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Abstract

Adversarial examples, crafted by adding perturbations
imperceptible to humans, can deceive neural networks. Re-
cent studies identify the adversarial transferability across
various models, i.e., the cross-model attack ability of adver-
sarial samples. To enhance such adversarial transferability,
existing input transformation-based methods diversify input
data with transformation augmentation. However, their effec-
tiveness is limited by the finite number of available transfor-
mations. In our study, we introduce a novel approach named
Learning to Transform (L2T). L2T increases the diversity of
transformed images by selecting the optimal combination
of operations from a pool of candidates, consequently im-
proving adversarial transferability. We conceptualize the
selection of optimal transformation combinations as a tra-
jectory optimization problem and employ a reinforcement
learning strategy to effectively solve the problem. Compre-
hensive experiments on the ImageNet dataset, as well as
practical tests with Google Vision and GPT-4V, reveal that
L2T surpasses current methodologies in enhancing adver-
sarial transferability, thereby confirming its effectiveness
and practical significance. The code is available at https:
//github.com/ZhangAIPI/TransferAttack.

1. Introduction
Neural networks have been adopted as the building block for
various real-world applications, such as face detection [37,
41], autonomous driving [12, 25], and medical diagnosis [1,
35]. However, neural networks are vulnerable to adversarial
examples, which contain human imperceptible adversarial
perturbations on the benign input. This issue is increasingly
concerning researchers, as it is essential for ensuring the
trustworthy use of neural networks [3, 19, 65, 66].

In real-world scenarios of adversarial attacks, the target
model is usually inaccessible. To attack these inaccessi-
ble models, many studies instead rely on surrogate models
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Figure 1. For input transformation-based attacks, most works
design a fixed transformation and use it to craft the adversarial
perturbation. The learning-based methods preliminarily predict
augmentation strategies for current images for better adversarial
transferability. These methods cannot respond to the distribution
shifts between benign images and adversarial examples. We pro-
pose Learning to Transform (L2T), which uses the dynamic of
the optimal transformation in each iteration to further boost the
adversarial transferability.

to generate adversarial examples [7, 57] and use generated
samples to mislead the target model. This cross-model at-
tack ability of samples generated on the surrogate models
is called “adversarial transferability.” Numerous research
studies are dedicated to enhancing adversarial transferability,
which can be classified into four categories: gradient-based
methods [7, 26, 44, 47], input transformation-based meth-
ods [8, 26, 46, 57], architecture-based methods [23, 52],
and ensemble-based methods [28, 60]. Among these attack
methodologies, input transformation-based methods gain
much popularity because of their plug-n-play advantage,
which can be seamlessly integrated into other attack tech-
niques [7, 44]. However, we discover that existing input
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transformation-based methods adopt the same transforma-
tion when crafting adversarial examples, limiting the flex-
ibility of transformation operations. We hypothesize that
we should select the optimal transformation dynamically in
each iteration to enhance the adversarial transferability.

As shown in Fig. 1, prior input transformation-based
methods often revolve around designing fixed augmentation
strategies like resizing inputs [57], block masking [10], or
mix-up [46]. A more dynamic approach is presented by [63],
advocating the precomputation of various sequences of aug-
mentation strategies to apply to each iteration to enhance the
attack performance. Complementing this, Wu et al. [53] pro-
poses the use of generative models for image augmentation
to boost the adversarial transferability. Some studies go fur-
ther, combining multiple augmentation strategies to amplify
input diversity to improve the performance. For example,
Yuan et al. [64] introduces a neural network that generates a
prediction of the optimal transformation strategy and applies
the strategy to improve performance. A further improvement
is hindered by the limited number of transformations.

To fully utilize the limited number of transformations, a
natural idea is to use a combination of operations. However,
it is not always efficient to combine different transformations
together for attack, as reported in [50]. We expect to find an
optimal combination of transformations to achieve a trade-
off between operation diversity and adversarial transferabil-
ity. Nonetheless, the enormity of the search space presents
a significant challenge, impeding the identification of the
most efficacious combination of transformations during an
attack for optimal adversarial transferability. To surmount
this hurdle, we conceptualize the search process of the opti-
mal combination of transformations as a problem of optimal
trajectory search. Each node within this trajectory represents
an individual transformation, and each directed edge means
a transfer of the optimal transformation from the current step
to the next step. To effectively obtain the optimal trajec-
tory in such a large search space, we design a reinforcement
learning-based approach, capitalizing on its demonstrated
efficacy in navigating expansive search domains.

