB-DETR [30] formulated decoder queries with
a content vector and an action vector. Upon this, DINO [63]
incorporated position priors for the position vector and ran-
domly initialized the content query during training. In this
paper, we share a distinct motivation with the aforemen-
tioned object detection methods, which is to achieve effec-
tive alignment between dual-level queries.

3. Method

3.1. Preliminaries

Query-Based TAD Framework [21, 31, 40, 45–47] is pro-
posed inspired by the success of DETR [2]. It employs a
transformer architecture [49] and typically consists of an
encoder and a decoder. The encoder takes video features
X ∈ RT×D as input, which are extracted by a pre-trained
video encoder (e.g., I3D [3]), where T and D represent the
temporal length and feature dimension, respectively. The
encoder employs self-attention to model snippet-level tem-
poral relation. Following the refinement by LE encoder lay-
ers, the decoder employs Nq action queries to simultane-
ously model action-level relations using self-attention and
refine global features using cross-attention. Subsequently,
a detection head is applied to these action queries to obtain
sparse detection results without post-processing technique
like Non-Maximum Suppression (NMS). During training,
optimal bipartite matching is performed between predicted

and ground truth action instances, enabling the calculation
of classification and localization losses.
Deformable Attention [66] is proposed to address the slow
convergence issue of DETR while improving its computa-
tional efficiency. In this paper, we incorporate deformable
attention as a tool to explicitly guide attention localization.
Let q index a query element. Given the query feature zq ,
a 1-d reference point tq ∈ [0, 1], and the input feature map
X ∈ RT×D, the deformable attention is calculated as:

DeformAttn(zq, tq, X) =

M∑
m=1

Wm

[
K∑

k=1

Amqk ·W ′
mX (tq +∆tmqk)

]
.

(1)

Here, Amqk represents the attention weight computed as
SoftMax(Linear(zq)). m indexes the attention head and k
indexes the sampling temporal points. M and K denote
the number of attention heads and sampling points, respec-
tively. ∆tmqk represents a normalized 1-d sampling offset.

3.2. Overview

Given an untrimmed video, DualDETR aims to predict a
set of action instances Ψ = {φn = (tsn, t

e
n, an)}

Ng

n=1. Here,
Ng represents the number of ground-truth action instances,
tsn, t

e
n, and an denote the starting, ending time and the cor-

responding action label of action instances.
The entire pipeline is illustrated in Fig. 2. Du-

alDETR operates on video features X ∈ RT×D, that are
extracted by a pre-trained feature extractor (e.g., I3D [3]).
The model employs the encoder-decoder pipeline. For fea-
ture encoding, the model uses a transformer encoder with
deformable attention to efficiently perform temporal model-
ing at the snippet level. For action decoding, we introduce a
two-branch decoding structure based on transformer de-
coders to predict actions from both boundary and instance
levels. Accordingly, decoder queries are divided into two
groups and the encoder features are also divided along chan-
nels for dual-level cross-attention. At each branch, the de-
coder takes in the corresponding queries and features to
make predictions. To achieve complementary refinement
of proposals from both levels, we propose a joint query
initialization strategy to align different groups of queries
based on the action proposals predicted from the encoder.
Each proposal is matched with a pair of boundary queries
and one instance query. The content and position vectors
of the queries are initialized by the feature embedding and
boundary position of the matched proposal in correspon-
dence. At the end of each layer, a mutual refinement
module facilitates the communication between the aligned
queries. Finally, the classification scores generated by the
instance-level content vector, along with the proposals from
the mutual refinement module, serve as the final detection
results, without the need for NMS post-processing.
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Figure 2. Pipeline of DualDETR. The pre-extracted video features, augmented with the positional embedding, pass through a transformer
encoder to produce the encoder feature map. This map is divided along the channel dimension into separate feature maps for the boundary-
level (start, end) and instance-level modeling, respectively. An auxiliary dense detection head is applied to generate encoder proposals
and scores. Upon this, decoder queries are constructed using the query alignment strategy. The decoding process is performed at dual
levels. Thanks to the query alignment, dual-level queries can perform a complementary refinement through the mutual refinement module.
Finally, DualDETR directly output action instance predictions without NMS post-processing.

