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Abstract

Deep neural networks are known to be overconfident for
what they don’t know in the wild, which is undesirable for
decision-making in high-stakes applications. Despite quan-
tities of existing works, most of them focus on detecting out-
of-distribution (OOD) samples from unseen classes, while
ignoring large parts of relevant failure sources like mis-
classified samples from known classes. In particular, re-
cent studies reveal that prevalent OOD detection methods
are actually harmful for misclassification detection (MisD),
indicating that there seems to be a tradeoff between those
two tasks. In this paper, we study the critical yet under-
explored problem of unified failure detection, which aims to
detect both misclassified and OOD examples. Concretely,
we identify the failure of simply integrating learning objec-
tives of misclassification and OOD detection, and show the
potential of sequence learning. Inspired by this, we pro-
pose a reliable continual learning paradigm, whose spirit
is to equip the model with MisD ability first, and then im-
prove the OOD detection ability without degrading the al-
ready adequate MisD performance. Extensive experiments
demonstrate that our method achieves strong unified failure
detection performance. The code is available at https:
//github.com/Impression2805/RCL.

1. Introduction
Modern deep neural networks have made rapid progress
in many fields [31, 35, 43, 44, 49, 52, 66]. Nevertheless,
prediction errors are still inevitable due to the imperfect
generalization ability in complex and open environments.
Therefore, the model is expected to identify “what it does
not know”, i.e., being aware of when it is likely to be
wrong and avoiding catastrophic decisions, especially in
safety-critical scenarios such as medical diagnostics [38],

*Corresponding author.

Pred: Car                    Pred: Turn Right                   Pred: Road

         Accept                              Reject                                  Reject                            

          Training  known classes                             Unknown class

Figure 1. Illustration of typical failure cases arise when deploy-
ing models in real-world applications: misclassified example from
known classes (e.g., recognize Turn Left as Turn Right),
and semantic-shifted OOD example from unknown classes (e.g.,
sheep). A unified failure detector should accept correctly recog-
nized examples and reject both misclassified and OOD examples.

autonomous driving [65] and robot vision [39]. Existing
work has tackled this problem from two perspectives: se-
mantic (new-class) out-of-distribution (OOD) detection and
misclassification detection (MisD). Specifically, OOD de-
tection determines whether an input is from known classes
or unknown class [4, 5, 18–20, 27, 29, 30, 34, 40, 42, 45],
while MisD aims to reject commonly existed misclassified
data from known classes [8, 18, 36, 61–64].

Remarkably, OOD detection and MisD aim to achieve
the same goal of detecting wrong predictions of a classifier.
However, they are studied and evaluated individually nowa-
days, which is not consistent with the requirement in real-
world applications where both misclassified examples and
unknown class data should be detected and rejected [22].
As an example, as shown in Fig. 1, an autonomous driving
car can not classify one type of traffic sign as another, or
recognize an unknown animal as the road. Actually, when
going back to the last century, the problems of OOD detec-
tion and MisD have been formulated and studied together
[10, 12] as ambiguity rejection [6] and distance rejection
[12], respectively. Besides, the baseline for reliable pre-
diction in deep learning era also discussed those two tasks
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together [18]. Therefore, more recently, Jaeger et al. called
for a unified evaluation, and formulated the unified failure
detection problem [22] that deals with OOD detection and
MisD simultaneously.

Although well reasoned, developing effective failure de-
tection methods is more difficult than expected, as recent
works [2, 3, 22–24] reveal that the simple maximum soft-
max probability (MSP) baseline [18] still performs the best
when detecting OOD and misclassified examples jointly. In
this paper, we aim to propose an approach that performs
well under the realistic and challenging failure detection
setup. To achieve this goal, a straightforward solution is
to combine methods from OOD detection and MisD fields,
e.g., optimizing the model with both CRL [36] and Logit-
Norm [46] losses. However, empirical results show that this
simple strategy is useless. We identify that misclassified
and OOD examples might have different levels of sensitiv-
ity, leading to conflict during training. Furthermore, we find
that such conflicts can be mitigated by decoupling the two
learning objectives and learning them in sequence. Inspired
by those observations, we discard the joint learning strat-
egy and creatively propose the Reliable Continual Learn-
ing (RCL) paradigm for failure detection. That is, we first
equip the model with MisD ability and then continually tune
it to further incorporate OOD detection ability. Particularly,
in most cases, we might already have a pre-trained classifier
with good reliability on some failure cases, and the RCL
paradigm allows us to enhance the reliability of a newly en-
countered failure case without re-training from scratch.