In this paper, we introduce a novel framework called
Learning to Transform (L2T) to improve the adversarial
transferability of generated adversarial examples. L2T dy-
namically learns and applies the optimal input transforma-
tion in each iteration. Instead of exhaustively enumerating
all possible input transformation methods, we employ a re-
inforcement learning-based approach to reduce the search
space and better utilize the transformations to improve the di-
versity. In each iteration of the adversarial attack, we sample
a subset of transformations and apply them to the adversarial
examples. Subsequently, we update the sampling probabili-
ties by conducting gradient ascent to maximize the loss. Our
method effectively learns the dynamics of optimal transfor-
mations in attacks, leading to a significant enhancement in

adversarial transferability. Additionally, compared to other
learn-based adversarial attack methods, our approach is more
efficient for adversarial example generation, as it obviates
the need for additional training modules.

We summarize our contributions as follows,
• We formulate the problem of optimal transformation in

adversarial attacks, which studies finding the optimal com-
bination of transformations to increase the input diversities,
thus improving the adversarial transferability.

• We propose Learning to Transform (L2T) that exploits the
optimal transformation in each iteration and dynamically
adjusts transformations to boost adversarial transferability.

• Extensive experiments on the ImageNet dataset demon-
strate that L2T outperforms other baselines. We also val-
idate L2T’s superiority in real-world scenarios, such as
Google Vision and GPT-4V.

2. Related Work

2.1. Adversarial Attack

Various adversarial attacks have been proposed, e.g.,
gradient-based attack [13, 20, 32], transfer-based attack [7,
31, 51, 57], score-based attack [4, 18, 22], decision-based
attack [2, 21, 49], generation-based attack [45, 54]. Among
these, transfer-based attacks do not require the information
of the victim models, making it popular to attack the deep
models in the real world and raise more research interests.
To improve adversarial transferability, various momentum-
based attacks have been proposed, such as MI-FGSM [7],
NI-FGSM [26], VMI-FGSM [44], EMI-FGSM [47], etc.
Several input transformation methods are also proposed,
such as DIM [57], TIM [8], SIM [26], Admix [46], SIA [50],
STM [11], BSR [43], etc., which augment images used for
adversarial perturbation computation to boost transferability.
The input transformation-based methods can be integrated
into the gradient-based attacks for better performance.

Delving into the input transformation-based methods,
most works are limited to designing a fixed transforma-
tion to augment the images, which limits the diversity of
transformed images and the adversarial transferability. To
address this issue, some researchers [53, 63, 64] propose
to augment the images with a set of multiple transforma-
tions predicted by a pre-trained network. Automatic Model
Augmentation (AutoMA) [63] adopts a Proximal Policy Op-
timization (PPO) algorithm in search of a strong augmen-
tation policy. Adversarial Transformation-enhanced Trans-
fer Attack (ATTA) [53] proposes to employ an adversarial
transformation network in modeling the most harmful distor-
tions. Adaptive Image Transformation Learner (AITL) [64]
incorporates different image transformations into a unified
framework to learn adaptive transformations for each be-
nign sample to boost adversarial transferability. By applying
optimal multiple transformations, the adversarial attack per-
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formance is largely improved.

2.2. Adversarial Defense

Various defense approaches have been proposed to mitigate
the threat of adversarial attacks, such as adversarial train-
ing [32, 40, 48], input preprocessing [33, 55], feature denois-
ing [24, 56, 62], certified defense [6, 14, 34], etc. Liao et al.
[24] train a denoising autoencoder, namely the High-level
representation guided denoiser (HGD), to purify the adver-
sarial perturbations. Xie et al. [55] propose to randomly
resize the image and add padding to mitigate the adversarial
effect, namely the Randomized resizing and padding (R&P).
Xu et al. [61] propose the Bit depth reduction (Bit-Red)
method, which reduces the number of bits for each pixel
to squeeze the perturbation. Liu et al. [29] defend against
adversarial attacks by applying a JPEG-based compression
method to adversarial images. Cohen et al. [6] adopt random-
ized smoothing (RS) to train a certifiably robust classifier.
Naseer et al. [33] propose a Neural Representation Purifier
(NRP) to eliminate perturbation.

