
No Time to Train:
Empowering Non-Parametric Networks for Few-shot 3D Scene Segmentation

Xiangyang Zhu∗1,3, Renrui Zhang∗†‡2,3, Bowei He1, Ziyu Guo2,3, Jiaming Liu4

Han Xiao3, Chaoyou Fu5, Hao Dong4, Peng Gao3

∗ Equal contribution † Project leader ‡ Corresponding author

1City University of Hong Kong 2The Chinese University of Hong Kong
3Shanghai AI Lab 4Peking University 5Tencent Youtu Lab
{xiangyzhu6-c, boweihe2-c}@my.cityu.edu.hk

{zhangrenrui, gaopeng}@pjlab.org.cn

Abstract

To reduce the reliance on large-scale datasets, recent
works in 3D segmentation resort to few-shot learning. Cur-
rent 3D few-shot segmentation methods first pre-train mod-
els on ‘seen’ classes, and then evaluate their generaliza-
tion performance on ‘unseen’ classes. However, the prior
pre-training stage not only introduces excessive time over-
head but also incurs a significant domain gap on ‘un-
seen’ classes. To tackle these issues, we propose a Non-
parametric Network for few-shot 3D Segmentation, Seg-
NN, and its Parametric variant, Seg-PN. Without training,
Seg-NN extracts dense representations by hand-crafted fil-
ters and achieves comparable performance to existing para-
metric models. Due to the elimination of pre-training, Seg-
NN can alleviate the domain gap issue and save a substan-
tial amount of time. Based on Seg-NN, Seg-PN only re-
quires training a lightweight QUEry-Support Transferring
(QUEST) module, which enhances the interaction between
the support set and query set. Experiments suggest that
Seg-PN outperforms previous state-of-the-art method by
+4.19% and +7.71% mIoU on S3DIS and ScanNet datasets
respectively, while reducing training time by -90%, indicat-
ing its effectiveness and efficiency. Code is available here.

1. Introduction
Point cloud segmentation is an essential procedure in au-
tonomous driving [8, 25], robotics [1, 11], and other com-
puter vision applications [3, 30]. To achieve favorable seg-
mentation, many learning-based methods have been pro-
posed [9, 12, 13, 28]. However, such algorithms require
the construction of large-scale and accurately annotated
datasets, which is expensive and time-consuming.

Encoder

Encoder

Prediction

Prediction

1. Pre-training 2. Episodic Training

Learnable

Encoder

Characteristics:

> 0.35M Parameters

> 4H Training

Limited Performance

Prototype

Module

Training-free

Encoder

QUEST

Parametric
Encoder

1. Pre-training 2. Episodic Training Characteristics:

Training / Fine-tuning

Training-free

0 or 0.24M Parameters

0 or 0.5H Training

≈ or >5% Improvement

Training-free
or

𝐖𝑔

(a) Existing Methods

Encoder

Encoder

Prediction

Prediction

1. Pre-training 2. Episodic Training

Learnable

Encoder

Characteristics:

> 0.35M Parameters

> 4H Training

Limited Performance

Prototype

Module

Non-parametric
Encoder

QUEST

Learnable

Encoder

1. Pre-training 2. Episodic Training Characteristics:

Training / Fine-tuning

Training-free

0 or 0.24M Parameters

0 or 0.5H Training

≈ or >5% Improvement

Training-free
or

𝐖𝑔
(b) Our Seg-NN or Seg-PN

Figure 1. Comparison of Existing Methods and Our Ap-
proaches. Our non-parametric Seg-NN contains no learnable pa-
rameters and thus discards both pre-training and episodic training
stages with superior efficiency, and the parametric Seg-PN further
improves the performance with a lightweight QUEST module.

The data-hungry problem can be effectively mitigated by
the few-shot learning strategy, which has garnered signifi-
cant attention [6]. From Fig. 1 (a), existing 3D few-shot
segmentation methods basically follow the meta-learning
scheme to learn a 3D encoder and a prototype generation
module. They mainly take three steps to solve the problem:

1. Pre-training on ‘seen’ classes by supervised learn-
ing. Considering the lack of pre-trained models in the
3D field, this step trains a learnable 3D encoder, e.g.,
DGCNN [24], to obtain the ability to extract general
3D point cloud representations.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3838

(2,1) (2,5) (3,1) (3,5)
(Way, Shot)

0.0

0.1

0.2

0.3

0.4

m
Io

U
 D

iff
er

en
ce

DGCNN
Seg-NN

(a) Performance Difference of
Seen and Unseen Classes

(2,1) (2,5) (3,1) (3,5)
(Way, Shot)

0.8

1.2

1.6

2.0

2.4

K
L

D
iv

er
ge

nc
e

w/o QUEST
w/ QUEST

(b) KL Divergence of Logits be-
tween Support and Query Sets

Figure 2. Alleviating Domain Gap by Seg-NN (a) and Pro-
totype Bias by Seg-PN (b) on S3DIS [2]. The horizontal axis
presents the number of ways and shots in the form of (Way, Shot).

2. Episodic training on ‘seen’ classes to fit the query-
support few-shot segmentation tasks. In this step, the
pre-trained encoder is appended with a learnable pro-
totype module and fine-tuned to extract discriminative
prototypes from the support set, which are utilized to
guide the semantic segmentation of the query set.

3. Testing on ‘unseen’ classes to evaluate the model. Af-
ter episodic training, the model is evaluated on test
episodes that contain unseen classes. The model is
expected to segment new classes by the same query-
support paradigms as the episodic training.

However, this pipeline encompasses two noteworthy issues:
1) the learnable encoder being pre-trained and fine-tuned on
‘seen’ classes will inevitably introduce a domain gap when
evaluated on ‘unseen’ classes; 2) the complexity of the
training process, including pre-training and episodic train-
ing, incurs substantial time and resource overhead.