Technically, the proposed RCL involves fine-tuning a
pre-trained model e.g., a classifier with good MisD ability.
The major challenge is how to retain the original equipped
reliability knowledge while adapting model weights to en-
hance another requirement, e.g., OOD detection. On the
one hand, a substantial change in the model state would con-
siderably diminish the reliability knowledge already have.
On the other hand, a minor update leads to inferior ability
when dealing with new failure cases. To address this chal-
lenge, we view the knowledge stored in the given classifier
as a well-defined region in the parameter space [16], and
emphasize the preservation of important parameters during
the tuning process. Specifically, Fisher Information [33] is
adopted to estimate the importance of each parameter. In
addition, we also ensemble parameter spaces in the tun-
ing trajectory to further mitigate the forgetting of reliabil-
ity knowledge. Moreover, we show that tuning can be per-
formed on some selective informative layers in a deep neu-
ral network (DNN), which is much more efficient.

Our contributions are summarized as follows:
• We study the challenging unified failure detection prob-

lem, and propose a reliable continual learning paradigm
to address the tradeoff between OOD detection and MisD.

• To improve the OOD detection performance while best

preserving the existing MisD knowledge, we selectively
regularize the parameter changes during the tuning pro-
cess and gradually ensemble the yielded parameter space.

• Extensive experiments demonstrate that the proposed
method can significantly and consistently help to detect
both misclassified and OOD examples.

2. Related Work

Out-of-distribution detection. Score function based meth-
ods focus on designing proper confidence scores given a
pre-trained classifier. Hendrycks et al. [18] established
the baseline that directly leverages MSP score for detect-
ing OOD examples. Later, many other score functions
have been proposed, such as ODIN [29], Mahalanobis dis-
tance [27], Energy [30], ViM [45], MaxLogit [20], ReAct
[41] and KNN [42]. Training regularization based meth-
ods [5, 11, 19, 34, 40, 46] directly learn a classifier that can
separate OOD data from in-distribution (InD) samples. For
example, LogitNorm [46] keeps a constant norm of logits
during training to improve the OOD detection ability.

Misclassification detection. MisD [14, 18] focuses on dis-
tinguishing misclassified examples from correctly classified
ones in training classes. The MSP score [14, 18] is also the
baseline method for MisD in deep learning era. Confid-
Net [8] and SS [32] learn the true class probability via an
auxiliary model trained on the misclassified samples. CRL
[36] learns the correctness ranking based on the historical
correct rate during training. A recent work [61, 64] ana-
lyzes relations among confidence calibration, OOD detec-
tion and MisD from the perspective of proper scoring rules
[15] and Bayes optimal reject rules [6], and demonstrates
that seeking flat minima is helpful for rejecting misclassi-
fied examples. Besides, the effectiveness of outlier data has
been verified for improving MisD [63].

3. Preliminary and Analysis
Notations. Considering a K-class classification task, let
(Xin, Yin) ∈ X ×Y be jointly distributed random variables,
where X ⊂ Rd denotes the input space and Y is the label
space. A labeled dataset Dtrain = {(xi, yi)}ni=1 contains
samples drawn i.i.d. from (Xin, Yin). Assuming that fk(x)
is the logits output of a DNN classifier f with respect to
class k, the predicted class of an input x is argmax

k=1,...,K
pk(x),

in which pk(x) = exp(fk(x))/
∑K

k′=1 exp(fk′(x)) is the
probability of x belonging to class k. The common reliabil-
ity metrics [14, 18, 64] are the area under the risk-coverage
curve (AURC), the probability that a negative example is
predicted as a positive one when the true positive rate is as
high as 95% (FPR95) and the area under the receiver oper-
ating characteristic curve (AUROC).