3. Learning to Transform
3.1. Task definition

The crafting of adversarial examples usually takes an itera-
tive framework to update the adversarial perturbation. Given
a benign sample x and the corresponding label y, a trans-
ferable attack takes a surrogate classifier fθ and iteratively
updates the adversarial example xadv to maximize the loss
of classifying fθ(x

adv) to y. Take I-FGSM [38] as an exam-
ple. The adversarial example xadv

t at the t-th iteration can
be formulated as follows:

xadv
t = xadv

t−1 + α · sign(∇xadv
t−1

J(fθ(x
adv
t−1, y))), (1)

where we denote α as the step size, J(·, ·) as the classifica-
tion loss function. As identified by previous studies, the ad-
versarial example exhibits a characteristic of transferability,
where the adversarial examples generated by the surrogate
model can fool other neural networks.

Input transformation-based methods are one of the most
effective methods to boost adversarial transferability. With
these methods, the adversarial samples are firstly trans-
formed by a set of image transformations and then proceeded
to gradient calculation. Let φ denote a set of image trans-
formations operation o, where φ = {oi|i ∈ {1, 2, ..., k}}.
At the t-th iteration, the adversarial example xadv

t is trans-
formed sequentially by oi as follows,

φ(xadv
t ) = ok ⊕ ok−1 ⊕ · · · ⊕ o1(xadv

t ), (2)

where o2⊕ o1(x) denotes the operation o2(o1(x)), o1, o2 ∈
φ. We use the gradient of φ(xadv

t ) with respect to the loss
function to update the adversarial perturbation as Eq. (1).
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Figure 2. Comparsion for different operations in boosting the
adversarial transferability. The number in the box denotes the
number of fooled models (Maximum: 9). In (a), the horizontal axis
denotes different transformation operations and the vertical axis
denotes different benign examples. In (b), the vertical axis denotes
the transformation used in the first iteration and the horizontal axis
denotes the transformation used in the second iteration

There are two categories for selecting the operation set
φ in the previous study. One line of research focuses on
designing fixed transformation-based methods, which use a
pre-defined transformation φ. For example, Admix chooses
mixup and scaling for transformation φ. The other line of re-
search proposes the learning-based transformation methods,
which usually use a generative model to directly generate the
transformed φ(x). Compared with the fixed transformation-
based methods, learning-based methods enjoy more diver-
sity of transformed images, leading to a better performance
in adversarial transferability. In our work, we study the
learning-based transformation methods.

3.2. Motivation

Previous research designs lots of transformations to improve
the diversity of images, thus guiding the adversarial attacks
to focus more on the invariant robust features. However, it
does not always work by increasing the number of trans-
formed images for attacks to boost the adversarial transfer-
ability. Because some combination of transformations can
cause damage to original examples, losing massive amounts
of information used for transferable attacks. A natural ques-
tion occurs to us, for one image, does there exist the opti-
mal combination of transformations for the best adversarial
transferability?

To answer this question, we start by generating adversar-
ial examples in one iteration. We take an example of crafting
adversarial examples using ResNet-18 to attack other 9 mod-
els1. We denote 5 operations for input transformation meth-
ods, namely the crop, rotation, shuffle, scaling, and mix-up.
We use these operations on five images for attacks and report
the number of models fooled. We report the results in Fig. 2.
It can be seen that by shuffle, we can achieve the maximum

1ResNet-101, DenseNet-121, ResNext-50, Inception-v3, Inception-v4,
ViT, PiT, Visformer, Swin
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Figure 3. There exists an optimal transformation trajectory for
boosting adversarial transferability. However, the search space in-
creases exponentially with iteration number and operation number.

transferable attack success rates on a dog image, indicating
the optimal transformations in all possible 5 operations.