To address these issues, we extend the non-parametric
network, Point-NN [35], to few-shot 3D scene segmenta-
tion tasks and propose a new model, Seg-NN, which is both
efficient and effective. Seg-NN inherits the non-parametric
encoder from Point-NN to encode 3D scenes but makes
the following modifications: 1) We project the position and
color information into a shared feature space and integrate
them to obtain a comprehensive representation. 2) To re-
duce the noises and perturbations in natural 3D scenes, we
sample the robust low frequencies and filter out the noisy
high-frequency components. After encoding, we leverage
the category prototypes to predict the segmentation masks
for the query set by similarity matching. As shown in Fig.
1 (b), Seg-NN discards all two stages of pre-training and
episodic training and performs comparably to some exist-
ing parametric methods. Such a training-free property sim-
plifies the few-shot training pipeline with minimal resource
consumption and mitigates the domain gap caused by differ-
ent training-test categories. As visualized in Fig. 2 (a), we
observe that Seg-NN shows marginal performance differ-
ence between seen and unseen categories, while the widely
adopted DGCNN [24] encoder presents a much worse gen-

eralization ability due to cross-domain training and testing.
On top of this, we also propose a parametric variant,

Seg-PN, to further boost the performance by efficient train-
ing. In detail, we adopt the non-parametric encoder of Seg-
NN and append an additional parametric QUEry-Support
Transferring module, termed QUEST. QUEST enhances
category prototypes in the support-set domain with the
knowledge from the query-set domain, which suppresses
prototype biases caused by the small few-shot support set.
As shown in Fig. 2 (b), the reduced query-support distri-
bution differences suggest that the prototypes are shifted
to the query-set domain. Seg-PN only learns the QUEST
module and does not require pre-training just as Seg-NN,
as shown in Fig. 1 (b). Experiments show that Seg-PN
achieves new state-of-the-art (SOTA) performance on both
S3DIS [2] and ScanNet [4] datasets, surpassing the second-
best by +4.19% and +7.71%, respectively, while reducing
the training time by over -90%.

In summary, our contributions are as follows:

• We introduce a non-parametric few-shot learning frame-
work, Seg-NN, for 3D point cloud semantic segmenta-
tion, which can also serve as a basis to construct the para-
metric better-performed variant, Seg-PN.

• We design a new query-support interaction module,
QUEST, in Seg-PN to adapt category prototypes by learn-
ing the affinity between support and query sets.

• Comprehensive experiments are conducted to verify the
efficiency and efficacy of our proposed method. We
achieve SOTA results with the least parameters and a sub-
stantially simplified learning pipeline.

2. Problem Definition

We first illustrate the task definition of few-shot 3D seman-
tic segmentation. We follow previous works [6, 37] to adopt
the popular episodic training/test paradigm [23] after the
pre-training stage. Each episode is instantiated as an N -way
K-shot task, which contains a support set and a query set.
The support set comprises N target classes, and each class
corresponds to K point clouds with point-level labels. The
query set contains a fixed number of point clouds that need
to be segmented. Each episodic task aims to segment the
query-set samples into N target classes along with a ‘back-
ground’ class based on the guidance of the support set.

To achieve this, we regard the semantic segmentation
task as a point-level similarity-matching problem. We first
utilize a feature encoder to extract the features of support-
set point cloud samples and generate prototypes for all
N + 1 classes. Then, we adopt the same feature encoder
to obtain the feature of every point in query samples and
conduct similarity matching with the prototypes for point-
level classification. In this way, the query-set point clouds
can be segmented into N + 1 semantic categories.

3839

Encoder

Prediction

P
o

o
lin

g

F
P

S

U
p
sa

m
p
li

n
g

0-th

1-th

2-th

3-th

4-th

5-th

6-th

Non-parametric Encoder

[M/2, 12d]

[M, 6d]

[M/4, 24d]

[M/8, 48d]

[M, 6]

Support Set

Point Cloud

[M/4, 72d]

[M/2, 84d]

[M, 90d]

Query Set

Point Cloud

Prototype,

𝐅𝑃

Similarity

Segmentation

Non-parametric Encoder

Support-Set

Feature, 𝐅𝑆

F
P

S

F
P

S

Logits

Masked Average Pooling

E
m

b
ed

d
in

g

M
an

ip
u
la

ti
o

n

E
m

b
ed

d
in

g

M
an

ip
u
la

ti
o

n

E
m

b
ed

d
in

g

M
an

ip
u
la

ti
o

n

In
it

ia
l

E
m

b
ed

d
in

g

Training-free / Frozen

Masked Average Pooling

U
p

sa
m

p
li

n
g

U
p

sa
m

p
li

n
g

Query-Set

Feature, 𝐅𝑄

Prototype

Label, 𝐋𝑃

Support-Set

Label, 𝐋𝑆

M

M

Figure 3. The Framework of the Non-parametric Seg-NN. The encoder extracts support- and query-set features and the segmentation
head segments the query set based on similarity. To facilitate illustration, we assume the encoder consists of three manipulation layers.

In the following two sections, we respectively illustrate
the details of our proposed efficient frameworks, the non-
parametric Seg-NN and parametric Seg-PN.

3. Non-parametric Seg-NN
The detailed structure of Seg-NN is shown in Fig. 3, which
contains a U-Net [19] style training-free encoder and a
similarity-based segmentation head. The encoder embeds
the point cloud into high-dimensional representations, and
the segmentation head conducts similarity matching to pro-
duce the final prediction. Overall, Seg-NN adopts a sim-
ilar framework to Point-NN [35], while we discard high-
frequency noises to extract scene representations. The en-
tire framework does not introduce any learnable parameters,
thus deleting both pre-training and episodic training stages,
differing from existing algorithms using DGCNN [24] as
the learning-required encoder. Following, we describe the
details of the encoder and the segmentation head.

3.1. Seg-NN Encoder

Given a point cloud {pi}Mi=1 containing M points, our goal
is to encode each point into embedding space in a training-
free manner. Taking a random point p = (x, y, z) as an
example, we denote its RGB color as c = (r, g, b). The
encoder aims to extract shape knowledge based on both po-
sition and color information.