3.3. Dual-Level Query Construction

In this subsection, we present the construction of the de-
coder queries in our dual-level framework. We divide
the decoder queries into two groups, one group for the
boundary decoding branch and the other for the instance
branch. Similar to [14, 30, 63], we disentangle the posi-
tion and content decoding for each query by constructing
it as a pair of position and content vectors. The instance-
level query group, denoted as i, consists of content matrix
icon ∈ RNq×D/2 and position matrix ipos ∈ RNq×2, where
Nq is the number of queries, and D denotes the number of
feature channels. The content vector captures high-level se-
mantic information, while the position vector contains two
normalized scalars representing the center and duration of
a proposal. Similarly, the boundary-level query group con-
sists of start and end queries, represented as s and e re-
spectively. Each boundary query also contains content and
position matrix, denoted as scon, econ ∈ RNq×D/4 and
spos, epos ∈ RNq×1. The position vectors contain normal-
ized scalars representing the starting and ending times of a
proposal. During the decoding process, the position vectors
serve as reference points, providing explicit positional guid-
ance in both self-attention and cross-attention. Meanwhile,
the content vectors offer semantic guidance for pair-wise
query relation modeling in self-attention and query refine-
ment in cross-attention. This dual-level query corresponds
to the subsequent two-barnch decoding.

3.4. Query Alignment with Joint Initialization

After constructing the action queries with two groups and
decoding each group within separate branches, it is impor-
tant to align the queries from both groups to facilitate their
joint refinement of action proposals. This alignment enables
the model to benefit from both the instance-level queries,
which provide semantic guidance for recognition, and the
boundary-level queries, which refine the proposal bound-
aries with high precision. To achieve query alignment, we
first obtain proposals and classification scores by applying
a detection head to the encoder feature map. These propos-
als, selected based on their classification scores, are then
matched with the decoder queries from both groups. For
example, considering the k-th selected proposal, as depicted
in Fig. 3 (a), we match this proposal with the k-th instance-
level query ik = {iposk , iconk }, as well as the k-th boundary-
level query sk = {sposk , sconk }, ek = {eposk , econk }. This
matching process ensures an one-to-one alignment between
the instance and boundary queries, allowing them to jointly
update the matched proposal during the decoding process.

Based on the matching, we propose a joint query initial-
ization strategy to provide a good kick-start for the aligned
queries and further align the queries with their matched
proposal. As illustrated in Fig. 3 (b), the start and end
timestamps from the k-th proposal are used to initialize the
boundary-level position vectors sposk and eposk , which can
also be transformed into center and duration values to ini-
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Figure 3. Query Alignment with Joint Initialization. (a) In-
stance queries and boundary queries are aligned to match with the
encoder predictions in a one-to-one manner. (b) The matched en-
coder prediction serves as the initialization for dual-level queries.

tialize the instance-level position vectors iposk . At the same
time, the k-th selected feature is employed to initialize the
content vectors sconk , econk , and iconk through channel split-
ting. This joint initialization strategy offers two benefits:
(1) it further enhances the alignment between the dual-level
queries, and (2) it leverages both position and semantic pri-
ors from the proposal, resulting in a better match.

3.5. Two-Branch Decoding

Before the two-branch decoding process, we partition
the encoder feature map XEnc into two levels: 1) the
boundary-level, which consists of the starting boundary fea-
ture XEnc

s ∈ RT×(D/4) and the ending boundary fea-
ture XEnc

e ∈ RT×(D/4), and 2) the instance-level feature
XEnc

i ∈ RT×(D/2). This partition allows the queries from
each level to focus on the specific semantics relevant to their
respective levels. The decoder layers for both levels consist
of a self-attention module [49], a deformable cross-attention
module, and a feed-forward network (FFN).
Boundary-Level Decoding. The boundary-level decoder
layer takes boundary-level features maps XEnc

s , XEnc
e ,

along with the content query vectors scon, econ, as well as
the position query vectors spos, epos as input. After the self-
attention step, we employ deformable cross-attention to at-
tend to the proposal boundaries. Specifically, we reuse the
position vector spos, epos as reference points (as described
in Eq. (1)). The deformable attention attends to a small set

of key sampling points around each reference point. The
refinement of the content vector can be represented by:

scon = FFN(DeformAttn(scon, spos, XEnc
s )),

econ = FFN(DeformAttn(econ, epos, XEnc
e )).

