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Abstract

Infrared physical adversarial examples are of great sig-
nificance for studying the security of infrared AI systems
that are widely used in our lives such as autonomous driv-
ing. Previous infrared physical attacks mainly focused on
2D infrared pedestrian detection which may not fully man-
ifest its destructiveness to AI systems. In this work, we
propose a physical attack method against infrared detec-
tors based on 3D modeling, which is applied to a real car.
The goal is to design a set of infrared adversarial stickers to
make cars invisible to infrared detectors at various viewing
angles, distances, and scenes. We build a 3D infrared car
model with real infrared characteristics and propose an in-
frared adversarial pattern generation method based on 3D
mesh shadow. We propose a 3D control points-based mesh
smoothing algorithm and use a set of smoothness loss func-
tions to enhance the smoothness of adversarial meshes and
facilitate the sticker implementation. Besides, We designed
the aluminum stickers and conducted physical experiments
on two real Mercedes-Benz A200L cars. Our adversarial
stickers hid the cars from Faster RCNN, an object detector,
at various viewing angles, distances, and scenes. The attack
success rate (ASR) was 91.49% for real cars. In compari-
son, the ASRs of random stickers and no sticker were only
6.21% and 0.66%, respectively. In addition, the ASRs of the
designed stickers against six unseen object detectors such
as YOLOv3 and Deformable DETR were between 73.35%-
95.80%, showing good transferability of the attack perfor-
mance across detectors.

*Corresponding author.

Figure 1. Infrared attack effect on real cars. (a) Visible light view

of real cars. (b) Infrared view of real cars. C: clean car. R: car

with random shape stickers. A: car with adversarial stickers. The

numbers above the bounding boxes are object confidence scores

(%) with 0.6 threshold. Our adversarial stickers hid the car from

Faster RCNN at various viewing angles, distances and scenes. In

comparison, the clean car and the car with random shape stickers

were detected at the same situation.

1. Introduction

It is well known that deep learning models can be misled

by carefully designed perturbations to the input which is

called adversarial example, and the perturbation process is

called adversarial attack. Adversarial attacks can be di-
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vided into two categories, digital attacks [4, 8, 9, 16, 24, 26]

which assume that the attackers can directly modify the

model input in the digital world, and physical attacks

[11, 12, 27, 28, 35, 37] which assume that the attackers

can only modify the object or scene in the physical world.

Physical attacks have attracted much attention because of

their importance of assessing the security of real-world AI

systems.

One type of physical attack is called infrared physical
attack [30–32, 35, 37]. Infrared imaging is widely used in

our daily lives, such as body temperature monitoring and

autonomous driving. Since infrared cameras can function

normally at night, they are becoming more and more im-

portant in autonomous driving systems; so is their safety.

Previous infrared physical attacks [30–32, 35, 37]

mainly focused on infrared pedestrians, and only two works

[31, 32] conducted experiments on model cars. There is

currently a lack of infrared attack research on real cars. The

reasons might be as follows. Compared with pedestrians

with constant body temperature, the temperature distribu-

tions of real cars are more uneven (e.g., the temperature of

the engine is much higher than that of other places), so their

infrared characteristics are more complex than pedestrians.

Compared with model cars without engines, real cars’ struc-

tures and materials are very different from those of model

cars, so their infrared characteristics are also quite different.

Besides, real car attacks require designing and manufactur-

ing adversarial patterns on the entire 3D car surface, which

poses a great challenge to physical experiments. But we be-

lieve that for the safety of autonomous driving cars, physical

real car attack is worth in-depth investigation.

The aforementioned two infrared model car attacks [31,

32] are only effective within limited viewing angles (e.g.,

horizontal angles -30◦ − 30◦ and pitch angle 0◦). But we

want to implement a full-angle attack (the horizontal angles

0◦ − 360◦, and pitch angle 0◦ − 90◦), so the attack angles

cover an entire hemisphere surface, which is a challenging

task. We also notice that these methods [31, 32] are both

case-by-case attacks, which needs to optimize an adversar-

ial pattern for each image1, while our goal is to achieve

a universal attack which uses the same adversarial pattern

to attack detectors at various viewing angles, distances and

scenes.

