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Abstract

We propose Multiscale Correlation searching homogra-
phy estimation Network, namely MCNet, an iterative deep
homography estimation architecture. Different from pre-
vious approaches that achieve iterative refinement by cor-
relation searching within a single scale, MCNet combines
the multiscale strategy with correlation searching incur-
ring nearly ignored computational overhead. Moreover,
MCNet adopts a Fine-Grained Optimization loss function,
named FGO loss, to further boost the network training at
the convergent stage, which can improve the estimation ac-
curacy without additional computational overhead. Ac-
cording to our experiments, using the above two simple
strategies can produce significant homography estimation
accuracy with considerable efficiency. We show that MC-
Net achieves state-of-the-art performance on a variety of
datasets, including common scene MSCOCO, cross-modal
scene GoogleEarth and GoogleMap, and dynamic scene
SPID. Compared to the previous SOTA method, 2-scale
RHWF, our MCNet reduces inference time, FLOPs, param-
eter cost, and memory cost by 78.9%, 73.5%, 34.1%, and
33.2% respectively, while achieving 20.5% (MSCOCO),
43.4% (GoogleEarth), and 41.1% (GoogleMap) mean aver-
age corner error (MACE) reduction. Source code is avail-
able at https://github.com/zjuzhk/MCNet.

1. Introduction
Homography estimation aims to find the projective rela-
tionship between two images, which is widely employed in
various domains of computer vision and image processing
tasks, including image/video stitching [10, 23, 33], multi-
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(b) Iterative homography estimation on GoogleMap.

Figure 1. Visualization of homography estimation with average
corner error (ACE) at each iteration of our MCNet, IHN [3], and
RHWF [4]. Left 3 images: image pair for homography estimation
with the source image IS on the left, the target image IT on the
middle, and the zoomed-in patches centered at each corner on the
right. The green polygons denote the ground-truth position of IS
on IT. The red, orange, and blue polygons denote the estimated
positions using MCNet, IHN, and RHWF, respectively. Right plot:
ACEs during 12 iterations. MCNet stops at iteration 6 while 2-
scale IHN and 2-scale RHWF at 12.

modal image fusion [27, 37], video stabilization [13, 26],
GPS-denied UAV localization [9, 34, 35], planar object
tracking [29, 30, 32], and SLAM [7, 19, 25].

In the research of deep homography estimation, the first
approach [6] employs VGG-style networks to estimate the
homography of concatenated image pairs. Subsequent stud-
ies [8, 11, 36] make improvements upon this fundamental
framework by introducing modified network architectures
or cascading multiple similar networks to enhance the accu-
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racy. However, the effectiveness of using the cascaded net-
works for improving the estimation performance is limited
[11]. Subsequently, homography estimation approaches
[5, 34] based on the IC-LK iterator [1] are introduced.
These methods utilize CNN to extract feature maps from
images, which are then sent into a pre-computed IC-LK it-
erator to estimate homography. However, due to the the-
oretical drawback of the hand-crafted iterator, the estima-
tion performance is limited [3]. To address this issue, IHN
[3] adopts an end-to-end iterative homography estimation
framework with a trainable iterator that facilitates the up-
dating of correlation, which significantly improves the esti-
mation accuracy. Nevertheless, the effectiveness of the iter-
ative framework within a single scale is hindered as the cor-
relation generated by the down-sampled feature maps own
inadequate detailed information. To obtain a better corre-
lation quality, RHWF [4] introduced a homography-guided
warping approach, which applies the estimated homogra-
phy from the previous iteration to the image of the subse-
quent one before performing feature extraction. By reduc-
ing the geometric inconsistencies of the input images, this
approach is of better accuracy in the later iterations com-
pared to [3]. However, the iterative feature re-extraction
process incurs a substantial computational overhead.