Firstly, we utilize trigonometric PEs to encode both posi-
tions and colors into high-dimension encodings as in Point-
NN [35], which also map colors and positions into the same
feature space. Specifically, we embed p and c with d fre-
quencies u = [u1, ..., ud], denoted as E(·):

E(p;u) = [sin(2πup), cos(2πup)] ∈ R6d,

E(c;u) = [sin(2πuc), cos(2πuc)] ∈ R6d,
(1)

where 6d comes from the combination of 3 coordinates,
(x, y, z), with 2 functions, sin(·) and cos(·). All fre-

quency components in u adhere to a log-linear form, ui =
θi/d, i = 1, ..., d, where θ and d are hyperparameters. Fig.
4 (a)(b) presents two encoding examples. The trigonomet-
ric PEs can not only encode the absolute point positions
but also reveal the relative spatial relations between differ-
ent points. For two points, pi and pj, their embeddings
E(pi;u) and E(pj;u) represent their absolute positional
information. Then, the relative relation, pi − pj, can also
be preserved by the dot production as E(pi;u) E(pj;u)

T =∑d
m=1 cos

(
(pi−pj)um

)
. Therefore, by such spatial-aware

encoding, we effectively vectorize the point clouds.
We designate this as the 0-th layer and merge the position

and color vector for a comprehensive embedding, f0,

f0 = E(p;u) + E(c;u) ∈ R6d. (2)

This trigonometric initial embedding can effectively repre-
sent position and color information. After that, we adopt
two types of layers to further extract deep 3D embeddings as
shown in Fig. 3: stacked Embedding Manipulation layers
extract hierarchical embeddings by groups of hand-crafted
filters; Upsampling layers integrate and upsample hierar-
chical embeddings to obtain the final point-level features.

3.1.1 Embedding Manipulation

As presented in Fig. 3, we stack embedding manipula-
tion layers to get deep representations, which encode local
shapes at different scales. Before each layer, we downsam-
ple the point cloud by half to increase the receptive field
with Farthest Point Sampling (FPS). To obtain local embed-
dings, we denote point p as a local center and consider its
neighborhood Np searched by the k-Nearest Neighbor (k-
NN) algorithm. We concatenate the neighbor point feature
with the center feature along the channel dimension,

f̂ lj = Concat(f l−1, f l−1
j), j ∈ Np, (3)

where the subscript j represents the j-th point in p’s neigh-
borhood Np, and l denotes the l-th layer as in Fig. 3. After

3840

concatenation, the expanded embedding f̂ lj ∈ R2l×6d incor-
porate both center and neighbor information. The dimen-
sionality is increased as 2l × 6d since we conduct Eq. 3 at
every manipulation layer, each of which doubles the chan-
nel dimension. Then, to reveal local patterns, we design a
group of filters based on previous efforts.

Existing works, e.g., PointNet++ [18], DGCNN [24],
and Point-MLP [16], efficiently extract features via multiple
learning-required linear projections, which can be regarded
as diverse filters from a frequency perspective. Inspired by
this, we seek to manually design the filters. From Fig. 4
(a)(b), we can easily observe that the initial point encodings
are band-limited signals. As shown in Fig. 4 (c), embedding
frequencies are mainly distributed in the low- and high-
frequency ranges. In this work, we aim to encode natural
3D scene points, which generally contain noises and pertur-
bations. The large sharp noises contained in high frequen-
cies may lead to significant differences in embeddings from
clean points. Additionally, research has proved that neural
networks tend to prioritize the learning of low-frequency
information [15, 36], which indicates that low frequencies
are discriminative and robust. Therefore, we rely on low-
frequency bands to extract features and filter out high fre-
quencies to further refine the scene representation.

We randomly sample low frequencies to construct a lin-
ear projection. As illustrated in Fig. 4 (d), we can fol-
low Gaussian, uniform, Laplace, or other distributions to
sample the frequencies. We denote them as v ∈ R2l×6d.
Then, the projection weight is Wl = [cos(2πvk)] ∈
R(2l×6d)×(2l×6d), where k = [1, ..., 2l × 6d]. We integrate
the relative position ∆pj from neighbor point j to the cen-
ter point and color information for a comprehensive embed-
ding. Thus, point j’s embedding can be calculated via

f lj = Wl ·
(
f̂ lj + E(∆pj ;u) + E(cj ;u)

)
, (4)

where u are log-linear frequencies similar to the initial en-
coding and f lj ∈ R2l×6d. Finally, we use maximum pooling
to compress the neighborhood information into the central
point and use f l ∈ R2l×6d to represent the embedding of
point p in the l-th layer. We acquire hierarchical features
{f l}|l from the manipulation layers and subsequently feed
them into upsampling layers.

3.1.2 Upsampling

After all manipulation layers, we adopt the upsampling op-
eration in Point-NN [35] to progressively upsample the hi-
erarchical features to the input point number, as in Fig. 3.
Specifically, we first interpolate the central point embedding
via the weighted sum of neighbor point embeddings. Then,
we concatenate the embedding of manipulation layers and
upsampling layers in the channel dimension as the output.

After the upsampling layers, we obtain the final rep-
resentation for each point, denoted as f ∈ RD, D =

0 12060
Dimension

2.0

1.5

1.0

0.5

0.0

0.5

1.0

A
m

pl
itu

de

Position Encoding

(a) Point Encoding Example 1

0 12060
Dimension

2.0

1.5

1.0

0.5

0.0

0.5

1.0

A
m

pl
itu

de

Position Encoding

(b) Point Encoding Example 2

- 0
Frequency

5

10

15

20

25

30

35

40

A
m

pl
itu

de

Frequency Spectrum

(c) Frequency Spectrum

- 0
Frequency

0.00

0.01

0.02

0.03

0.04

0.05

0.06

A
m

pl
itu

de

Sampling Distribution
Gaussian
Uniform
Laplace

(d) Distribution of Sampling

Figure 4. Examples of Position Encodings and Frequencies,
where we set d = 20. (a) and (b) are examples of initial encodings.
(c) is the average frequency spectrum over all points’ encodings of
a point cloud. (d) is the distribution of sampled frequencies.

(20 + ... + 23) × 6d. In this way, the encoder produces
point-level embeddings of the input point cloud, denoted as
F = {fm}Mm=1, F ∈ RM×D, where M is point number.

By stacking these layers, the encoder can encode scene
points without learnable parameters, so it eliminates tedious
pre-training and episodic training. This advantage allows
Seg-NN to save significant time and resources and alleviate
domain gaps caused by disparate training and test classes.