Towards this goal, we propose an infrared physical at-

tack method applied to a real car based on 3D modeling. We

aim to design a set of infrared adversarial stickers to make

cars invisible to infrared detectors at various viewing an-

gles (full-angle), distances and scenes. Since most current

3D car models are visible-light models, and there is a lack

of 3D infrared car models, we build a 3D infrared car model

with real infrared characteristics at various viewing angles.

For the generation of infrared adversarial pattern for stick-

1We found this by checking and running their official codes.

ers, we propose to optimize a 3D adversarial mesh at first,

then project the shadow of 3D adversarial mesh to obtain a

2D adversarial pattern, and finally attach the 2D adversar-

ial pattern to the car surface. The motivation of this mesh

shadow attack (MSA) method is that we hope to find a bet-

ter solution in a higher-dimensonal 3D space instead of di-

rectly optimizing the 2D adversarial pattern. To improve the

smoothness of adversarial patterns and facilitate sticker im-

plementation, we propose a 3D control points-based mesh

smoothing algorithm and use a set of smoothing loss func-

tions.

For the physical implementation of infrared adversarial

patterns, we use an aluminum film which modifies the sur-

face emissivity of the object instead of altering the surface

temperature used by previous works [30–32, 35, 37]. Like

many car stickers, the adversarial car stickers can be easily

attached on the car surface. The stickers are only 0.08mm

thick and take up almost no space.

To assess the safety of infrared detection in real au-

tonomous driving scenes, we used two real Mercedes-Benz

A200L cars. Physical experiments show that our infrared

adversarial stickers made the real cars hide from the infrared

detector Faster RCNN at various viewing angles, various

distances, and multiple scenes, with an attack success rate

(ASR) of 91.49%. To the best our knowledge, this is the first

3D multi-view physical infrared vehicle attack, and also the

first infrared attack conducted on real cars.

2. Related Work
2.1. Visible Light Physical Adversarial Attacks

Huang et al. [13] proposed a universal physical camou-

flage (UPC) attack for object detectors. Zhang et al. [34]

proposed a vehicle camouflage for physical adversarial at-

tack on object detectors in the wild. Wang et al. [29] pro-

posed the Dual attention suppression (DAS) attack to gen-

erate adversarial vehicle camouflage in the physical world.

Suryanto et al. [25] generated the physical adversarial cam-

ouflage by using a differentiable transformation network.

Wang et al. [28] proposed a 3D full-coverage vehicle cam-

ouflage for physical adversarial attack (FCA). It is worth

noting that all above works are proposed for visible light

images.

2.2. Infrared Physical Adversarial Attacks

Zhu et al. [35] proposed a bulb-based board to fool in-

frared pedestrian detectors in the physical world. Zhu at

al. [37] proposed an infrared invisible clothing to hide from

infrared pedestrian detectors in the physical world. Wei et

al. [30] proposed the HotCold blocks to attack the infrared

pedestrian detectors. Wei et al. [32] proposed a physical ad-

versarial infrared patch (AIP) based on a points-clustering

algorithm. Wei et al. [31] proposed a unified adversar-

24285



Figure 2. Construction and optimization of real infrared car texture mapping. (a) Car mesh model. (b) Reorganized faces map. (c) Infrared

car texture map collected from real world. (d) Rendered infrared car model.

ial patch (UAP) for physical attacks based on a boundary-

limited shape optimization algorithm. It is worth noting that

all above methods are proposed for infrared pedestrian or

model car attacks. There is currently a lack of research on

infrared real vehicle attacks in the physical world.

3. Car Sticker Attack Method
Our method consist of several steps. First, we build a 3D

infrared car model based on real infrared characteristics.

Next, we use the infrared adversarial pattern generation

method based on 3D mesh shadow. To make the 3D ad-

versarial mesh smoother, we use a 3D control points-based

mesh smoothing algorithm and use a set of smoothness

losses. Then we apply adversarial patterns to 3D infrared

car model and optimize the adversarial patterns. Finally, we

introduce the physical implementation method of infrared

adversarial car stickers.

3.1. Building a 3D Infrared Car Model

To simulate the infrared car attack realistically, we build a

3D model based on the infrared characteristics of a real car.