To address the aforementioned issue, we propose a
Multiscale Correlation searching Network, namely MC-
Net. The main motivation of MCNet is to ensure efficient
and effective iteration by combining the iterative search of
correlation and multiscale strategy. As the iterative cor-
relation searching process continues, the feature maps of
the larger scale are appropriately combined to directly im-
prove the correlation quality. To further boost the estima-
tion performance, we introduce the loss function that pro-
duces an increased backward gradient while the loss de-
creases in the convergence stage, which can dynamically
adjust the loss for each sample based on its estimated er-
ror. As the L1 loss of our MCNet can reach a typically low
value at the latter training process, we think the homogra-
phy estimation model has a good chance of reaching a rela-
tively stable capture range. Based on the above observation,
we consider raising the backward gradient at this stage by
the designed additional loss function, namely Fine-Grained
Optimization (FGO) loss. When incorporating FGO loss
with the L1 loss, MCNet achieves a 32.6% improvement
in estimation accuracy on the MSCOCO dataset. Based on
the above improvements, our MCNet significantly reduces
inference time, FLOPs, parameter cost, and memory cost
by 78.9%, 73.5%, 34.1%, and 33.2%, respectively, while
achieving 20.5% (MSCOCO [12]), 43.4% (GoogleEarth
[34]), and 41.1% (GoogleMap [34]) accuracy improvement,
compared to the previous state-of-the-art (SOTA) approach
2-scale RHWF [4]. As illustrated in Fig 1, our MCNet
consistently achieves observably more precise estimation

as the iteration continues, while the error reduction of 2-
scale RHWF [4] and 2-scale IHN [3] generally becomes in-
conspicuous as the iteration grows. Additionally, our MC-
Net achieves the average corner error (ACE) below 0.1 for
nearly 100% of the test data of the MSCOCO dataset yet
yields an inference speed of 30.2fps, indicating its effi-
ciency and accuracy in real-time homography estimation.

On the other hand, the presence of dynamic objects of-
ten poses challenges to accurate homography estimation.
UDHN [31] uses a mask predictor to depict the plane area in
the input images but yields moderate results due to separate
predictions on the source and target images. MHN [11] esti-
mates motion flow using PWC-Net [22] to generate masks,
but encountered issues with unreliable flow estimation [3].
Subsequently, IHN-mov [3] adopts network architecture to
explicitly generate inlier masks, but results in high compu-
tational costs. In contrast to the previous methods, the sim-
ple introduction of the feature maps of a larger scale in MC-
Net can implicitly reject outliers by iteratively refining the
correlation. This strategy doesn’t require any extra compu-
tation overhead while achieving superior performance. Ex-
perimental results on the SPID dataset [24] show MCNet
reduces the mean average corner error (MACE) by 47.1%
compared to the previous SOTA 2-scale IHN-mov [3].

In summary, the contributions of our work are as follows:
• We propose MCNet, a multiscale correlation searching

network that combines the iterative search of correlation
and the multiscale strategy. MCNet achieves SOTA per-
formance on multiple datasets while significantly reduc-
ing FLOPs, inference time, parameter cost, and memory
cost compared to the previous SOTA approaches.

• Different from the previous L1 loss, we introduce a Fine-
Grained Optimization (FGO) loss to boost the estimation
accuracy. When the model training reaches convergence,
cooperating FGO loss with L1 loss enables the network
to have an increased backward gradient as the L1 loss de-
creases, enabling a dynamic loss adjustment for different
samples, resulting in an accuracy improvement.

• Our network also demonstrates notable performance on
challenging datasets with dynamic foreground objects,
due to the implicit outlier rejection derived from our mul-
tiscale correlation searching framework.

2. Related Work
In this section, we provide a concise review of deep ho-
mography estimation and the challenges encountered in the
estimation process. For a comprehensive understanding of
the basic definitions and principles underlying homography
estimation, we refer the readers to relevant literature [38].

Deep homography estimation. DeTone et al. [6] first
proposed deep homography estimation, employing a VGG-
style network to estimate the homography using concate-
nated image pairs as input. Based on this seminal research,
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several studies [8, 11, 36] have subsequently improved the
accuracy of homography estimation through cascading or
modifying the network. However, the methods mentioned
above exhibit subpar performance compared to the Lucas-
Kanade iterator-based methods [5, 34] and the subsequent
deep iterator-based methods [3, 4], both of which adopt an
iterative optimization framework. Chang et al. [5] first in-
troduce CLKN employing IC-LK iterator to recurrently es-
timate homography, and Zhao et al. [34] subsequently im-
proves the performance of IC-LK iterator by introducing a
loss function to enhance the similarity of feature extracted
by CNN. Motivated by the desire to leverage implicit prior
knowledge obtained from a vast amount of data, Cao et
al. [3] proposed an end-to-end trainable iterative estima-
tion framework, which demonstrates substantial accuracy.
Building upon their previous work, Cao et al. [4] introduced
an attention mechanism and homography-guided warping
strategy into the recurrent estimation framework, aiming to
further enhance the accuracy despite the associated signifi-
cant computational overhead.