(2)

Subsequently, a regression head is applied to the refined
content vectors to generate offsets ∆s,∆e, which are used
to refine the position vectors, as follows:

spos = σ(∆s+ σ−1(spos)),

epos = σ(∆e+ σ−1(epos)),
(3)

where σ and σ−1 denote the sigmoid and inverse
sigmoid functions, respectively. These functions are em-
ployed to ensure that the proposal coordinates remain nor-
malized at all times.
Instance-Level Decoding. Similarly to the boundary-level
decoding, the instance-level decoder layer takes instance-
level feature maps XEnc

i , the content query vector icon,
and the position query vector ipos as input. After applying
self-attention to model the query relationships, the content
query refines itself by attending to the key semantic frames
within the instance-level feature. This process utilizes the
instance-level position vector as the reference point, which
contains the center point and duration of the proposals. The
refinement can be expressed as:

icon = FFN(DeformAttn(icon, ipos, XEnc
i )). (4)

Subsequently, a regression head is employed to generate
offsets ∆i for refining the position vectors:

ipos = σ(∆i+ σ−1(ipos)), (5)

Mutual Refinement. After refining the decoder queries at
separate levels, we introduce a mutual refinement module to
achieve complementary refinement of proposals by leverag-
ing their matched queries. This approach allows the bound-
ary level to benefit from the robust localization of the in-
stance level, while the instance level can leverage the pre-
cise boundary refinement of the boundary level. Specifi-
cally, we utilize the boundary-level position vector to refine
the instance-level counterparts, which can be represented
as:

ipos,0 ← ipos,0 + (spos + epos)/2

2
,

ipos,1 ← ipos,1 + (epos − spos)

2
,

(6)

where ipos,0 and ipos,1 represent the center point and dura-
tion contained in the instance-level position vector. Simi-
larly, we refine the boundary level as follows:

spos ← spos + (ipos,0 − ipos,1/2)

2
,

epos ← epos + (ipos,0 + ipos,1/2)

2
.

(7)
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These refined position vectors are then utilized in the subse-
quent layers or can serve as the final predictions in the last
decoder layer.

3.6. Training

Label Assignment. The predicted action set is denoted as
Ψ̂ =

{
φ̂n =

(
t̂sn, t̂

e
n, p̂n

)}Nq

n=1
, where t̂sn, t̂

e
n represent the

starting and ending time of predicted action instances, and
p̂n represents the corresponding classification scores. The
ground-truth set Ψ is padded with a no-action placeholder,
denoted as ∅. The cost for a permutation σ ∈ SNq of query
set is defined as follows:

Ccls(σ) = Lcls

(
p̂σ(i), ai

)
,

Ciou(σ) = Liou

(
(t̂sσ(i), t̂

e
σ(i)), (t

s
n, t

e
n)
)
,

CL1(σ) = LL1

(
(t̂sσ(i), t̂

e
σ(i)), (t

s
n, t

e
n)
)
,

(8)

where Liou represents the temporal IoU loss and LL1 de-
notes the L1 distance. Focal loss [28] is utilized as Lcls fol-
lowing [31, 66]. The bipartite matching between two sets
aims to find the permutation σ∗ with the lowest cost:

σ∗ = argmin
σ

∑
ci ̸=∅

αclsCcls(σ) + αiouCiou(σ) + αL1CL1(σ).