It is worth noting that our method can be applied to any

target car, and we chose Mercedes-Benz A200L in our ex-

periments, simply because one of the authors have this car.

Figure 2(a) shows the car mesh model Mcar. Next, we need

with 
center 

with vertices and control points 

Shadowing angle 

Part of car texture 

Figure 3. Schematic diagram of mesh shadow method.

to create a “skin” for the car model based on infrared pho-

tos taken by an infrared camera FLIR T560. However, the

infrared photos captured by the camera are all 2D images,

and the challenge is how to “paste” these 2D infrared im-

ages onto the 3D car mesh model. First, we flatten all the

faces of 3D car mesh onto a 2D plane called faces map. Af-

ter that, we use MAYA software to rearrange these faces to

divide different areas, such as roof, doors, etc., as shown in

Figure 2(b). This process facilitates the alignment of real

infrared car images with the 3D car mesh.

Subsequently, we crop the infrared images into different

parts based on the faces map (Figure 2(b)) and paste the

cropped images onto the 2D faces map, and then we get the

infrared texture map of the car, as shown in Figure 2(c). See

Supplementary Material (SM) for how these infrared pho-

tos are taken, cropped and pasted. This process establishes

a correspondence between the real infrared car images and

the 3D car mesh. The rendered infrared car model is shown

in Figure 2(d), which is built for a real car with engine run-

ning.

3.2. Generation of 2D Shadow Based on 3D Mesh

We aim to design infrared stickers with adversarial patterns

to hide the cars from infrared detectors at various viewing

angles (full-angle), distances, and scenes. We propose a 3D

adversarial mesh shadow attack (MSA) method to generate

the 2D infrared adversarial patterns for stickers. The moti-

vation of MSA method is that we hope to find a better so-

lution in a higher-dimensonal 3D space instead of directly

optimizing the 2D adversarial pattern. The core of MSA

method is to optimize a 3D adversarial mesh Madv at first,

then project the shadow of 3D adversarial mesh to obtain a

2D adversarial pattern Sadv, and finally attach the 2D ad-

versarial pattern Sadv to the car surface. Note that the 3D

adversarial mesh Madv is different from the 3D car mesh

Mcar in Section 3.1. The optimization variables include the

3D mesh vertices coordinates V , the mesh shadowing an-

gle ϕ, and the center point position P when pasting the 2D

pattern onto the car’s texture map Torigin (Figure 3).

The shadowing operation refers to rendering the mesh
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Figure 4. The overall pipeline of the proposed method.

Madv to a dark area while retaining the mesh contour (Fig-

ure 3), and the dark area has a uniform grayscale value

within the contour. The grayscale value is consistent with

the infrared characteristics of the sticker we use. Let Ω de-

note this operation. If we want the car to have adversarial

effect at various viewing angles, we need to optimize N
adversarial meshes to generate N adversarial shadows on

different places of the car (Figure 4):

S
(i)
adv = Ω(M

(i)
adv, ϕ

(i)), i = 1, 2, ...N. (1)

3.3. 3D Control Points-Based Mesh Smoothing

If we directly optimize the vertices coordinates V of the

mesh Madv, many “peaks” will appear on the mesh sur-

face, which will make the shadow shape very complex and

will be difficult for the physical implementation of the ad-

versarial shadow Sadv. Inspired by the Gaussian smooth-

ing kernel and spline interpolation method, we propose a

smoothing control algorithm for 3D mesh vertices. Its core

idea is to use some 3D control points C as anchor points,

and the coordinate offsets of mesh vertices V are expressed

as the weighted average of the coordinate offsets of C. The

calculation details are described in SM.

We use Θ to denote the above transformation, and C(i)

to denote the control points set of M
(i)
adv, then

V (i) = Θ(C(i)), i = 1, 2, ...N. (2)

Since the control points C(i) determine the vertices co-

ordinates V (i), the optimization variables changes from(
V (i), P (i), ϕ(i)

)
to

(
C(i), P (i), ϕ(i)

)
, i = 1, 2, ...N .