Challenges in homography estimation. The deep it-
erative homography estimation method based on correla-
tion updates demonstrates good estimation capability [3, 4].
However, experiments reveal minimal error reduction in the
later iterations [3, 4], indicating that the computational cost
of multiple iterations does not yield significant accuracy im-
provement. This limitation is attributed to insufficient cor-
relation quality, which hinders the effectiveness of the later
iterations. To address this issue, Cao et al. [4] proposed
a homography-guided warping strategy, which employs es-
timated homography to warp the image for the next itera-
tion to reduce image deformation before entering into the
next iteration. However, this approach incurs a high com-
putational cost due to the need for feature re-extraction at
each iteration. On the other hand, real-world scenarios of-
ten involve dynamic foreground objects, which violate the
assumption of homography estimation and result in poor es-
timation performance. Some current methods [3, 11, 31]
address this by explicitly generating masks to remove out-
liers. Zhang et al. [31] utilizes a mask predictor, but its
effectiveness is limited due to separate mask estimation on
the source and target images. Le et al. [11] employs PWC-
Net [22] to estimate optical flow for generating masks.
Nonetheless, the estimation of motion flow is prone to in-
stability and potential failure. Cao et al. [3] obtains further
accuracy improvement by using the correlation as input to
generate a mask, but it incurs high computational overhead.

3. Method
The overall schematic diagram of our Multiscale
Correlation searching Network (MCNet) is illustrated
in Fig. 2a. MCNet takes the source image IS and target
image IT as input and outputs the estimated homography

matrix M. The overall architecture includes multiscale
feature extraction and multiscale correlation searching.
MCNet conducts one-pass feature extraction for the entire
estimation process. Subsequently, the extracted feature
maps at different scales are used for multiscale correlation
searching. The iteration begins at the lowest-resolution
scale and ends at H ×W scale, with each scale running Q
iterations.

3.1. Multiscale Feature Extraction

As illustrated in Fig. 2a, the multiscale feature extraction
network with shared weights conducts the one-pass extrac-
tion of multi-scale feature maps, namely Fk0

S , Fk0

T , Fk0+1
S ,

Fk0+1
T , Fk0+2

S , and Fk0+2
T , from the source and target im-

ages, where k0 denotes the lowest-resolution scale level.
The feature extraction begins with an initial 3 × 3 convo-
lutional+instance norm+ReLU, followed by a series of ba-
sic units (BU), with each BU outputs the feature map of the
corresponding scale. As illustrated in Fig. 2b, BU consists
of two residual blocks. For the BU that conducts the down-
sampling operation, the stride of the first residual block is
set to 2, otherwise 1. For each scale of the feature map, a
1 × 1 convolution layer is applied to raise the channel di-
mension of feature maps used for correlation computations.
We employ three basic units to generate feature maps for
the three scales: H/4 × W/4, H/2 × W/2, and H × W ,
with corresponding channel dimensions of 64, 48, and 32,
respectively, which are set to be lower than that of RHWF
[4] and IHN [3]. We note that a lower-resolution scale of
feature maps can also be adopted to further raise the accu-
racy. Specifically, MCNet only performs feature extraction
once throughout the entire estimation process, while the 2-
scale IHN [3] involves twice in the scale switching process.
Moreover, 2-scale RHWF [4] adopts feature re-extraction at
each iteration within each scale, leading to relatively high
computation costs. Despite performing only one-pass fea-
ture extraction, MCNet outperforms both 2-scale RHWF
and 2-scale IHN in terms of estimation accuracy.