3.2. Similarity-based Segmentation

We utilize the non-parametric encoder to respectively ex-
tract support sample features, denoted as FS ∈ RM×D, and
query sample features, FQ ∈ RM×D. We also denote the
support sample labels as LS ∈ RM . Then, we conduct
a simple similarity-based segmentation [32, 33]. We use
masked average pooling [6] to produce the prototypes of
N + 1 classes, denoted as FP ∈ R(N+1)×D. Then, the
cosine similarity between normalized FQ and FP is,

Scos = FQFP⊤ ∈ RM×(N+1), (5)
which represents the similarity between each point in the
query set and N + 1 prototypes. Finally, we weight
and integrate the one-hot labels of the prototypes, LP ∈
R(N+1)×(N+1), to achieve the final prediction,

logits = φ(ScosL
P) ∈ RM×(N+1), (6)

where φ(x) = exp(−γ(1 − x)) acts as an activation func-
tion and γ is a scaling factor [31, 34]. For N -way-K-shot
tasks, we produce K prototypes for each category. By this
segmentation head, the entire Seg-NN framework can be
purely training-free, thus achieving superior efficiency.

3841

4. Parametric Seg-PN

To further achieve better performance, we propose a
parametric version, Seg-PN. Seg-PN inherits the non-
parametric 3D encoder of Seg-NN to encode point clouds
and only introduces a learnable lightweight segmentation
head, QUEST. In contrast, the parametric version of Point-
NN, Point-PN [35], inserts learnable layers into Point-NN’s
encoder and requires time-consuming training.

An obvious problem in few-shot learning is that the
small-scale support set might fail to represent the true dis-
tribution of each category, leading to biased prototypical
learning. We propose a Query-Support Transferring mod-
ule, QUEST, to mitigate this problem and transfer the proto-
types from the support-set to the query-set domain. QUEST
directly follows the encoder and adjusts the prototypes
based on query-support interaction. The detailed structure
of QUEST is shown in Fig. 5. We first conduct local maxi-
mum pooling along the point dimension to obtain statistics
of each feature channel in the support-set and query-set fea-
tures. Then, we leverage a shared projection operation, W,
to refine the statistics of each channel. This step can be de-
noted as

FS = W ·MaxPool(FS) ∈ RM ′×D,

FQ = W ·MaxPool(FQ) ∈ RM ′×D,
(7)

where the kernel size and stride of the pooling operation are
hyperparameters. Eq. 7 produces M ′ statistics from the M
points to manifest the distribution of each feature channel.
We use the same way to obtain FP as in Seg-NN. On top
of this, QUEST bridges the support and query data under
self-correlation and cross-correlation schemes.

Cross-correlation. We investigate the cross-correlation
of the geometric structures between the support set and
query set, which is utilized to adjust the category prototypes
FP . Specifically, the cross-correlation between FS and FQ

is calculated as their inner product,

Ccross = FQ⊤FS ∈ RD×D, (8)

where the diagonal elements of Ccross are the correlation
between the geometric structures of the support sample and
query sample, while the non-diagonal elements reflect the
cross-correlation between different channels of the support-
set and query-set features. Next, we modulate Ccross using
the softmax function and use it to adjust the corresponding
channels of FP by matrix multiplication,

FP
cross = Softmax(Ccross) · FP⊤. (9)

From Eq. 9, we obtain the adjusted category prototypes
via query-support cross-correlation, which learns to transfer
the prototypes FP to the query-set domain. Compared to
the cross-attention module in [6] and the bias rectification
operation in [38], our cross-correlation scheme can better
capture domain bias between the support set and query set.

Encoder

Encoder

Query

Prediction

Encoder

Encoder

Prediction

>0.35M Parameters

>4H Training Pre-training Required

Limited Performance
Support

Adapter

+

[M, 90d]

Dense

Feature

TFS3D

PredictionQUEST

Encoder

𝐅𝑃

Support Mask

𝐅𝑆

𝐅𝑄

Extractor

Support-set

Feature

Query

TFS3D

𝐅𝑃
QUEST

𝐋𝑆

Masked Average PoolingMaximum Pooling

𝐖

Shared

Max

Query-set

Feature
𝐅𝑄

𝐅𝑆

𝐅𝑆𝐅𝑆

෨𝐅𝑘
𝑃

𝐖

Max

Max

𝐅𝑃

෨𝐅1
𝑃

෨𝐅𝐾
𝑃

Support-set

Label

…

…

𝐅𝑃
∗

Avg

Shared

Cross-

correlation

𝐖
Self-

correlation

𝐅𝑃∗

𝐅𝑄

𝐅𝑆

Softmax

𝑀′ × 𝐷

𝑀′ × 𝐷

𝐷 × 𝐷

𝐅𝑃

(𝑁 + 1) × 𝐷

M

M

𝐅𝑄

𝐅𝑆

𝑀′ × 𝐷

𝑀′ × 𝐷

Gram

Gram

𝐷 × 1

𝐷 × 𝐷

𝐖𝑔

Shared

𝐖𝑔

𝐷 × 𝐷
𝐅𝑃

(𝑁 + 1) × 𝐷

𝑀′ × 𝐷

(𝑁 + 1) × 𝐷

𝑀′ × 𝐷

𝐅𝑐𝑟𝑜𝑠𝑠
𝑃

𝐅𝑠𝑒𝑙𝑓
𝑃

Adding Subtraction

Cross-correlation Self-correlation𝐷 × 𝐷

𝑀′ × 𝐷

𝑀′ × 𝐷

𝑀 ×𝐷

𝑀 ×𝐷

𝑀 ×1

Figure 5. Details of QUEST in Seg-PN. QUEST finally outputs
adjusted prototypes FP ∗.

Self-correlation. It is obvious that different feature chan-
nels extracted from our hand-crafted filters are not indepen-
dent and certain correlations between channels exist. Fur-
ther, this type of correlation exhibits differences between
support-set and query-set domains. Therefore, we exam-
ine the difference in self-correlation between FS and FQ,
which measures the domain gap between the support set and
query set. Generally, the Gram matrix of the feature vector
is leveraged to represent the self-correlation [7, 10]. De-
noted as GS and GQ, the Gram matrices of the support-set
and query-set features are calculated as

GS = FS⊤FS , GQ = FQ⊤FQ ∈ RD×D, (10)

both of which are symmetric matrices. The diagonal ele-
ments of the Gram matrix reflect the characteristics of each
channel itself, while the non-diagonal elements reflect the
dependence between different channels. In addition, the
difference between GS and GQ measures the domain gap
between support and query sets. We extract this domain gap
with a linear projection, Wg ∈ RD×1, and use it to rectify
the channels of FP :

FP
self = FP diag((GQ −GS)Wg), (11)

where diag(·) is diagonalization and FP
self is the rectified

prototypes via self-correlation. In this way, we shift the pro-
totype to the query-set domain.