We continue our discussion in the two-iteration scenario.
Following the same setting in one iteration, we report the
number of fooled models. It can be seen that by choosing
crop in the first iteration and scaling for the second iteration,
which successfully fooled 6 models out of 9. We also notice
that shuffle, the optimal transformation in one iteration, can
not maintain the optimal performance. The average fooled
model for shuffle is less than crop in 0.2.

Following the aforementioned discussion, we move on
to generating adversarial examples in 3 iterations, where
we only take one operation as the image transformation to
attack the image. As exemplified in Fig. 3, there are 5 ×
5× 5 possible trajectories to transform the image for attacks.
Among these trajectories, it can achieve the best performance
by first shuffling, then rotating, and last shuffling the image.
It should be noted it cannot consistently achieve the best
performance by increasing the number of transformations
for a higher diversity. As shown in Fig. 3, we respectively
take the scaling, shuffle, and rotation operations at each
iteration in trajectory 2. However, it has the worst attack
success rate among the presented results.

Generalizing the previous problem to common cases, we
are motivated to identify an optimal transformation trajectory
T , which is defined as the sequence of transformation used
in each iteration as (φ1, φ2, . . . , φT ), for the best adversarial
transferability. Each element φT denotes the transformation
used in iteration t. It can be formulated as follows:

T ∗ = argmax
T

(E[L(fθ(xadv
T ), y)]), (3)

where we denote xadv
T as the adversarial example generated

by the surrogate model under transformation trajectory T .

However, finding T ∗ is hard. First, the search space is
large. For example, supposing five candidate transforma-
tions, even if we only take one operation in one iteration to
transform the image, we will still have an enormous search
space for ten iterations that will be 510. The number of pos-
sible transformation trajectories grows exponentially with
increasing the number of iterations and candidate transfor-
mations. Second, we can not access the black-box model
f , making it hard to optimize the Eq. (3) directly. Besides,
as identified in the previous work [64], each image has a
different optimal transformation to boost the adversarial
transferability. There is no optimal transformation trajectory
shared for all images.

3.3. Methodology

The problem of Eq. (3) can be transformed into an optimal
trajectory search problem, on which reinforcement learning
has shown great compatibility. We are inspired to take a
reinforcement learning-based approach in solving this opti-
mization problem to enhance adversarial transferability.

Supposing we have M operations {o1, o2, . . . , oM} in
total, the optimal transformation trajectory T is a temporal
sequence of the combination of different operations. The
probability p contains M possibilities {po1 , po2 , ..., poM }
for each iteration. Each element pom denotes the possibil-
ity of sampling operation om,m ∈ {1, 2, ...,M}. And pom

follows
M∑

m=1
pom = 1. A transformation φ consists K op-

erations ok, k ∈ {1, 2, ...,M}. We sampled K operations
from p. We have the possibility of a transformation φ by

P (φ) =
K∏

k=1

pok .

For each iteration t, we sample a combination of trans-
formation φt. Each transformation in φt is sampled from
candidates depending on p. To get an optimal trajectory
T = (φ1, ..., φT ), we need to dynamically optimize the
sampling distribution p in each iteration t. We formulate the
problem of searching optima p∗ in each iteration as follows,

p∗ = argmax
p

Eφ∼p[L(fθ(φ(x̃adv)), y)]

s.t. x̃adv = argmax
xadv

Eφ∼p[L(fθ(φ(xadv)), y)],
(4)

which is a bi-level optimization. The inner optimization
targets to optimize the adversarial example, and the outer
optimization tries to find the optimal sampling probability.
Following [27], we adopt an one-step optimization strategy
to derive the approximated p∗:

p∗ ≈ p+ ρ · gp, (5)

where the ρ is the learning rate and gp is the gradient for p.
Implementation details. We present the overview of our
method in Fig. 4. First, we sample L sequences of trans-
formation φl

t, l ∈ [1, 2, ..., L], depending on the sampling
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Algorithm 1 Gradient policy for optimal augmentation
search.
Input: Classifier f(·);The benign sample x with ground-

truth label y; Loss function L(·, ·); candidate operation
pool Γ, the number of iterations T , perturbation scale ϵ,
policy learning rate ρ, number of operations K, number
of transformations L, decay factor µ;
α = ϵ/T , g0 = 0, xadv