3.2. Multiscale Correlation Searching

The core architecture of MCNet is the multiscale correlation
searching module, which combines the correlation search-
ing and multiscale strategy. The estimated homography in-
formation in the previous iterations, which is carried by the
translation Tq

0
of the four corner points of the image, is

sent into the correlation searching (CS) module first. CS
then conducts an iterative correlation search for Q times
and then delivers the updated translation (Tq

0
+Q) to the

CS of the next scale. As illustrated in Fig. 2c, correlation
searching primarily comprises five components: homogra-
phy computation, coordinate mapping, correlation compu-
tation, correlation decoder (CD), and translation updating.
In the following, we will take the first CS from above in

25934



BU

BU

BU

BU

BU

BU

CS

CS

CS

Correlation Searching (CS)

Basic Unit (BU)

Correlation Decoder (CD)

Local 
Correlation 

Computation 

CD

Coordinate 
Mapping

Homography 
ComputationWeight Sharing Res. Block

Stride-2 3×3 Conv.
Instance Norm.

+ReLU

1×1 Conv. Group Norm.
+ReLU

Maxpool

·
·
·

N

N

N

2

M

N

Multiscale Feature Extraction Multiscale 
Correlation 
Searching

Q

Q

Q

T
F

qT

QT

2QT

S
F

0T

S
F

S
F

T
F

T
F

T
F

S
F

1qT1qM

qT

qC qM

qX

T
I

S
I

qC

qT

BU

BU

BU

BU

BU

BU

CS

CS

CS

(c) Correlation Searching

(b) Basic Unit     

(d) Correlation Decoder

 Correlation 
Computation 

CD

Coordinate 
Mapping

Homography 
Computation

Weight Sharing Res. Block

Down-
sampling 3×3 Conv.

Instance Norm.
+ReLU

1×1 Conv. Group Norm.
+ReLU

Maxpool

·
·
·

N

N

N

2

N

Multiscale 
Feature 

Extraction

Multiscale 
Correlation 
Searching

0
SF
k

0
TF
k

0 1
Tq


0
1Tq

0
Mq

0
Xq

TISI

0
Cq

·
·
·

·
·
·

·
·
·

Q

0
Tq


0
QTq

M

0
Tq

CD

BU

CS

Translation 
Updating

Q

Q


0
2QTq

0
S
1Fk

0
T
1Fk

0
S
2Fk

0
T
2Fk

0
SF
k

0
TF
k

(a) MCNet


0
1Tq

0
Cq

Figure 2. The schematic diagram and detailed architectures of Multiscale Correlation searching Network, namely MCNet. (a) The overall
schematic diagram of MCNet. (b) The architecture of the Basic Unit (BU) module. (c) The architecture of the Correlation Searching (CS)
module. (d) The architecture of the Correlation Decoder (CD) module.

Fig. 2a in the q
0

iteration as an example to have a further
demonstration of multiscale correlation searching.

Homography Computation. The input accumulated
translation Tq

0
is first transformed into homography ma-

trix Mq
0

using the least square method, which is detailed
illustrated in the supplementary material. Mq

0
is used for

the subsequent pixel-wise coordinate mapping for the cor-
relation computation in this iteration. We note that for the
first iteration, the input accumulated translation is set to be
0 horizontally and vertically for the four corner points, rep-
resenting the homography matrix of the identity transform.

Coordinate Mapping. The coordinate mapping em-
ploys the present homography matrix to map the pixel-wise
correspondence that associates the source and target feature
maps, enabling further computation of correlations. For the
coordinate mapping conducted on iteration q0 , we define X
as the coordinate set of source feature map FS and X′

q
0

as
the mapped coordinate set for the target feature map FT. By
defining x = (u, v),x ∈ X and x′

q
0
= (u′

q
0
, v′q

0
),x′

q
0
∈

X′
q
0
, the coordinate mapping using Mq

0
can be represented

as u′
q
0

v′q
0

1

 ∼

Mq
0
,11 Mq

0
,12 Mq

0
,13

Mq0 ,21
Mq0 ,22

Mq0 ,23

Mq
0
,31 Mq

0
,32 1

uv
1

 . (1)

Correlation Computation. To achieve higher compu-

tational efficiency, we then conduct the on-the-fly corre-
lation computation on feature maps based on the present
coordinate mapping. We note that for the two previous
correlation-based methods, IHN [3] adopts a direct compu-
tation of global correlation volume followed by correlation
sampling, while RHWF [4] avoids global correlation com-
putation by directly computing the local correlation. How-
ever, RHWF incurs significant computational overhead due
to the need for feature re-extraction before each time of cor-
relation computation. By denoting the feature maps of the
source image and target image in scale l0 as Fl0