3.4. Mesh Smoothness Loss Functions

To further enhance the smoothness of 3D adversarial mesh

Madv and 2D adversarial pattern Sadv, we use a set of loss

functions including: mesh normal consistency loss, mesh
edge loss, chamfer distance loss, and Laplacian smoothing
loss. During the optimization process of 3D mesh Madv ,

these functions guide the generation of a smoother adversar-

ial mesh. A smoother 3D mesh Madv results in a smoother

2D shadow pattern Sadv, which is beneficial for manufac-

turing physical stickers based on the 2D shadow pattern.

The mesh normal consistency loss computes the normal

consistency for each pair of neighboring faces, and mini-

mizing it encourages the mesh surface to be smoother. We

suppose that mesh Madv has a total of F faces. Let ni, nj

(1 ≤ i, j ≤ F ) represent the normal vector of any two adja-

cent faces, then this loss function is described as:

Lnorm = Average (1− cos(ni, nj)) . (3)

Average is calculated between any pair of adjacent faces.

The mesh edge loss computes mesh edge length regular-

ization loss, and minimizing it encourages a reduction in the

average edge length of the adversarial mesh. Suppose Madv

has a total of M edges, lk (k = 1, 2, ...,M ) represents the

length of each edge, and this loss function is described as

Ledge =

(
M∑
k=1

lk

)
/M. (4)

The chamfer distance loss computes chamfer distance

[6] between the sampling points of adversarial mesh and

a standard sphere. Reducing chamfer distance loss encour-

ages the adversarial mesh Madv to approximate a sphere.
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We denote the point clouds sampled by adversarial mesh

Madv and the standard spherical mesh Msphere by S1 and

S2, respectively. The chamfer distance loss is described as

Lchamfer =
∑
p∈S1

min
q∈S2

‖p− q‖22 +
∑
q∈S2

min
p∈S1

‖q − p‖22 .

(5)

The Laplacian smoothing loss LLaplace computes the

Laplacian smoothing objective for the adversarial mesh. We

define this function as Laplace, and its calculation details

are introduced in [18], so

LLaplace = Laplace (Madv) . (6)

3.5. Applying the 2D Shadow to 3D Car Model

We apply the adversarial shadow Sadv to 3D infrared car

model by changing its texture map Torigin. This simulates

the process we paste the adversarial stickers to the car sur-

face in the physical world. To facilitate physical implemen-

tation, we simulate to paste the stickers onto the door, roof,

front hood and rear of the car, which have wide ranges of

flat area and are easy to paste. In each area, we paste one

or two adversarial shadow patterns (Figure 4). To simulate

real-world perturbations, such as errors in cutting the ad-

versarial stickers, variations in surface temperature on the

adversarial stickers, and errors in the pasting positions, we

introduce random perturbations to the vertex coordinates V
of the adversarial mesh Madv, random noise to the pattern

Sadv, random changes in grayscale values of Sadv, and ran-

dom perturbations in the position P during the pasting of

Sadv. This approach, known as the Expectation Over Trans-

formation (EOT) algorithm [2], enhances the robustness of

our algorithm in real-world scenes.

Next, we need to paste the adversarial patterns Sadv onto

the original car texture map Torigin. Let Γ denote the past-

ing operation. We establish a Cartesian coordinate system

with the center point of Torigin as the origin. We use P (i)

to represent the coordinates of the pasting positions for N

adversarial shadows S
(i)
adv, i = 1, 2, ...N . The texture map

after pasting the adversarial shadows is

Tadv = Γ
(
S
(i)
adv, P

(i), Torigin

)
, i = 1, 2, ...N. (7)

We use the differentiable renderer Pytorch3D [20] to ren-

der the adversarial texture map Tadv onto the surface of the

car mesh Mcar, resulting in the rendered infrared car im-

ages with adversarial patterns, denoted as Iadv. Let Ψ de-

note the rendering operation with parameters θ which in-

clude the rendering distances and angles. Mathematically,

this process can be expressed as:

Iadv = Ψ(Mcar, Tadv, θ) . (8)

3.6. Optimization of 3D Mesh Shadow Attack

After we get the rendered infrared adversarial images Iadv,

we input them into the target detector f . The output of

the target detector typically includes object confidence fobj,
class confidence fcls, and bounding box fbbox. Since our

goal is to create a stealthy attack, meaning that our adversar-

ial texture Tadv should make the infrared car hide from the

detector, we try to lower the object confidence fobj (Iadv)
as much as possible. Therefore, the detection loss is defined

as:

Ldet = fobj (Iadv) . (9)

The overall loss function is defined as follows:

L = Ldet + w1 · Lnorm + w2 · Ledge

+w3 · Lchamfer + w4 · LLaplace.
(10)

Here, w1, w2, w3, and w4 are weights of different losses,

which are determined empirically. We use the backpropa-

gation algorithm according to the loss function L to update

the optimization variables C(i), P (i), ϕ(i), i = 1, 2, . . . , N .

The overall pipeline is illustrated in Figure 4.

3.7. Physical Implementation Method

We use aluminum films to make adversarial car stickers.

Instead of altering the surface temperature of an object,

this approach focuses on modifying the surface emissivity

of the object, which is different from previous works [30–

32, 35, 37]. Aluminum typically has an emissivity around

0.1, while the surface of a car, typically made of steel, has an

emissivity around 0.8, resulting in different infrared charac-

teristics. We utilize an ultra-thin (only 0.08mm) aluminum

film, which can be easily attached on the surface of a car

like many car stickers. We only need around 13 mins to

make a sticker, and the cost of a sticker is only around 0.2

USD. The implementation process of adversarial stickers is

shown in Supplementary Video 1.

4. Experiments
4.1. Dataset

We used the FLIR ADAS 1 3 [7] infrared dataset released

by FLIR company for infrared autonomous driving scenes.

It contains 10,228 real infrared photos collected in streets

and highways of Santa Barbara, USA. The infrared camera

is FLIR Tau2. The training set contains 7160 images, and

the test set contains 3068 images. We used this dataset to

finetune the target detector.

4.2. Target Detectors

We initially chose the classic two-stage object detector:

Faster R-CNN [22], as our primary target detector. We

used the pre-trained Faster RCNN model provided by

the torchvison library [17] and then finetuned it on the
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Table 1. ASRs (%) of cars with different textures against different detectors.

Texture

Detector
Faster RetinaNet Cascade Libra SSD YOLOv3 Deformable

Origin 2.10 4.49 18.86 16.47 15.27 25.15 12.28

Random shape 18.26 17.07 23.95 28.74 45.81 50.00 23.65

AIP 14.97 15.27 32.93 27.54 23.65 38.32 27.54

UAP 20.06 31.44 38.02 33.23 36.83 39.82 24.25

Ours 96.31 86.83 73.35 79.04 95.80 86.52 83.83

FLIR ADAS 1 3 dataset. The average precision (AP) for

car class of the finetuned model on the training set was

0.96, and the AP on the test set was 0.92. After attack-

ing Faster RCNN in a white-box setting, we transfered our

attack method to other unseen detectors such as YOLOv3

[21], Deformable DETR [36], etc. which were provided by

mmdetection library [5] in a black-box setting.

4.3. Evaluation Metrics

In our experiments, we used the attack success rate (ASR)

as the evaluation metrics of the attack methods. The ASR

was defined as the ratio of the number of cars which were

not detected to the total number of cars. We set the con-

fidence threshold of target detectors to 0.6 and the IOU

threshold between the prediction box and ground truth to

0.5, similar to previous works [31, 32, 35, 37]. The ASR

was calculated based on the average value of sample points

collected from various distances, horizontal angles, and

pitch angles with the sampling method described in Section

4.4.

4.4. Attack Faster RCNN in the Digital World

We optimized N = 5 adversarial shadow patterns to sim-

ulate 5 adversarial stickers to be pasted on the car surface.

Fa
st

er

Origin Random Ours

Target detected Target undetected

AIP UAP

D
ef

or
m

Y
O

LO
v3

Figure 5. Examples of detection results of different detectors for

target cars with different textures. The numbers above the red

bounding boxes are the object confidence scores, with a threshold

of 0.6. The results of other detectors are shown in SM.

The hyper-parameters are detailed in SM. After optimiza-

tion, we obtained the adversarial shadow patterns (Tadv in

Figure 4), and the rendered car with adversarial shadow pat-

terns (Iadv in Figure 4).