We integrate the adjusted prototypes via self- and cross-
correlation and original prototypes to obtain the final pro-
totypes FP ∗ = FP + FP

self + FP
cross. For N -way-K-shot

problems, we average all K-shot adjusted prototypes.

After QUEST, we utilize the same similarity-matching
scheme as Seg-NN to segment the query set. As the encoder
is training-free, we do not need pre-training and only re-
quire episodic training to learn the QUEST module. During
training, we adopt cross-entropy loss to optimize QUEST.

3842

Method Param.
Two-way Three-way

One-shot Five-shot One-shot Five-shot
S0 S1 Avg S0 S1 Avg S0 S1 Avg S0 S1 Avg

Point-NN [35] 0.00 M 42.12 42.62 42.37 51.91 49.35 50.63 38.00 36.21 37.10 45.91 43.44 44.67
Seg-NN 0.00 M 49.45 49.60 49.53 59.40 61.48 60.44 39.06 40.10 39.58 50.14 51.33 50.74
Improvement - +7.33 +6.98 +7.16 +7.49 +12.13 +9.81 +1.06 +3.89 +2.48 +4.23 +7.89 +6.07

DGCNN [24] 0.62 M 36.34 38.79 37.57 56.49 56.99 56.74 30.05 32.19 31.12 46.88 47.57 47.23
ProtoNet [5] 0.27 M 48.39 49.98 49.19 57.34 63.22 60.28 40.81 45.07 42.94 49.05 53.42 51.24
MPTI [37] 0.29 M 52.27 51.48 51.88 58.93 60.56 59.75 44.27 46.92 45.60 51.74 48.57 50.16
AttMPTI [37] 0.37 M 53.77 55.94 54.86 61.67 67.02 64.35 45.18 49.27 47.23 54.92 56.79 55.86
BFG [17] - 55.60 55.98 55.79 63.71 66.62 65.17 46.18 48.36 47.27 55.05 57.80 56.43
2CBR [38] 0.35 M 55.89 61.99 58.94 63.55 67.51 65.53 46.51 53.91 50.21 55.51 58.07 56.79
PAP3D [6] 2.45 M 59.45 66.08 62.76 65.40 70.30 67.85 48.99 56.57 52.78 61.27 60.81 61.04

Seg-PN 0.24 M 64.84 67.98 66.41 67.63 71.48 69.36 60.12 63.22 61.67 62.58 64.53 63.56
Improvement - +5.39 +1.90 +3.65 +2.23 +1.18 +1.71 +11.13 +6.65 +8.89 +1.31 +3.72 +2.52

Table 1. Few-shot Results (%) on S3DIS. Si denotes the split i is used for testing, and Avg is their average mIoU. The shaded rows
represent non-parametric methods. ‘Param.’ represents the total number of learnable parameters of each method.

5. Experiments
In this section, we first introduce the datasets and imple-
mentation details. Then we report the experimental results
in comparison with existing approaches. At last, we present
ablation studies to verify the effectiveness.

5.1. Experimental Details

Datasets. We validate our method using two public 3D
datasets, S3DIS [2] and ScanNet [4]. Due to the large
scale of original scenes, we adopt the data pre-processing
in [6, 37] and partition them into small blocks. Then S3DIS
and ScanNet contain 7,547 and 36,350 blocks, respectively.
M = 2048 points are randomly sampled from each block.
For each dataset, we generate a training class set Ctrain

and a test class set Ctest that have no overlap. We use
Ctrain for episodic training and Ctest for testing, perform-
ing cross-validation for each dataset. For N -way-K-shot
test episodes, we iterate over all combinations of N classes
from Ctest, sampling 100 episodes for each combination.

Basic Settings. For few-shot settings, we experiment un-
der 2/3-way-1/5-shot settings respectively, following [6, 17,
37]. For performance, we adopt the mean Intersection over
Union (mIoU) as evaluation criteria. mIoU is computed by
averaging the IoU scores across all unseen classes Ctest. In
Seg-NN, we set the frequency number in the initial embed-
ding layer to d = 20 and sample log-linear spaced frequen-
cies u with θ = 30. In embedding manipulation layers,
we sample frequencies v from a Gaussian distribution with
variance 1. In the segmentation head, we set the scale fac-
tor γ to 1000. The non-parametric encoder contains totally
three manipulation layers. We provide more detailed set-
tings in supplementary materials.

5.2. Analysis

Baselines To evaluate our method, we compare it with
two types of methods. First, we consider parametric 2D/3D
few-shot segmentation methods, including DGCNN [20,
24], ProtoNet [5], MTPI [37], AttMPTI [37], BFG [17],
2CBR [38], and PAP3D [6]. Second, we re-implement the
non-parametric model, Point-NN [35], under our settings.
We report the results in Tab. 1 and 2.

Performance. For non-parametric Seg-NN, we compare
it to Point-NN and observe significant improvement on the
S3DIS dataset. In addition, Seg-NN even outperforms some
parametric methods, such as DGCNN and ProtoNet with-
out any training. For parametric Seg-PN, its results sig-
nificantly outperform previous SOTA mIoU across all four
few-shot tasks on 2 datasets. We achieve an average im-
provement of +4.19% and +7.71% across four tasks on
the S3DIS and ScanNet datasets, respectively, demonstrat-
ing that our method can better alleviate domain gaps be-
tween seen and unseen classes. This also indicates the non-
parametric encoder can extract discriminative and general
knowledge for 3D shapes. From the perspective of param-
eter number, we only utilize 0.24M parameters, the least
among existing methods and -90% less than PAP3D with
better performance.

Efficiency. In Tab. 3, we compare the training time with
existing works. Seg-NN achieves few-shot segmentation
with minimal resource and time consumption as training is
not required. For Seg-PN, we require only episodic train-
ing without pre-training, greatly reducing training time by
more than -90% compared to existing methods. Both Seg-
NN and Seg-PN efficiently simplify the few-shot pipeline
by discarding the pre-training step.