S and Fl0
T ,

the computation of local correlation can be expressed as

Cq
0
(x,x′

q0
) = Fl0

S (x)
TFl0

T (A(x′
q0
, r)), (2)

where x and x′
q
0

denote the coordinate position of the
source image and the corresponding coordinate of the target
image based on the present homography Mq0

. A(x′
q
0
, r)

denotes the local area with radius r centered at x′
q
0
, produc-

ing the correlation with size H/4×W/4×(2r+1)×(2r+1).
Correlation Decoder. We employ a correlation decoder

(CD) to decode the input correlation C into the residual ho-
mography prediction, which is parameterized by four-point
residual translation ∆T as in [3, 4, 6, 11, 21]. As illustrated
in Fig. 2d, the CD module consists of multiple elementary
blocks, each composed of a 3 × 3 convolution layer, group
normalization, and ReLU activation. The channel dimen-
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sion of each elementary block is set to N . For the decoding
process in iteration q0 , the correlation Cq

0
is first processed

by a 1 × 1 convolution to align the channel dimension and
then sent into multiple elementary blocks which finally re-
duce the spatial dimension of the feature maps to 2 × 2. A
1 × 1 convolution layer with an output channel dimension
of 2 finally processes the feature maps, producing the pre-
dicted residual translation ∆Tq

0
+1.

Translation Updating. The estimated residual transla-
tion ∆Tq0+1 is then combined with Tq0

to update the trans-
lation Tq0+1 as follows

Tq0+1 = Tq0
+∆Tq0+1. (3)

We note that we unify the scale of the predicted residual
translation of all CDs in MCNet to be the same as the H ×
W scale, which makes the correlation searching of multiple
feature scales concise.

For the final homography estimation, the translation up-
dated in the last iteration of the H×W scale is transformed
into the ultimate homography prediction M.

3.3. Fine-grained Optimization Loss

Different from previous methods [3, 4, 21] that only employ
the L1 loss for training, we introduce a novel Fine-Grained
Optimization (FGO) loss, which collaborates with L1 loss
to further boost estimation accuracy through introducing ad-
ditional gradients in the convergence process of the model.
As the single L1 loss of MCNet can reach a typically low
value at the latter training process, we infer that the model
enters a relatively stable capture range. At this stage, we
expect the backward gradient of well-estimated samples to
increase as the L1 loss further decreases. This selectively
raises the weights of well-estimated samples based on the
training accuracy and dynamically refines its impact during
the training process to boost the estimating accuracy. Con-
sequently, we design the FGO loss by employing an inverse
proportional function

LFGO(t) =

 0 t ≥ α

− 1

t+ ϵ
t < α,

(4)

where ϵ controls the strength of the backward gradient and
α controls the timing of incorporating LFGO. The backward
gradient grows as the input t becomes smaller. The overall
loss can be represented as

L =

KQ∑
q=1

(
∥Tq −TGT∥1 + LFGO(∥Tq −TGT∥1)

)
, (5)

where Q denotes the number of iterations at each scale, K
the number of overall scales, Tq the estimated translation at
iteration q, and TGT the ground truth translation.

4. Experiments
4.1. Implementation Details

We set the number of iterations Q = 2 for each scale, the
number of scales K = 3, the radius r = 4 in correlation
searching, and the channel dimension N = 64 for the cor-
relation decoder. The network is implemented by PyTorch.
During the training phase, we use the AdamW optimizer
[14] with the maximum learning rate 4 × 10−4. The num-
ber of iterations is set to 120000 with a batch size of 16.

4.2. Datasets and Experiment Settings

We first conduct ablation and evaluation on the MSCOCO
dataset [12] as in [3–6, 11, 21, 34]. MSCOCO is a widely-
used large-scale image dataset in computer vision tasks,
which covers a variety of common scenarios, serving as a
fundamental dataset for evaluating homography estimation
methods. And then, driven by the practical requirements
for navigation and localization, we employ the challenging
GoogleEarth and GoogleMap datasets [34] to evaluate the
performance under modality inconsistency. Finally, consid-
ering that real-world scenes commonly exhibit foreground
occlusions that do not accord with the assumptions of ho-
mography, we conduct an evaluation on the SPID surveil-
lance dataset [24], which contains dynamic objects and
varying illumination that leads to a challenging homogra-
phy estimation scenario.