0 = x, p ∼ N (0, 1)
while t = 1← T do

1. Under the distribution p, sample L transformation
φt, each consisting of K operations.

2. Transform adversarial examples:
φl
t(x

adv
t ) = oK ⊕ oK−1 ⊕ · · · ⊕ o1(xadv

t ).
3. Calculate the average gradient:

ḡ = 1
L

L∑
l=1

∇xadv
t−1
L(φl

t(x
adv
t−1), y).

4. Update the momentum:
gt = µgt−1 +

ḡ
||ḡ||1 .

5. Update the adversarial example:
xadv
t = clip(xadv

t−1 + α · sign(gt), 0, 1).
6. Calculate the probability gradient:

gp =
∂

(
1
L

L∑
l=1

P(φl
t)L(fθ(φ

l
t(x

adv
t )),y)]

)
∂P(φl

t)
.

7. Update the probability:
p = p+ ρ · gp.

end while
Output: xadv

T .

distribution p. Next, we get the transformed examples
denoted as φl

t(x
adv
t ). The probability of each sequence

φl
t is P (φl

t). We use φt to denotes all L transformation,
φt = {φ1

t , φ
2
t , ..., φ

L
t }. Then, we use Eq. (1) to update the

adversarial examples for each iteration. The gradient is cal-
culated by loss between L transformed examples and their
corresponding labels. Last, after updating the adversarial
example, we recompute the approximate p. Specifically, we
compute the gradient gok of each sampled operation ok as:

gok =
∂Eφt∼p[L(fθ(φt(x

adv
t )), y)]

∂P(φt)
· ∂P(φl)

∂pok

=

∂
L∑

l=1

P(φl
t)L(fθ(φl

t(x
adv
t )), y)])

∂P(φl
t)

· ∂P(φl)

∂pok

=

L∑
l=1

L(fθ(φl
t(x

adv
t ), y)) · ∂P(φl

t)

∂pok
.

(6)

We concat the gradients for each operation as
[go1 , go2 , . . . , goK ], which is denoted as gp. We use gradient
ascent to update p by gp with the learning rate ρ.
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Figure 4. Overview of the pipeline in L2T. We use probability in
sampling L transformations and update this probability through
gradient ascent.

4. Experiments

4.1. Setup

Models. We evaluate the proposed method in three cate-
gories of target models. (1) Normally trained model: We
select ten well-known models for experiments. ResNet-
18 [15], ResNet-101 [15], ResNext-50 [59], DenseNet-
121 [17], Inception-v3 [39], and Inception-v4 [39], ViT-
B [9], PiT [16], Visformer [5], and Swin [30]. All of these
models are pre-trained on the ImageNet dataset. (2) Adver-
sarial trained models: we select four defense methods in our
experiments. They are adversarial training (AT) [40], high-
level representation guided denoiser (HGD) [24], neural
representation purifier (NRP) [33], and randomized smooth-
ing (RS) [6]. (3) Vision API: to imitate a practical scenario,
we compare the attack performance on popular vision API.
We chose Google Vision, Azure AI, GPT-4V, and Bard. For
categories (2) and (3), we use ensemble-based attack. We
choose two CNN-based models, ResNet18 and Inception-v4,
and two transformer-based models, Visformer and Swin, to
construct the ensemble surrogate model.
Dataset. Following previous works [46, 50, 57], we ran-
domly choose 1, 000 images from ILSVRC 2012 validation
set [36]. All images are classified correctly by the models.
Baseline. We compare L2T with other input transforma-
tion adversarial methods. There are two categories of pre-
vious methods. The fixed transformation attack followed a
fixed transformation scheme. We select TIM [8], SIM [26],
Admix [46], DEM [67], IDE [58], Mask [10], S2IM [31],
BSR [42], and SIA [50] for comparison. The learned trans-
formation attack followed a set of transformations predicted
by a trained network to generate adversarial examples. We
also compare our method with learned transformation at-
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(c) Inception-v3
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(f) DenseNet-121
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(j) Visformer