(9)
where ci denotes the class label. αcls, αiou, and αL1

are
the weights of each cost, set to 6, 2, and 5 respectively, as
in [31].
Loss Functions. After obtaining the best permutation σ∗,
the final optimization goal can be expressed as:

L =

Nq∑
i

λclsCcls(σ
∗)+I{ci ̸=∅} (λiouCiou(σ

∗) + λL1CL1(σ
∗)) ,

(10)
where I(·) is the indicator function, and λcls and λiou and
λL1

are set to 2, 2, and 5 respectively, as in [31].

4. Experiments
4.1. Dataset and Setup

Dataset. We evaluate DualDETR on three challenging
datasets: (1) MultiTHUMOS [58], an extension of THU-
MOS14 [19], containing 413 sports videos of 65 classes.
The average video length is 212 seconds, and each video
has an average of 97 ground-truth instances. (2) Cha-
rades [43] comprises 9,848 videos of daily activities across
157 classes. The dataset contains an average of 6.75 ac-
tion instances per video, with an average video length of
30 seconds. (3) TSU [9] is a dataset recorded in an indoor
environment with dense annotations. Up to 5 actions can
happen at the same moment. Additionally, the dataset also
includes many long-term composite actions.

Methods Backbone
MultiTHUMOS Charades

DetmAP SegmAP DetmAP SegmAP

R-C3D [54] C3D – – – 17.6
Super-event [36] I3D – 36.4 – 18.6
TGM [35] I3D – 37.2 – 20.6
PDAN [7] I3D 17.3 40.2 8.5 23.7
Coarse-Fine [20] X3D – – 6.1 25.1
MLAD [48] I3D 14.2 42.2 – 18.4
CTRN [6] I3D – 44.0 – 25.3
MS-TCT [8] I3D 16.2 43.1 7.9 25.4
PointTAD [46] I3D 23.5 39.8 12.1 21.0

DualDETR I3D 32.6 45.5 15.3 23.2

Table 1. Comparison with state-of-the-art multi-label TAD
methods on MultiTHUMOS and Charades under Detection-mAP
(%) and Segmentation-mAP (%).

Methods Backbone GFLOPs DetmAP SegmAP

R-C3D [54] C3D – – 8.7
Super-event [36] I3D 0.8 – 17.2
TGM [35] I3D 1.2 – 26.7
PDAN [7] I3D 3.2 – 32.7
MS-TCT [8] I3D 6.6 10.6 33.7

DualDETR I3D 5.5 20.8 34.8

Table 2. Comparison with state-of-the-art multi-label TAD
methods on the TSU dataset, where the action instances are highly
overlapped. The GFLOPs are presented to evaluate the computa-
tion efficiency.

Implementation Details. Our method relies on offline ex-
tracted video features, and we utilize the two-stream I3D [3]
network pre-trained on Kinetics [3] as the feature extractor.
The video features are extracted at a stride of 4 frames, 8
frames, and 16 frames for MultiTHUMOS, Charades, and
TSU, respectively. During training, for MultiTHUMOS and
TSU, we crop each video feature sequence into windows of
length 256 and 96, respectively, with a stride ratio of 0.75.
During inference, the stride ratio is set to 0.25. For Cha-
rades, we directly input the entire video feature into the
model, padding short videos with zeros for parallel com-
putation. We utilize AdamW [33] optimizer with a learn-
ing rate of 2e-4 and weight decay of 0.05. Training is per-
formed for 30 epochs on MultiTHUMOS and Charades, and
20 epochs on TSU, with the learning rate dropping to 2e-5
during the last 3 epochs.
Metrics. Following [46], we evaluate our method using
two metrics: detection-mAP and segmentation-mAP. Det-
mAP measures boundary localization accuracy, while seg-
mAP evaluates frame-wise multi-label classification preci-
sion. We report the average mAP across tIoU thresholds
[0.1 : 0.1 : 0.9] and individual mAPs at each threshold.
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Methods 0.1 0.3 0.5 Avg.

BSN [26]+P-GCN [60] 22.2 16.7 8.5 10.0
BSN [26]+ContextLoc [67] 22.9 18.0 10.8 11.0
AFSD [25] 30.5 23.6 14.0 14.7
TadTR [31] 48.0 41.1 29.1 27.4
ActionFormer [61] 49.0 44.5 33.3 29.6
TriDet [42] – – 34.3 30.7

DualDETR 53.4 47.4 35.2 32.6

Table 3. Comparison with traditional TAD methods on Multi-
THUMOS under detection-mAP (%).