12141



3.1. Classical Problem Definition

OOD detection. Formally, we have a joint InD DXinYin and
an joint OOD DXoutYout , where Xout ∈ X , but Yout /∈ Y (i.e.,
unknown new classes). At inference stage, we encounter
a mixture of InD and OOD joint distributions DXY =
πinDXinYin + (1 − πin)DXoutYout , and can only observe the
marginal distribution DX = πinDXin+(1−πin)DXout , where
πin ∈ (0, 1) is an unknown prior probability [13, 53]. For
a classifier f trained on Dtrain, given a score function s and
a predefined threshold δ, OOD detection can be performed
based on a decision function g : X → {0, 1} such that for
any test data x drawn from DX , we have: g(x) = 1 (outlier,
x ∈ DXout ) if s(x) ≥ δ and g(x) = 0 (inlier, x ∈ DXin )
otherwise.

Misclassification detection. This task focuses on distin-
guishing incorrect (D×

Xin
) from correct (D✓

Xin
) predictions

based on their confidence ranking [18, 36, 64]. For a clas-
sifier f trained on Dtrain, given the score function s and a
predefined threshold δ, MisD can be performed based on
the following decision function g : X → {0, 1} such that
for any test data x drawn from DXin , we have: g(x) = 1
(misclassified, x ∈ D×

Xin
) if s(x) ≥ δ and g(x) = 0 (cor-

rectly classified, x ∈ D✓
Xin

) otherwise.

3.2. Unified Failure Detection

Problem statement of failure detection. Unified failure
detection distinguishes both misclassified examples (D×

Xin
)

and OOD examples (DXout ) from correctly classified ex-
amples (D✓

Xin
). For a classifier f trained on Dtrain, given

the score function s and a predefined threshold δ, failure
detection can be performed based on the following deci-
sion function g : X → {0, 1} such that for any test
data x drawn from the mixed marginal distribution DX =
πinDXin + (1− πin)DXout , we have:

g(x) =

{
1 (x ∈ D×

Xin
∪ DXout) if s(x) ≥ δ

0 (x ∈ D✓
Xin

) if s(x) < δ
. (1)

3.3. Joint Learning or Sequence Learning?

Recent studies [22, 24, 63, 64] have verified that existing
OOD detection methods are often harmful for detecting
misclassified examples from InD, and MSP baseline per-
forms the best for unified failure detection. Besides, we
find that some MisD methods such as CRL [36] and FMFP
[61, 64] can improve OOD detection on simple datasets like
CIFAR-10, the improvement is marginal on more challeng-
ing datasets like CIFAR-100. Therefore, unified failure de-
tection still remains challenging. We ask a natural but unex-
plored question: Can unified failure detection be achieved
by jointly learning objectives of MisD and OOD detection?

To answer the above question, we conduct experiments
with representative training-time MisD method CRL [36]

Table 1. Jointly learning MisD and OOD detection objectives is
useless for unified failure detection. The network is ResNet110.

Dataset Method MisD OOD Detection

AURC↓ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIFAR-10
CE 8.96 45.72 90.43 39.54 89.86
CRL 6.56 21.86 93.61 29.74 91.13
CRL+LN 8.50 26.21 91.53 32.43 91.86

CIFAR-100
CE 90.38 52.07 84.80 70.14 73.29
CRL 76.93 41.40 86.92 73.05 71.97
CRL+LN 80.42 44.62 86.00 69.60 73.97

MSP Score MSP Score

CRL LogitNorm

D
en

si
ty

D
en

si
ty

Figure 2. Distribution of InD (correct), InD (wrong) and OOD
examples. The dataset is CIFAR-100 and the model is ResNet110.

and OOD detection method LogitNorm (LN) [46]. Specifi-
cally, CRL regularizes the relationship between training ex-
amples with different difficulties as follows:

LCRL(xi,xj) = max(0,−r(ci, cj)(κi − κj) + |ci − cj |),
(2)

where ci is the proportion of correct prediction events of xi,
κi denotes a confidence function, and r(ci, cj) = 1 if ci >
cj , r(ci, cj) = 0 if ci = cj and r(ci, cj) = −1 otherwise.
LogitNorm enforces a constant vector norm on the logits:

LLN = − log
exp(fy/(τ∥f∥))∑k
i=1 exp(fi/(τ∥f∥))

, (3)

where τ denotes the temperature parameter that modulates
the magnitude of the logits. Existing works have verified
that CRL and LogitNorm are quite effective for improving
MisD and OOD detection performance, respectively. The
learning objectives of them can be easily integrated, and
we expect that the joint learning schema can be effective
for unified failure detection. Experiments are conducted
on CIFAR benchmark [26] and the model is ResNet110
[17] trained with SGD using standard learning schedule
and data augmentation following [61]. The hyperparame-
ter τ = 0.04 following [46].