Figure 5. Average attack success rates (%) of ten models on the adversarial examples crafted on each model. The x-axis of each sub-figure
denotes different attack methods. We include the detail number in our supplementary material.
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Figure 6. Attack success rates (ASR) (%) of adversarial examples
generated by L2T with various number of operations K. We include
the detail number in our supplementary material.

tacks, such as AutoMA [63], ATTA [53], and AITL [64]. All
these methods are integrated with MI-FGSM [7] to generate
adversarial examples.
Evaluation Settings. We follow the hyper-parameter setting
of MI-FGSM and set the perturbation budget ϵ = 16, num-
ber of iteration T = 10, step size α = ϵ/T = 1.6 and decay
factor µ = 1. For our method, we adopt the number of oper-
ations as 2, the number of samples as 10, and the learning
rate ρ as 0.01. For the candidate operation, we chose ten
categories of transformations. Each category contains ten
specific operations with different parameters. We will dis-
cuss the detailed settings of our method and other baselines
in the supplementary materials.

4.2. Evaluations on single models

Our proposed L2T exhibits better adversarial transferability
to various input transformation based attacks. We take a sin-
gle model as the surrogate model and evaluate the average
attack success rate (ASR), i.e., the average misclassifica-
tion rates across ten models. We summarized our results in
Figure 5. Each subfigure denotes the attacker generates the
adversarial examples on the corresponding models and its
x-axis denotes the attack algorithm used.

First, we observe that L2T consistently outperforms all
other attackers, regardless of the surrogate model. Other
baseline methods have various adversarial transferability
according to the surrogate models. For example, the BSR
performs to be the strongest baseline on ResNet-18. How-
ever, the BSR cannot remain efficient when the surrogate
model is changed to Swin or PiT. In contrast, our proposed
L2T is suitable for all the surrogate models being tested.
These results also strengthen our argument that we should
dynamically choose the transformation to fit the surrogate
models. Specifically, in the worst case (subfig. c), our pro-
posed L2T still outperforms the strongest baseline (S2IM)
by 2.1%. Overall, L2T outperforms the other baseline by
22.9% on average ASR.

4.3. Evaluations on defense methods

L2T is also capable of adversarial robust mechanisms. We
test the attack performance of L2T against several defense
mechanisms, including AT, HGD, NRP, and RS. We choose
the ensemble setting to attack these defense approaches. We
use the ensemble of four models, ResNet-18, Inception-v4,
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Figure 7. We integrate the ensemble-based attack with input transformation and evaluate the performance on defense methods and popular
vision APIs. We include the detail number in our supplementary material.

Visformer, and Swin, as the surrogate model. We summa-
rized our results in Figure 7 (a), (b), (c), and (d). Each
subfigure denotes the model to be attacked and its x-axis
denotes the attack algorithm used.

From Fig. 7, it is clear that L2T remains efficient. L2T
consistently outperforms other methods against various de-
fense methods. Notably, it achieves the attack success rate
of 47.9%, 98.5%, 87.2%, and 46.7% on AT, HGD, NRP,
and RS, respectively. Even on the certified defense RS,
the strongest defense among the four, L2T achieves the at-
tack success rate of 46.7%, which exceeds the best baseline
(AITL) by 4.6%. This is also the biggest improvement L2T
made compared to other defenses. This indicates that the dy-
namic of iteration also exists in the adversarial robust mech-
anism, which can be used to dimish the its performance.

4.4. Evaluations on vision API

Our proposed L2T can also perform well in realistic sce-
narios. To imitate the real-world application, we test the
performance of L2T on Vision API. We use the same setting
in sec. 4.3 to craft adversarial examples. We choose Google
Vision (Figure 7 (e)) and Azure AI (Figure 7 (f)) to evaluate
attacks on vision-only API. We also choose ChatGPT-4V
(Figure 7 (g)) and Gemini (Figure 7 (f)) to evaluate attacks
on the foundation model API.