After that, we evaluated the attack effectiveness of the

adversarial shadow patterns. For a fair comparison, we em-

ployed the original car pattern (without any sticker) and ran-

dom shape pattern as control patterns. The figures of these

patterns are shown in SM. These patterns were rendered

onto the same car model, and the resulting images were in-

put into Faster R-CNN. The results, as shown in Table 1, in-

dicate that our adversarial shadow patterns achieved an ASR

of 96.31% for Faster R-CNN in the digital world. In com-

parison, the ASRs for the original car pattern and random

shape pattern were only 2.10% and 18.26%, respectively.

This demonstrates the effectiveness of our attack method.

Figure 5 shows typical examples.

We then analyze the ASR of our method at various (full-
angle) viewing angles and distances. The horizontal angle

azim ranged from 0 to 360 degrees, and we sampled it ev-

ery 20 degrees. The pitch angle elev ranged from 0 to 90

degrees, and we sampled it every 6 degrees. The distance

dist ranged from 1 to 8 meters, and we sampled it every

1 meter. Figure 6(b-d) show the ASRs with respect to one

variable (e.g., dist) by taking the average of ASRs over all

combinations of values of the other two variables (e.g., elev
and azim). The results indicate that our approach achieves

successful attacks at various (full-angle) viewing angles and

various distances. In contrast, many previous works [30–

32, 35] were effective only within limited viewing angles

(e.g., horizontal angle from -30 to 30 degrees and pitch an-

gle 0 degree) and shorter distances (e.g. 3 to 6 meters). Note

that there is a decrease in ASR at 2 meters and 0(or 180)-

degree horizontal angle. This suggests that Faster RCNN is

more robust in these specific scenes, potentially due to the

distribution of training images. Nevertheless, for the major-

ity of viewing angles and distances, the ASRs of our method

consistently exceeded 80%.

4.5. Ablation Study

To evaluate the effectiveness of the 3D control points-based

mesh smoothing algorithm (CMS) and a set of smoothing
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Figure 6. Full-angle ASRs at diffrent (a) parameters including (b) distances, (c) pitch angles, and (d) horizontal angles. See text for details.

losses (SMLS), we performed ablation experiments. We

conducted a subjective evaluation on the smoothness score

of the 3D adversarial mesh and 2D adversarial pattern and

we also evaluated the physical implementation time of 2D

adversarial patterns under different settings. The experi-

mental settings and results are detailed in SM. The results

indicate that both CMS and SMLS improved the smooth-

ness of adversarial meshes and patterns, and their combina-

tion was better. Besides, these methods effectively reduced

the physical implementation time of adversarial patterns.

4.6. Exploring the Interpretability of the Attack

To gain deeper insights into our attack methods, we utilized

the GradCAM [23] technique to analyze the changes in net-

work attention maps before and after the attack. See SM for

more details.

4.7. Comparison with 2D Optimization Methods

We extended the previous 2D infrared model car attack

methods [31, 32] to our 3D car model. We generated adver-

sarial car textures on our car model based on their papers

and codes, which are shown in SM. Following the settings

in Section 4.4, we evaluated the attack performance of the

different methods. The statistics of ASRs are presented in

Table 1, with typical examples shown in Figure 5.

Figure 7. Infrared attack effect on model cars. (a) Visible light

view of model cars. (b) Infrared view of model cars. C: clean car.

R: car with random shape stickers. A: car with adversarial stickers.

The results indicated that the ASR of our method

(96.31%) outperformed the ASRs of two alternative meth-

ods (14.97% and 20.06%) for Faster RCNN in the digital

world. The reasons may be as follows. The two 2D op-

timization methods based on boundary optimization [31]

or points clustering [32] are subject to various constraints.

These constraints are used to ensure that, for example, the

boundary curves do not have overlaps [31], and the ad-

versarial patterns do not split into multiple pieces [32].

With more constraints, the feasible solution space becomes

smaller. However, our 3D mesh shadow approach does not

have such constraints, and we can explore a larger solution

space, leading to better results.