Joint learning is ineffective for unified failure detection.
As shown in Table 1, when combined with LogitNorm, the
OOD detection ability of CRL is improved. However, the
MisD performance decreases observably, even worse than
the CE baseline. That is, the joint learning schema fails to
improve both MisD and OOD detection ability, indicating
the existing conflicts between those two learning objectives.
Besides, we observe that for the CE baseline and CRL, the
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Figure 3. Comparison between joint and sequence learning of
CRL and LogitNorm on CIFAR-100 with ResNet110. Improve-
ments (over baseline) on both MisD and OOD detection perfor-
mance can be observed in sequence learning (green region).

average confidence of OOD examples is higher than that
of misclassified InD examples; while the relationship is on
the contrary for LogitNorm. This can also be observed in
Fig. 2. In conclusion, those results indicate that misclas-
sified and OOD examples have different levels of sensitiv-
ity, which might also explain the lack of interoperability be-
tween existing MisD and OOD detection methods.

Sequence learning for unified failure detection. Based
on the above observations and analysis, we argue that the
learning objective of MisD and OOD detection should be
decoupled during the training process. To this end, we pro-
pose a sequence learning schema as follows:

• Step 1: Train the model with CRL for T epochs;
• Step 2: Switch the learning objective from CRL to Logit-

Norm, and train the model for remaining epochs.

Fig. 3 compares those two learning paradigms. Specifically,
for joint learning (CRL+LogitNorm), we conduct exper-
iments with different values of temperature τ , which rep-
resents the strength of LogitNorm. For sequence learning
(CRL⇒LogitNorm), we plot the performance with dif-
ferent start epoch T of LogitNorm. As shown in Fig. 3,
the OOD detection performance of joint learning is remark-
able, but the MisD performance is always worse than the
CE baseline. Interestingly, both the MisD and OOD detec-
tion can be improved (over baseline) with sequence learning
(the green region), which verifies our hypothesis about de-
coupling the learning objective of MisD and OOD detection
when training a unified failure detector.

Limitations of sequence learning. Despite the positive ef-
fectiveness, sequence learning still has limitations. First,
the performance is affected by the start epoch T , which is
hard to choose beforehand, hindering its flexibility in real-
world applications. Second, the unified failure detection
performance is still less than satisfactory. For example, with
sequence learning, the MisD is comparable to that of CRL,
but the OOD detection performance is remarkably worse
than LogitNorm. Inspired by the good and the bad of se-
quence learning, we propose a new paradigm to tackle the
unified failure detection problem in Section 4.

4. Reliable Continual Learning
Overview of reliable continual learning paradigm. The
analysis in Section 3.3 demonstrates that sequence learn-
ing is a promising direction for developing unified failure
detectors. Moreover, real-world applications may require
a classifier to be evolved to detect newly emerged failure
sources without training from scratch. Motivated by this,
we propose a reliable continual learning paradigm, which
achieves the goal of unified failure detection by equipping a
classifier with the ability to detect one failure case and then
tuning it to further incorporate other reliable knowledge. In
Fig. 4, we provide an illustration of the proposed paradigm
and the details of our approach are presented below.

model

data Classification
MisD
OOD detection… model

data

Continual Learning





…





Figure 4. Illustration of reliable continual learning paradigm. Dur-
ing deployment, a classifier already has good performance on
some aspects such as classification and MisD. When facing new
failure cases like OOD examples, we continually update the model
via reliable fine-tuning, without training from scratch.

4.1. Reliable Weight Consolidation

Fine-tuning is a commonly used schema to further learn
new knowledge. Nonetheless, without any regularization,
the classifier tends to forget already acquired reliability
knowledge catastrophically when learning to detect new
failures. For example, direct tuning with LogitNorm could
enlarge the separation between InD and OOD data, how-
ever, this also ruins the separation between correctly classi-
fied and misclassified examples. Therefore, the remaining
question is how to effectively tune the classifier while also
keeping previous reliability knowledge. To ameliorate this
issue, one can regularize the parameter updates so that they
do not deviate too much from the original parameter space.