4.2. Main Results

Comparison with State-of-The-Art Methods. In Tab. 1,
we compare the performance of DualDETR with previous
multi-label TAD methods. To calculate the segmentation-
mAP metric, we follow PointTAD [46] by converting sparse
prediction tuples into dense segmentation scores. Our Du-
alDETR outperforms all previous methods by a substan-
tial margin under detection-mAP (+9.1% on MultiTHU-
MOS and +3.2% on Charades), highlighting its excep-
tional boundary localization ability. Meanwhile, even when
evaluated under segmentation-mAP, DualDETR delivers
comparable results to methods specifically designed for the
frame-wise classification task. This further emphasizes the
superiority of our approach. Additionally, we present the
results on the TSU dataset in Tab. 2, where action instances
are highly overlapped. DualDETR still achieves remarkable
performance while maintaining favorable computational ef-
ficiency.

Comparison with Traditional TAD Methods. In Tab. 3,
we compare several representative methods in traditional
TAD. Since MultiTHUMOS shares similar data prepara-
tion with THUMOS14, we reproduce these methods us-
ing their default hyper-parameter setting for THUMOS14,
with the exception of TadTR, where the number of queries
is adjusted to the same number as ours for fair compari-
son. While these methods demonstrate decent performance
in traditional TAD, directly applying them to multi-label
scenarios yields unsatisfactory results. In contrast, our Du-
alDETR takes into account the dense overlapping scenarios
in our architecture design, thus achieving superior detection
performance, surpassing all these methods.

Convergence Speed. Query-based methods often en-
counter slow convergence issues [2, 66] compared to dense
prediction methods. In Fig. 4, we compare the convergence
speeds of DualDETR with PointTAD (another query-based
method) and ActionFormer (dense prediction). Remark-
ably, our DualDETR demonstrates a favorable convergence
speed, thanks to the effectiveness of our two-branch collab-
oration structure.
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Figure 4. Convergence curves of DualDETR , PointTAD [46],
and ActionFormer [61] on MultiTHUMOS.

4.3. Ablation Study

We perform ablation studies on the MultiTHUMOS dataset
to evaluate the effectiveness of our proposed method and
investigate alternative design choices. In the tables, the de-
fault setting is colored gray .
Study on Dual-Level Design. In Tab. 4, we present the
results of our ablation study, focusing on each compo-
nent of DualDETR. We examine the single-level results ob-
tained by employing either the instance-level or boundary-
level detection paradigm. The instance-level detection ap-
proach yields sub-optimal results as it lacks explicit focus
on boundary information. On the other hand, the boundary-
level detection approach faces challenges such as incom-
plete detection and difficulty in obtaining reliable scores,
resulting in inferior performance.

Next, we proceed to study the effectiveness of each pro-
posed component in a step-wise manner. We first present
our baseline, which simply combines instance-level and
boundary-level queries into the same detection framework.
Then, we incorporate our two-branch design into this frame-
work, enabling the decoding process to focus on specific se-
mantics at each level. This integration leads to a promising
performance gain of 2%. Furthermore, we introduce query
alignment to match the dual-level queries with the encoder
proposal, enabling effective collaboration. This alignment
brings an additional performance gain of 1.51%. Lastly,
the joint query initialization strategy further facilitates the
alignment between queries, resulting in an additional per-
formance gain of 2.09%.
Study on Query Initialization. Previous query-based TAD
approaches typically optimize randomly initialized queries
during training to learn dataset-level action distribution. In
contrast, DualDETR takes advantage of position and se-
mantic priors from the matched proposal. These priors
serve two important purposes: help the decoder queries ex-
plicitly concentrate on the matched proposals, and provide
an additional constraint on the aligned queries, facilitating
effective collaboration. Thanks to these good qualities, Du-
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Setting 0.1 0.3 0.5 0.7 0.9 Avg.