Experiment Settings. Similar to the previous works [3–
6, 8, 11, 21, 34], the four corner points of input 128 × 128
images are deformed by random perturbation within the
range of [−32, 32] to produce image pair with homogra-
phy deformation. We use average corner error (ACE) as
the metric for homography estimation evaluation, as in [3–
6, 8, 11, 21, 34], which computes the MSE of the ground-
truth and estimated positions of four corner points.

4.3. Evaluation and Ablation Study on MSCOCO

Ablation Study on MSCOCO. We list the ablation study
of MCNet in Table 1. We first evaluate the iteration times
for each scale. It is observed that raising the iteration
can further produce more accurate homography estimation,
with the side effect of a lower inference speed. Thus we
chose the (2, 2, 2) combination in the following experi-
ments. We then compare the effectiveness of adopting the
scale of a higher resolution under the fixed total iteration
time of 6. It is observed that the addition of extra scales in
our multiscale correlation searching significantly improves
the homography estimation accuracy while requiring negli-
gible time consumption, which indicates the superiority of
the multiscale correlation searching framework of MCNet.
We then conduct the ablation of the FGO loss in Table 2.
We can see that the cooperation of our FGO loss signifi-
cantly improves the estimation accuracy. The best parame-
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Table 1. Ablation study of MCNet. (2, 2, 2) denotes the iteration
time for the 3 scales are set to be 2, 2, and 2, respectively.

Experiment Setting MACE Inference Time (ms)

Iteration
(2, 2, 2) 0.031 33.1
(4, 4, 4) 0.023 55.3
(8, 8, 8) 0.022 101.0

Scale
1 0.336 29.6
2 0.072 30.4
3 0.031 33.1

Table 2. Ablation study on the setting of loss.

Loss ϵ α MACE

L1+FGO

0.001
1 0.038

0.85 0.037
0.7 0.041

0.1
1 0.033

0.85 0.031
0.7 0.033

0.2
1 0.037

0.85 0.037
0.7 0.036

L1 w/o w/o 0.046

ter combination is ϵ = 0.1 and α = 0.85, which is fixed in
our following experiments.

To reveal the effect of FGO loss, we train our MCNet
using only L1 loss and evaluate it on the MSCOCO test
set. The computed FGO loss gradient, which is normal-
ized for better illustration, is plotted in Fig. 3a, showing
that the model assigns larger backward gradients to more
accurately estimated samples, thereby improving the esti-
mating performance of the model while ensuring training
stability. The zoomed-in result comparison of the original
L1 loss and our FGO loss on MSCOCO are illustrated in
Fig. 3b. It is observed that FGO loss achieves a significant
improvement on the relatively accurate samples, increasing
the fraction of the number of images of ACE<0.01 from
2.5% to 38.3%.

Evaluation on MSCOCO. We evaluate our MC-
Net on the MSCOCO dataset [12] along with RHWF
[4], IHN [3], LocalTrans [21], MHN [11], UDHN
[31], DHN [6], CLKN [5], AffNet [18], LFNet [20],
PFNet [28], PWC [22], SIFT+ContextDesc+RANSAC
[17], SIFT+GeoDesc+RANSAC [16], SIFT+MAGSAC
[2], and SIFT+RANSAC [15]. As illustrated in Fig. 4a,
we plot the ACE w.r.t the fraction of the number of images
for each model following [3–5, 11, 21, 34]. It is observed
that our MCNet outperforms all other competitors by a sig-
nificant margin. Compared to the previous SOTA model,
2-scale RHWF [4], MCNet achieves a 20.5% reduction in
MACE and a 31.6% improvement in the fraction of ACE
values less than 0.01. Additionally, the proportion of ACE
values less than 0.1 estimated by MCNet reaches nearly

(a) (b)

Figure 3. Illustration of FGO loss effectiveness on the MSCOCO
test set. (a) Plots of normalized FGO gradients and ACE for each
sample, evaluated by MCNet trained only under L1 loss. (b) ACE
plot comparing two MCNet models trained under FGO loss and
L1 loss.

100%, demonstrating the superior ability of our model.