Intuitively, parameters in different layers should be reg-
ularized differently during the tuning process. Therefore,
to retain existing knowledge, a proper way is to regularize
the more influential parameters while updating those less
influential ones to incorporate new knowledge. Inspired by
continual learning [1, 25, 56, 57, 59, 60], we estimate the
model parameters via Fisher Information [33], which de-
scribes the model’s expected sensitivity to a change in pa-
rameters. Specifically, given a pretrained model, based on
training data Dtrain = {(xi, yi)}ni=1 or its subset, the Fisher
information F can be computed as:

F = E(x,y)∼Dtrain [∇
2 log p(y|x; θ∗)], (4)

where θ∗ is the weights of the pretrained model and ℓ =
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− log p(y|x; θ∗) is the loss function. In practice, the Fisher
information is only computed once before tuning the model,
and we use approximation by only computing the diago-
nal elements. As for the loss function, it is better to reflect
the already equipped reliability (e.g., the CRL loss in Eq.
(2) if the correctness history has been recorded). Gener-
ally, we can just use the cross-entropy loss, since models
trained by CE loss achieve a fairly strong baseline in MisD
[3, 22, 64]. Then, a regularization is added to penalize the
weight change during tuning as follows:

LRWC = Ltarget + λ
∑

i
Fi(θi − θ∗i ), (5)

where i is the index of each parameter of the model, and λ is
the regularization weight to balance different losses. Ltarget
is the learning objective of detecting new failures, e.g., the
LogitNorm loss to detect OOD examples. We call the above
method reliable weight consolidation (RWC).

65

75

85

95

Accuracy (↑) AURC (↓ MisD) AUROC (↑ OOD)

va
lu

e

CRL
FT
RWC-weak
RWC-strong

Figure 5. Given a model pre-trained with CRL, the classification
accuracy is maintained during fine-tuning with LogitNorm loss.
However, the MisD ability is ruined e.g., AURC (↓) dramatically
increased. RWC-weak and RWC-strong preserve the MisD ability
with different strengths. We use CIFAR-100 with ResNet110.

Discussion. The regularization term in Eq. (5) was first
proposed in [25] and named as elastic weight consolida-
tion (EWC), which aims to avoid a significant reduction of
classification performance when learning different datasets
continually. In this work, we demonstrate its effectiveness
in failure detection. As shown in Fig. 5, the MisD perfor-
mance is ruined remarkably, but the classification perfor-
mance is still maintained without the regularization term.
Therefore, different from [25] that aims to maintain classi-
fication accuracy, we focus on maintaining the knowledge
of reliability. Without this regularization, the tuning pro-
cess with target objective Ltarget will quickly result in catas-
trophic forgetting of already acquired reliability like MisD.
In conclusion, the work of [25] learns different datasets or
classes with the same optimizing objective, while we learn
different objectives with the same dataset or classes.

4.2. Weight Space Interpolation

Tuning with the regularization loss in Section 4.1 leads to
a series of models residing in generally good parameter re-
gions for both MisD and OOD detection, as shown in Fig.
6. However, for a specific point in the tuning trajectory, it

good OOD 

 good MisD                 
 

init


final

good accuracy

regularization
weight ensemble

tuning trajectory 

Figure 6. Illustration of the proposed simple yet effective reliable
tuning procedure. A model with good MisD ability is tuned to-
wards good OOD ability with weight regularization. Finally, mul-
tiple weight spaces in the tuning trajectory are interpolated.

may prefer to detect one failure than the other, which in-
dicates the diversity of knowledge encoded in the model at
different tuning steps. Besides, the model would encounter
unconstrained, various misclassified and OOD data.

Motivated by this, we propose a weight space interpola-
tion (WSI) strategy to best leverage the diverse and rich un-
certainty knowledge during the tuning trajectory. Formally,
consider a tuning procedure with T training epochs, we can
get a trajectory of models P = {θt}Tt=0, where θ0 is the
pretrained model and θt is the model after tuning the t-th
epoch. We ensemble those intermediate models as follows:

θWSI
t =

∑t−1
i=0 αi∑t
i=0 αi

· θWSI
t−1 +

αt∑t
i=0 αi

· θt, (6)

where θ0 is the same as θ∗ and αi denotes the contribution
of each model θt. In this paper, we simply set αi = 1 for
i ∈ {0, 1, ..., T}. Fig. 6 illustrates the ensemble process.