Single-Level
Instance Level 50.22 42.92 30.69 15.72 2.28 28.62
Boundary Level 42.11 33.60 23.58 12.96 1.99 22.92

Dual-Level
(1): Simple Combine 49.10 40.99 28.11 14.62 1.65 27.04
(2): (1)+Two-Branch 51.24 43.20 30.92 16.53 2.85 29.04
(3): (2)+Query Align 51.70 44.76 32.97 18.37 3.03 30.55
(4): (3)+Joint Init 53.42 47.41 35.18 20.18 4.02 32.64

Table 4. Ablation Study on Dual-Level. We first show the results
of single-level detection. Following that, we present our baseline,
a method simply combining two-level detection. Subsequently, we
perform step-wise ablations on our proposed approaches to evalu-
ate their effectiveness.
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Figure 5. Comparison of detection mAP at each decoder layer
for different query initializations. All initialization strategies are
re-implemented in the DualDETR framework. The joint initializa-
tion showcased strong detection performance from early decoding
stages and continues to outperform other initialization variants as
the number of decoder layers increases.

alDETR enjoys prominent detection accuracy with only a
few decoder layers, as depicted in Fig. 5.

Additionally, we have observed two other popular ini-
tialization methods [63, 66] in the objection detection
field. Zhu et al. [66] initializes both position and content
vectors with proposal predictions from the encoder (denoted
as “Full Position”). However, this approach only leverages
position priors for initialization, lacking crucial semantics
priors necessary for fine-grained content decoding. On the
other hand, Zhang et al. [63] goes back to learning the con-
tent vector during training while keeping the proposal pre-
dictions for position vector initialization (denoted as “Po-
sition Random”). Although these methods achieve supe-
rior results in object detection, adapting them to a multi-
level query-based framework remains non-trivial, as shown
in Fig. 5.
Alternative Choices for Mutual Refinement. Based on
the design of DualDETR, we explore alternative choices for

Setting 0.1 0.3 0.5 0.7 0.9 Avg.

Sequential Refinement
Boundary→Instance 53.76 47.15 34.84 19.55 3.75 32.35
Instance→Boundary 53.36 47.44 35.76 19.60 3.84 32.50

Parallel Refinement
Refine Position 53.42 47.41 35.18 20.18 4.02 32.64
Refine Pos (at last layer) 52.51 46.60 34.71 18.98 4.00 31.81
Refine Position&Content 52.54 46.31 34.23 19.44 4.13 31.82

Table 5. Alternative design choices for mutual refinement.

the mutual refinement module in Tab. 5. Firstly, we consider
sequential refinement, which updates the position vectors in
a sequential manner. This can be done either by refining the
boundary-level vectors first followed by the instance-level
vectors, or vice versa. Secondly, we investigate the tim-
ing of position vector updates within the decoding process.
By default, the position vectors are updated at the end of
each layer. We also explore the option of updating them at
the end of the entire decoding process (last layer). Further-
more, we experiment with refining the content vectors dur-
ing the mutual refinement process by feeding the concate-
nated content vectors into a feed-forward network. Over-
all, our default setting benefits from parallel computation
and achieves superior performance. It is also worth noting
that, despite the various alternative choices explored, Du-
alDETR consistently demonstrates favorable performance,
showcasing its robustness.

5. Conclusion
In this paper, we introduce DualDETR, a novel dual-level
query-based TAD framework. DualDETR integrates both
instance-level and boundary-level decoding to achieve more
precise localization of temporal boundaries. To enable ex-
plicit modeling of each level’s semantics, we propose a
two-branch decoding structure, which allows us to cap-
ture the individual characteristics of each level. Mean-
while, to achieve complementary refinement of action pro-
posals, we introduce query alignment, which matches dual-
level queries with encoder proposals in a one-to-one man-
ner. Furthermore, we propose the joint query initialization
strategy that exploits rich priors from matched proposals,
further enhancing the alignment. Thanks to the dual-level
design, DualDETR outperforms existing TAD methods on
various multi-label TAD benchmarks without the need for
NMS post-processing.
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