3843

Method Param.
Two-way Three-way

One-shot Five-shot One-shot Five-shot
S0 S1 Avg S0 S1 Avg S0 S1 Avg S0 S1 Avg

Point-NN [35] 0.00 M 28.85 31.56 30.21 34.82 32.87 33.85 21.24 17.91 19.58 26.42 23.98 25.20
Seg-NN 0.00 M 36.80 38.59 38.96 43.97 41.50 44.79 27.41 23.36 28.29 34.27 30.75 33.77
Improvement - +7.95 +7.03 +8.75 +9.15 +8.63 +10.94 +6.17 +5.45 +8.71 +7.85 +6.77 +8.57

DGCNN [24] 1.43 M 31.55 28.94 30.25 42.71 37.24 39.98 23.99 19.10 21.55 34.93 28.10 31.52
ProtoNet [5] 0.27 M 33.92 30.95 32.44 45.34 42.01 43.68 28.47 26.13 27.30 37.36 34.98 36.17
MPTI [37] 0.29 M 39.27 36.14 37.71 46.90 43.59 45.25 29.96 27.26 28.61 38.14 34.36 36.25
AttMPTI [37] 0.37 M 42.55 40.83 41.69 54.00 50.32 52.16 35.23 30.72 32.98 46.74 40.80 43.77
BFG [17] - 42.15 40.52 41.34 51.23 49.39 50.31 34.12 31.98 33.05 46.25 41.38 43.82
2CBR [38] 0.35 M 50.73 47.66 49.20 52.35 47.14 49.75 47.00 46.36 46.68 45.06 39.47 42.27
PAP3D [6] 2.45 M 57.08 55.94 56.51 64.55 59.64 62.10 55.27 55.60 55.44 59.02 53.16 56.09

Seg-PN 0.24 M 63.15 64.32 63.74 67.08 69.05 68.07 61.80 65.34 63.57 62.94 68.26 65.60
Improvement - +6.07 +8.38 +7.23 +2.53 +9.41 +5.97 +6.53 +9.74 +8.13 +3.92 +15.10 +9.51

Table 2. Few-shot Results (%) on ScanNet. Si denotes the split i is used for testing, and Avg is their average mIoU. The shaded rows
represent non-parametric methods. ‘Param.’ represents the total number of learnable parameters of each method.

Method mIoU Param. Pre-train
Time

Episodic
Train

Total
Time

DGCNN [24] 36.34 0.62 M 4.0 h 0.8 h 4.8 h
AttMPTI [37] 53.77 0.37 M 4.0 h 5.5 h 9.5 h
2CBR [38] 55.89 0.35 M 6.0 h 0.2 h 6.2 h
PAP3D [6] 59.45 2.45 M 3.6 h 1.1 h 4.7 h

Seg-NN 49.45 0.00 M 0.0 h 0.0 h 0.0 h
Seg-PN 64.84 0.24 M 0.0 h 0.5 h 0.5 h

Table 3. Performance (%) and Efficiency Comparison on
S3DIS. Train Time and Test Speed (episodes/second) are tested
on one NVIDIA A6000 GPU. We calculate the total time of pre-
training and episodic training. We report the accuracy under 2-
way-1-shot settings on S0 split.

5.3. Ablation Study
We conduct extensive ablation experiments to reveal the
roles of different designs. By default, we perform 2-way-
1-shot experiments on the S0 split of S3DIS dataset.

Ablation for Seg-NN. We first investigate the effect of
different numbers of manipulation layers in Tab. 5. We
observe that Seg-NN and Seg-PN achieve their best perfor-
mance with three and four layers respectively, indicating
that Seg-PN prefers to learn deeper features. To demon-
strate the efficacy of this hierarchical structure, we visual-
ize the feature similarity map of each layer in Fig. 6. The
similarity map suggests our hierarchical design can gradu-
ally capture discriminative point-level features and the in-
tegration of multi-layer features can effectively model local
shape characteristics.

Ablation on Seg-PN. First, we investigate the role of the
backbone and the QUEST module in Seg-PN in Tab. 4. By
substituting our non-parametric encoder with other back-

Backbone Projection QUEST mIoU Parameters

Point-NN [35] ✓ ✗ 46.31 1.20 M
✗ ✓ 55.28 1.28 M

Point-PN [35] ✗ ✓ 54.74 3.97 M
DGCNN [24] ✗ ✓ 55.86 0.42 M

Seg-NN ✓ ✗ 50.06 0.20 M
✗ ✓ 64.84 0.24 M

Table 4. Effect of Backbones and the QUEST Module on Seg-
PN. We combine different backbones with the QUEST module to
demonstrate the efficacy of the proposed non-parametric encoder.
We also substitute the QUEST module with a simple linear projec-
tion layer (‘Projection’) to verify its effect.

Layers 1 2 3 4 5

Seg-NN 36.43 42.38 49.45 46.19 43.18
Seg-PN 58.35 62.23 64.84 65.92 63.98

Table 5. Ablation for Number of Layers in Seg-NN Encoder.

bones, including Point-NN and pre-trained DGCNN and
Point-PN (following [6]), we observe a performance drop,
which highlights the effectiveness of our encoder in cap-
turing 3D geometries. In addition, replacing the QUEST
module with a projection layer also significantly impairs
the performance. Tab. 4 proves that combining our non-
parametric encoder with the QUEST module can remark-
ably improve prediction. Then, we examine different de-
signs of the QUEST module in Tab. 6, including the roles
of the self- and cross-correlation. We observe that using
only self-correlation achieves lower performance than us-
ing cross-correlation, which indicates that the interaction
between support and query sets is more important than only
considering their self-correlation. Finally, utilizing both
correlations allows for a higher performance.

3844

DGCNN

TFS3D

1-th Layer 2-th Layer 3-th Layer Final Output

Query Point

Red

High Similarity

Blue

Low Similarity

Figure 6. Efficacy of the Hierarchical Structure. We visualize
the feature similarity between the “query point” and other points.