4.4. Evaluation on Cross-Modal Datasets

We further conduct evaluations on GoogleEarth and
GoogleMap datasets [34], which contain images with
modal inconsistencies. GoogleEarth consists of cross-
season satellite images, while GoogleMap includes satel-
lite images and corresponding map images of the
same region. We conduct comparison including our
MCNet, RHWF [4], IHN [3], MHN+DLKFM [34],
MHN [11], DHN+DLKFM [34], DHN [6], CLKN [5],
SIFT+MAGSAC [2], SIFT+RANSAC [15], and LK [1].
The corresponding results are plotted in Fig. 4b and Fig.
4c, where we observe that our MCNet outperforms the pre-
vious SOTA, 2-scale RHWF, by 43.4% and 41.1% in terms
of MACE on GoogleEarth and GoogleMap, respectively.

In Fig. 5, we further visualize the correlation at each
iteration for the three correlation-based methods IHN[3],
RHWF[4], and MCNet on the GoogleMap dataset, by map-
ping the correlation values to the visual range of [0, 255].
In the visualization of correlation, darker regions indicate
lower correlation values. It is noticeable that although the
correlations of IHN and RHWF continue to update during
the iterative estimating process, the improvement is limited
primarily due to insufficient feature resolution. The com-
bination of multiscale features and correlation searching in
MCNet effectively addresses this issue. As illustrated in
the plot, the correlation of MCNet demonstrates consider-
able improvement as the iteration progresses, resulting in
remarkable accuracy enhancement at each iteration and ul-
timately achieving lower final estimation error within fewer
iterations.

4.5. Evaluation on Dataset with Dynamic Objects

Generalizing homography estimation to real-world scenar-
ios with dynamic foreground objects is a more challenging
task. We thus conduct experiments on the SPID surveil-
lance dataset [24] to further evaluate our MCNet. MCNet
is compared with IHN [3], UDHN [31], MHN [11], DHN
[6], SIFT+MAGSAC [2], and SIFT+RANSAC [15], where
UDHN is trained in a supervised manner as in [6] since its
unsupervised training on the SPID dataset fails. As illus-
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(a) Evaluation on MSCOCO.
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(b) Evaluation on GoogleEarth.
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(c) Evaluation on GoogleMap.
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(d) Evaluation on SPID.
Figure 4. Evaluation of homography estimation methods on MSCOCO, GoogleEarth, GoogleMap, and SPID datasets. The x-axis repre-
sents the estimated average corner error (ACE), and the y-axis represents the fraction of data below the corresponding ACE. MSCOCO
dataset consists of common RGB images, and GoogleEarth and GoogleMap datasets contain data from cross-modalities. The SPID dataset
specifically provides surveillance images that include dynamic foreground objects. The numbers in the brackets next to the legends repre-
sent the corresponding mean average corner error (MACE) of the method on the entire dataset.
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Figure 5. Visualization of correlation produced by our MCNet,
IHN[3], and RHWF[4]. The darker regions indicate lower corre-
lation values.

trated in Fig. 4d, MCNet outperforms all other competitors,
with a 47.1% reduction of the overall MACE compared to
the previous SOTA model 2-scale IHN-mov. Furthermore,
we visualize the homography estimation results produced
by the aforementioned methods in Fig. 6. It is observed
that SIFT+RANSAC and SIFT+MAGSAC produce unsat-
isfactory homography estimation in some cases. For deep
homography estimation methods, DHN, MHN, and UDHN
show weak estimation performance influenced by dynamic
foreground objects. Even 2-scale IHN-mov that explicitly
generates the inlier masks is unable to effectively mitigate
the influence of the foreground objects, which proves the ef-
fectiveness of our multiscale correlation searching strategy.

It is noticed that our MCNet does not employ explicit
mask generation to locate dynamic objects, yet it achieves
better estimation performance than 2-scale IHN-mov which
explicitly generates inlier masks with higher computational

cost. To further explore the performance of our network,
we visualized the correlation of MCNet and IHN, namely
CMCNet and CIHN, in Fig. 7. The inlier background are
visualized in the fused image IF by averaging the warped
source image IWS and target image IT. In the visualization
of correlation, the dark regions of the correlation visualiza-
tion of MCNet cover most of the dynamic foreground ob-
jects, while the ones of IHN show limited ability to dis-
tinguish the foreground object. It indicates that the cor-
relation of our MCNet implicitly generates the attention
mechanism of better discrimination under homography con-
straints. Moreover, the model has acquired the capability to
better distinguish between foreground and background un-
der our multiscale correlation searching framework.