As shown in Fig. 7, L2T is generally the best attacker to
the real-world API. All attacks perform better on foundation
model API than vision-only API. For vision-only API, L2T
outperforms the strongest baseline by 8.7% and 12.6%, re-
spectively. For foundation model API, L2T achieves nearly
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Figure 8. Attack success rates (ASR) (%) of adversarial examples
generated by L2T with various number of transformations L. We
include the detail number in our supplementary material.

100% attack success rate on both GPT-4V and Gemini.

4.5. Ablation study

On the numbers of operation K. As shown in Fig. 6, we
study the impact of K on adversarial transferability. We
craft the adversarial example on ResNet-18 and evaluate
them on the other nine models. There is a clear difference
between one operation and two operations. The average
attack success rate increases by 8.09%, from 80.89% to
88.98%. However, when the K ≥ 3, the improvement
becomes marginal. The average attack success rate only
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Table 1. Attack success rates (%) of adversarial examples by L2T and Rand (randomly choose transformation in each iteration).

ResNet-18 ResNet-101 ResNeXt-50 DenseNet-121 Inception-v3 Inception-v4 ViT PiT Visformer swin
Rand 52.35 59.06 53.19 56.64 43.01 44.41 58.41 54.48 65.08

L2T (Ours) 90.00 91.90 91.00 92.80 78.80 82.40 90.10 93.50 96.20
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Figure 9. Average attack success rates (ASR) (%) of adversarial
examples generated by L2T with various number of steps T . We
include the detail number in our supplementary material.

increases by 2.29% when K is increased from 2 to 5. Thus,
K should be moderately settled as 2.
On the number of transformations L. We conducted ex-
periments on the number of transformations L. We craft
the adversarial example on ResNet-18 and evaluate them on
the other nine models. We choose L from 1 to 50. From
Fig. 8, we observe that the adversarial transferability im-
proves steadily with the number of transformations. The
increase is significant when the number of transformations
grows from 1 to 20, which improves from an average attack
success rate of 75.7% to an average attack success rate of
91.1%. However, transferability does not increase signifi-
cantly after the number exceeds 20, where the average attack
success rate only increases 1.5%. To keep the balance be-
tween computation efficiency and adversarial transferability,
we suggest the number of samples set to 20.
On the number of iterations T . We discuss the number of
iterations among different attack approaches. We craft the
adversarial example on ResNet-18 and compare the average
attack success rate of 10 models. As shown in Fig. 9, for all
the attack methods, the attack success rate increased steadily
for the first 10 iterations. L2T achieves the fastest speed of
increase, which reaches 89.47% at iteration 10. After 10 iter-
ations, most of the methods struggled to make improvements.
For example, the Admix goes around 71%. The performance
of S2IM even decreases from 73% to 70%. Meanwhile, L2T
still maintains a stable increase, from 89.47% to 94.77%.
Comparison with random sampling. We compare the
learnable strategy with random sampling. As shown in
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Figure 10. The average attack success rates (%) of adversarial
examples crafted by L2T and L2T without a single transformation.
− indicates removing such transformation.

Tab. 1, there is a clear gap of the attack success rate be-
tween random sampling and gradient-guided sampling. The
minimum difference is 31.12% with setting Visformer as the
surrogate model. For other surrogate models, the gap is even
larger. This experiment indicates random sampling cannot
effectively sample the best transformation trajectory, and the
transformation in each iteration needs to be chosen carefully.
Operation candidates analysis. We conducted an ablation
study for the operation candidates. We subtract each op-
eration in the candidates and conduct L2T on the updated
operation candidates. From Fig. 10, we observe that subtract-
ing any operations will lead to a performance decrease. For
example, by subtracting the scale operation, the performance
decreases for 23.5%. Meanwhile, subtracting mixup and
translation only results in a 3.1% decrease.

5. Conclusion

In this paper, we study the dynamic property for input trans-
formation. Utilizing this property, we propose L2T to opti-
mize the input transformation in each iteration. By updating
a sampling probability, our method provides an approximate
solution to input transformation optimization. Our experi-
ments further study the effectiveness of our methods. Our
method performs consistently well among different targeted
models. This paper provides a new perspective to understand
the transferability of adversarial examples.
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