4.8. Attack Transferability

We tested the effectiveness of our adversarial car texture

(Tadv in Figure 4) optimized for Faster RCNN against other

unseen detectors, including RetinaNet [14], Cascade RCNN

[3], Libra RCNN [19], SSD [15], YOLOv3 [21] and De-

formable DETR [36]. It is worth noting that these ex-

periments were performed in a black-box setting, which

is a more challenging but practically significant scene for

real-world applications. The results are shown in Table 1.

The ASRs of our method against unseen models reached

73.35%-95.80%. It indicates that our method performed

well in a black-box setting and had good attack transferabil-

ity to unseen models including not only CNN-based models

but also transformer-based models. Besides, the transfer-

ability of our method is stronger than not only two simple

baselines but also two infrared attack methods [31, 32].

4.9. Physical Attacks on Model Cars

We initially conducted physical experiments on three same

1:24 scale Mercedes-Benz model cars (Figure 7(a)). We

crafted the adversarial aluminum stickers according to the

optimized patterns, scaled to match the size of the model

car, and applied them to the model car. In addition, we cre-

ated randomly cut-shaped stickers as a control. We heated

the model cars with hot water to simulate the real car with

engine running. We used a rotating turntable to conve-

24290



Figure 8. Examples of infrared real car attacks. C: clean car. R: car with random shape stickers. A: car with adversarial stickers.

niently assess the attack effectiveness over the entire 0-360

horizontal degree and 0-90 pitch angle range. The infrared

camera was FLIR T560. We utilized the same Faster RCNN

detector as in Section 4.4. The detection results indicated

that our adversarial stickers achieved an ASR of 84.86% on

the 1:24 scale car model in the physical world. In compar-

ison, the clean car and the car with random patterns had

ASRs of only 19.08% and 35.37%, respectively. Figure

7 provides specific examples from the physical world ex-

periments. A demo video for physical model car attacks is

shown in Supplementary Video 2.

4.10. Physical Attacks on Real Cars

We conducted physical experiments on two real Mercedes-

Benz A200L cars (one black one white). It was a sunny

day with a temperature of about 25◦C. For a fair compar-

ison, we pasted the the adversarial stickers, randomly cut-

shaped stickers or nothing on the same car successively. We

recorded 30 videos (each video is around 2 minutes) and

sampled 3688 infrared images of these cars from various

angles and distances in both ground and underground park-

ing lots using a FLIR T560 camera. The height of the cam-

era tripod can be adjusted from 1m to 2m. We sent these

images to Faster RCNN.

The results indicated that our adversarial stickers

achieved an ASR of 91.49% on the real cars with the en-

gines running, while the random shape stickers and no

sticker had ASRs of only 6.21% and 0.66%, respectively.

When the engines were off for one hour, the ASR of ad-

versarial stickers dropped a little to 88.42%. The reason

might be that the infrared patterns of adversarial stickers

with engines off were not as clear as the patterns with en-

gines running. However, the ASR of adversarial stickers

were still better than ASR of random shape stickers (5.72%)

and no sticker (1.86%) when the engines were off. Figure 1

and Figure 8 show some examples. There were a few other

cars that passed by or were parked when we were recording

videos and therefore appeared in our photos, which were

also detected. See Supplementary Video 3 for the demo

video.

4.11. Adversarial Defense

We tested five adversarial defense methods to defend our

attack methods in the digital world, including adversarial

training [8], PixelMask [1], Bit squeezing [33], JPEG com-

pression [10] and Total variation minimization [10]. Exper-

iment details for these methods are in SM. The results show

that although these methods had a certain defense effect,

the ASR of our method still reached 88.83%-94.81% after

adding defense, which shows that our method is a powerful

attack method.

5. Conclusion
We propose infrared adversarial stickers to hide a real car

from infrared detectors at various viewing angles, distances,

and scenes in the physical world. We build a 3D infrared car

model with real infrared characteristics and propose a 3D

mesh shadow method for the generation of infrared adver-

sarial pattern. To make the 3D adversarial mesh smoother,

we propose a 3D control points-based smoothing algorithm

and use a set of smoothness loss functions. Our adversar-

ial stickers enabled two real cars to evade Faster RCNN at

various viewing angles, distances and scenes. Besides, our

method has strong attack transferability against multiple un-

seen detectors in a black-box setting.
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