4.6. Computational Cost Comparison

We compare MCNet with 2-scale RHWF [4], 2-scale IHN-
mov [3], 2-scale IHN [3], and DLKFM [34] algorithms in
terms of inference time, FLOPs, parameter cost, and mem-
ory cost in Table 3. Additionally, we include the MACEs
of these algorithms on the MSCOCO dataset for a compre-
hensive comparison. The comparison is performed on an
NVIDIA Quadro RTX 8000 GPU, with Intel Xeon Silver
4210R CPU @ 2.40GHz, and 64GB of memory.

Among these models, our MCNet not only achieved the
lowest MACE, but also demonstrated significant reductions
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Figure 6. Visualization of the homography estimation results on the SPID dataset with dynamic foreground objects. The green polygon
represents the ground-truth location of the source image IS on the target image. The red polygon represents the predicted location on
the target image estimated by different algorithms. The smaller the relative distance of the polygons and the smaller the ACE the better
estimation performance of the corresponding algorithm.

Figure 7. Visualization of correlation produced by our MCNet and
IHN [3]. In the 3rd line, the source images are warped and fused
with the target one to better illustrate the homography inlier and
outlier. Our MCNet produces a much more reasonable correlation
that excluding the dynamic objects, whereas the correlation of IHN
is ambiguous.

in inference time, FLOPs, parameter cost, and memory cost,
which highlights the precision and efficiency of our model.
It is observed that compared to the previous SOTA model
2-scale RHWF, our MCNet achieves a 20.5% lower MACE
while reducing the inference time, FLOPs, parameter cost,
and memory cost by 78.9%, 73.5%, 34.1%, and 33.2%, re-
spectively. Under current settings, MCNet achieves an in-
ference speed of 30.2 fps, indicating its potential in real-
time accurate homography estimation.

A Deeper Look into the Efficiency of MCNet. We
further investigate the inference time of each module for
correlation-based methods, as shown in Table 4. It can be
observed that MCNet achieves the lowest inference time in
each module. In terms of feature extraction, MCNet sig-
nificantly reduces the time by 93.1% compared to RHWF2,
thanks to its one-pass feature extraction design. Addition-
ally, MCNet saves computation time by eliminating the im-
age warping operation, resulting in zero overhead for image
warping. With well-designed efficient multiscale correla-
tion searching, MCNet also achieves notable time reduc-
tions of 42.7% and 54.3% in correlation computation and
correlation decoding process, respectively.

Table 3. Computational cost comparison.

Time (ms) FLOPs (G) Parameters (M) Memory (GB) MACE

DLKFM 380.9 110.51 19.24 4.73 0.550

IHN2 60.1 13.58 1.71 1.89 0.060

IHN2-mov 110.2 36.08 3.40 2.23 0.048

RHWF2 157.1 34.74 1.29 2.53 0.039

MCNet 33.1 9.20 0.85 1.69 0.031

Table 4. Inference time (ms) of each module.

Feature Image Correlation Correlation Total
extraction warping computation decoding

IHN2 6.9 1.3 36.5 15.4 60.1

IHN2-mov 6.9 1.3 36.5 65.5 110.2

RHWF2 90.3 16.6 34.2 16.0 157.1

MCNet 6.2 0 19.6 7.3 33.1

5. Conclusions
We have proposed the homography estimation network
based on multiscale correlation searching, namely MCNet.
Different from the previous iterative homography estima-
tion methods that raise accuracy by conducting the iteration
within a single scale, MCNet achieves accurate and efficient
homography estimation by combining the multiscale infor-
mation with correlation searching. We have also devised a
loss function, named FGO loss, which can further facilitate
the network training as it approaches convergence, improv-
ing estimation accuracy without introducing any additional
computation. Experimental results show that adopting the
above two strategies into MCNet can achieve high-accuracy
homography estimation while preserving the inference effi-
ciency, which realizes SOTA performance together with a
much lower computational cost compared to the previous
approaches.
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