QUEST Two Way Three Way
S0 S1 Avg S0 S1 Avg

w/o 47.32 50.05 48.68 38.46 40.66 39.56
Self 49.05 53.47 51.26 39.99 42.86 41.42
Cross 62.72 67.16 64.94 59.73 61.49 60.61
QUEST 64.84 67.98 66.41 60.12 63.22 61.67

Table 6. Ablation for the QUEST Module in Seg-PN. We report
the results (%) under 2/3-way-1-shot settings. ‘Self’ and ‘Cross’
represent self- and cross-correlation, respectively.

6. Additional Tasks
To exhibit our generalization ability, we validate the Seg-
NN encoder on other 3D tasks, including supervised classi-
fication, few-shot classification, and part segmentation.

6.1. Training-free Classification

We employ the Seg-NN encoder with minor modifications
to encode each point cloud into a discriminative represen-
tation. Specifically, we discard the upsampling layers in
the Seg-NN encoder and apply global maximum pooling to
the embeddings obtained from the 3-th manipulation layer.
This results in a global representation for each point cloud.
To classify each point cloud, we refer to Point-NN [35] to
adopt a similarity-matching scheme.

Performance We adopt ModelNet40 [27] and ScanOb-
jectNN [22] datasets to evaluate the classification perfor-
mance. We compare Seg-NN with Point-NN [35] in Tab.
7. From the table, our method sets the new state-of-the-art
for training-free classification on ModelNet40 and achieves
comparable results on ScanObjectNN. In terms of inference
speed, our method outperforms Point-NN by around +50%.

6.2. Training-free Few-shot Classification

We follow [21] to use ModelNet40 dataset [27]. We conduct
the N -way-K-shot classification tasks, N ∈ {5, 10} and
K ∈ {10, 20}. We randomly sample N classes and K point
clouds for each class as the support set. For the query set,
we pick 20 unseen objects from each of the N classes. We
randomly repeat 10 times and report the average results.

Performance From Tab. 8, we observe that Seg-NN
achieves the highest performance and significantly outper-

Method MN40 SONN Speed SNPart Speed

Point-NN [35] 81.8 64.9 209 70.4 52
Seg-NN 84.2 64.4 306 73.2 88

Table 7. Training-free Performance (%) and Efficiency. In-
ference speed (samples/second) is tested on one NVIDIA A6000
GPU. We report the classification accuracy (%) on ModelNet40
(’MN40’) [27] and ScanObjectNN (’SONN’) [22] datasets, and
mIoU (%) of segmentation on ShapeNetPart (‘SNPart’) [29].

Method 5-way 10-way

10-shot 20-shot 10-shot 20-shot

DGCNN [24] 31.6 40.8 19.9 16.9
PointNet++ [18] 38.5 42.4 23.0 18.8
3D-GAN [26] 55.8 65.8 40.3 48.4
PointCNN [14] 65.4 68.6 46.6 50.0
Sharma et. al [21] 63.2 68.9 49.1 50.1

Point-NN [35] 88.8 90.9 79.9 84.9
Seg-NN 89.7 91.0 81.7 86.1

Table 8. Few-shot Classification Results on ModelNet40 [27].

forms all existing parametric models, e.g., DGCNN [24]
and PointCNN [14].

6.3. Training-free Part Segmentation.

We extend our non-parametric 3D encoder to the part seg-
mentation task. In detail, we utilize the Seg-NN encoder
to extract prototypes for each part category and employ the
same similarity-based method to segment 3D objects into
pre-defined part classes.

Performance ShapeNetPart [29] is a commonly used
dataset for object-level part segmentation. From Tab. 7, our
method outperforms Point-NN by +2.8% in segmentation
performance and +60% in inference speed.

7. Conclusion
We propose a non-parametric framework, Seg-NN, and
a parametric variant, Seg-PN, for few-shot point cloud
semantic segmentation. Based on trigonometric PEs,
Seg-NN introduces no learnable parameters and discards
any training. Seg-NN achieves comparable performance
with existing parametric methods and only causes minimal
resource consumption. Furthermore, Seg-PN introduces the
QUEST module to overcome prototype bias and achieves
remarkable improvement compared to existing approaches.
Importantly, Seg-PN does not require pre-training, thus
simplifying the pipeline of 3D few-shot segmentation and
saving significant time. For future work, we will explore the
application of non-parametric encoders to more 3D tasks
and improve the performance and generalization ability.

3845

References
[1] Syeda Mariam Ahmed, Yan Zhi Tan, Chee Meng Chew, Ab-

dullah Al Mamun, and Fook Seng Wong. Edge and corner
detection for unorganized 3d point clouds with application to
robotic welding. In IEEE International Conference on Intel-
ligent Robots and Systems, pages 7350–7355, 2018. 1

[2] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis
Brilakis, Martin Fischer, and Silvio Savarese. 3d semantic
parsing of large-scale indoor spaces. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 1534–
1543, 2016. 2, 6

[3] Saifullahi Aminu Bello, Shangshu Yu, Cheng Wang, Jib-
ril Muhmmad Adam, and Jonathan Li. Deep learning on 3d
point clouds. Remote Sensing, 12(11):1729, 2020. 1

[4] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 5828–5839, 2017. 2, 6

[5] Victor Garcia and Joan Bruna. Few-shot learning with graph
neural networks. arXiv preprint arXiv:1711.04043, 2017. 6,
7

[6] Shuting He, Xudong Jiang, Wei Jiang, and Henghui Ding.
Prototype adaption and projection for few-and zero-shot 3d
point cloud semantic segmentation. IEEE Transactions on
Image Processing, 2023. 1, 2, 4, 5, 6, 7

[7] Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye,
Yizhou Yu, and Mingli Song. Neural style transfer: A review.
IEEE Transactions on Visualization and Computer Graphics,
26(11):3365–3385, 2019. 5

[8] Georg Krispel, Michael Opitz, Georg Waltner, Horst Pos-
segger, and Horst Bischof. Fuseseg: Lidar point cloud seg-
mentation fusing multi-modal data. In IEEE Winter Confer-
ence on Applications of Computer Vision, pages 1874–1883,
2020. 1

[9] Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang
Zhao, Shu Liu, Xiaojuan Qi, and Jiaya Jia. Stratified trans-
former for 3d point cloud segmentation. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 8500–
8509, 2022. 1

[10] Chunbo Lang, Gong Cheng, Binfei Tu, and Junwei Han.
Learning what not to segment: A new perspective on few-
shot segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8057–
8067, 2022. 5

[11] Benjamin Lewandowski, Jonathan Liebner, Tim Wengefeld,
Steffen Müller, and Horst-Michael Gross. Fast and robust
3d person detector and posture estimator for mobile robotic
applications. In International Conference on Robotics and
Automation, pages 4869–4875, 2019. 1

[12] Xinke Li, Henghui Ding, Zekun Tong, Yuwei Wu, and
Yeow Meng Chee. Primitive3d: 3d object dataset synthesis
from randomly assembled primitives. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 15947–
15957, 2022. 1

[13] Xiangtai Li, Henghui Ding, Wenwei Zhang, Haobo Yuan,
Jiangmiao Pang, Guangliang Cheng, Kai Chen, Ziwei Liu,

and Chen Change Loy. Transformer-based visual segmen-
tation: A survey. arXiv preprint arXiv:2304.09854, 2023.
1

[14] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. Advances in Neural Information Processing Systems,
31, 2018. 8

[15] Tao Luo, Zheng Ma, Zhi-Qin John Xu, and Yaoyu Zhang.
Theory of the frequency principle for general deep neural
networks. arXiv preprint arXiv:1906.09235, 2019. 4

[16] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun
Fu. Rethinking network design and local geometry in point
cloud: A simple residual mlp framework. arXiv preprint
arXiv:2202.07123, 2022. 4

[17] Yongqiang Mao, Zonghao Guo, LU Xiaonan, Zhiqiang
Yuan, and Haowen Guo. Bidirectional feature globalization
for few-shot semantic segmentation of 3d point cloud scenes.
In International Conference on 3D Vision, pages 505–514,
2022. 6, 7

[18] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in Neural Information
Processing Systems, 30, 2017. 4, 8

[19] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted Inter-
vention, pages 234–241, 2015. 3

[20] Amirreza Shaban, Shray Bansal, Zhen Liu, Irfan Essa, and
Byron Boots. One-shot learning for semantic segmentation.
arXiv preprint arXiv:1709.03410, 2017. 6

[21] Charu Sharma and Manohar Kaul. Self-supervised few-shot
learning on point clouds. Advances in Neural Information
Processing Systems, 33:7212–7221, 2020. 8

[22] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,
Thanh Nguyen, and Sai-Kit Yeung. Revisiting point cloud
classification: A new benchmark dataset and classification
model on real-world data. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1588–1597,
2019. 8

[23] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wier-
stra, et al. Matching networks for one shot learning. In
Advances in Neural Information Processing Systems, pages
3630–3638, 2016. 2

[24] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics, 38(5):1–12, 2019. 1, 2, 3, 4, 6, 7, 8

[25] Yue Wang, Alireza Fathi, Abhijit Kundu, David A Ross,
Caroline Pantofaru, Tom Funkhouser, and Justin Solomon.
Pillar-based object detection for autonomous driving. In Eu-
ropean Conference on Computer Vision, pages 18–34, 2020.
1

[26] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of
object shapes via 3d generative-adversarial modeling. Ad-
vances in Neural Information Processing Systems, 29, 2016.
8

3846

[27] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1912–1920, 2015. 8

[28] Yu-Qi Yang, Yu-Xiao Guo, Jian-Yu Xiong, Yang Liu,
Hao Pan, Peng-Shuai Wang, Xin Tong, and Baining Guo.
Swin3d: A pretrained transformer backbone for 3d indoor
scene understanding. arXiv preprint arXiv:2304.06906,
2023. 1

[29] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen,
Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-
fer, and Leonidas Guibas. A scalable active framework for
region annotation in 3d shape collections. ACM Transactions
on Graphics, 35(6):1–12, 2016. 8

[30] Xiangyu Yue, Bichen Wu, Sanjit A Seshia, Kurt Keutzer,
and Alberto L Sangiovanni-Vincentelli. A lidar point cloud
generator: from a virtual world to autonomous driving. In
ACM on International Conference on Multimedia Retrieval,
pages 458–464, 2018. 1

[31] Renrui Zhang, Rongyao Fang, Peng Gao, Wei Zhang,
Kunchang Li, Jifeng Dai, Yu Qiao, and Hongsheng Li.
Tip-adapter: Training-free clip-adapter for better vision-
language modeling. arXiv preprint arXiv:2111.03930, 2021.
4

[32] Renrui Zhang, Ziyu Guo, Peng Gao, Rongyao Fang, Bin
Zhao, Dong Wang, Yu Qiao, and Hongsheng Li. Point-
m2ae: Multi-scale masked autoencoders for hierarchical
point cloud pre-training. NeurIPS 2022, 2022. 4

[33] Renrui Zhang, Liuhui Wang, Ziyu Guo, and Jianbo Shi.
Nearest neighbors meet deep neural networks for point cloud
analysis. In WACV 2023, 2022. 4

[34] Renrui Zhang, Xiangfei Hu, Bohao Li, Siyuan Huang, Han-
qiu Deng, Hongsheng Li, Yu Qiao, and Peng Gao. Prompt,
generate, then cache: Cascade of foundation models makes
strong few-shot learners. CVPR 2023, 2023. 4

[35] Renrui Zhang, Liuhui Wang, Yali Wang, Peng Gao, Hong-
sheng Li, and Jianbo Shi. Parameter is not all you need:
Starting from non-parametric networks for 3d point cloud
analysis. arXiv preprint arXiv:2303.08134, 2023. 2, 3, 4,
5, 6, 7, 8

[36] Yaoyu Zhang, Zhi-Qin John Xu, Tao Luo, and Zheng
Ma. Explicitizing an implicit bias of the frequency
principle in two-layer neural networks. arXiv preprint
arXiv:1905.10264, 2019. 4

[37] Na Zhao, Tat-Seng Chua, and Gim Hee Lee. Few-shot 3d
point cloud semantic segmentation. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 8873–
8882, 2021. 2, 6, 7

[38] Guanyu Zhu, Yong Zhou, Rui Yao, and Hancheng Zhu.
Cross-class bias rectification for point cloud few-shot seg-
mentation. IEEE Transactions on Multimedia, 2023. 5, 6,
7

3847