Discussion. Weight interpolation has been explored by
other works for improving classification accuracy [21, 48].
For example, Ilharco et al. [21, 48] performed linearly in-
terpolation between θ0 and θft to produce θfinal = (1 − α) ·
θ0 + α · θft, where the mixing coefficient is determined via
held-out validation sets. Wortsman et al. [47] fine-tuned
a pre-trained model multiple times and then averaged them
to get the final model θfinal = (1/K) ·

∑K
k=0 θ

k
ft . Our ap-

proach differs from theirs in the following aspects. First,
different from [21, 48] where only the beginning and final
model are used for weight interpolation, our method ensem-
bles the models at each tuning epoch. We argue this is more
robust and the experiments in Section 5.2 will verify this
point. Second, in [21, 47, 48], there is no regularization
during fine-tuning process. In our approach, the existing
regularization ensures that parameter spaces in the tuning
trajectory reside in generally good regions. Third, our fo-
cus is confidence reliability rather than classification accu-
racy, and the failure detection performance is remarkably
enhanced though the accuracy is marginally improved.

12144



4.3. The Overall Procedure

Based on reliable weight consolidation and weight space in-
terpolation, we introduce the three-step procedure for pro-
ducing a unified failure detector. Specifically, the first step
is to access a pretrained model fθ∗ with good MisD abil-
ity. In practice, we may already have one; otherwise, we
can train a randomly initialized model with existing MisD
method such as CRL [36] and flat minima based method
FMFP [61, 64], which are simple and can be implemented
in a few lines of code. As for the OOD detection learn-
ing objective, we chose the training regularization based
method LogitNorm [46] due to its simplicity. Moreover,
those methods do not need auxiliary dataset, making them
more flexible and practical in real-world applications. The
overall procedure can be summarized as follows:

• Step 1: Prepare a pretrained model fθ∗ , or learn
one from scratch with CRL or FMFP;

• Step 2: Fine-tune fθ∗ for total T epochs with Dtrain
by minimizing LRWC on Eq. (5);

• Step 3: Perform weight space interpolation fol-
lowing Eq. (6) and get the final model fθfinal .

Note that we do not introduce any additional parameter
when fine-tuning. Besides, we do not use any auxiliary out-
lier or misclassified data. In general, our approach is simple,
making it more practical for real-world applications.

5. Experiments
Datasets and implementation. We mainly conduct experi-
ments on CIFAR-10 and CIFAR-100 [26] using ResNet110
[17] and WideResNet (WRN-28-10) [55] as the backbone.
Particularly, CIFAR-100 is a quite challenging benchmark
for both MisD and OOD detection. In Step 1 of our method,
we get a pre-trained classifier with standard training proto-
col following [36, 61], e.g., train 200 epochs using SGD
with momentum 0.9, weight decay 5e-4 and batch-size 128.
The start learning rate is 0.1 and decays by a factor of 10
at epochs 100, 150 respectively. In Step 2, we fine-tune
the model for 10 epochs using the same optimizer setup
except that the start learning rate is 0.01 and decays by a
factor of 10 at epoch 7. We also verify the effectiveness of
our method on ImageNet-subset [9], and leave the results in
Appendix due to space limitation.

Evaluation metrics. In MisD, we report AURC (‰),
FPR95 (%) and AUROC (%). In OOD detection, we report
the average performance of FPR95 and AUROC on six stan-
dard OOD test datasets including Textures [7], SVHN [37],
Places365 [58], LSUN-C [54], LSUN-R [54] and iSUN
[50]. For unified failure detection, we keep the same num-
ber of misclassified and OOD examples by randomly sam-
pling subsets of OOD data. We average measures across
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Figure 7. The green lines show the performance evolution
during the reliable continual learning process (CIFAR-100 with
ResNet110). Compared with other approaches, ours can achieve
both strong MisD and OOD detection performance.

five runs and report AURC, FPR95 and AUROC. It is worth
noting that the misclassified and OOD examples are viewed
as positive examples by the failure detector, which is con-
sistent with the problem formulation in Section 3.

5.1. Results and Analysis

RCL achieves superior failure detection performance.
We compare the proposed RCL with representative OOD
detection and MisD approaches. Specifically, the compared
OOD detection methods including MSP [18], Energy [30],
MaxLogit [20], KNN [42] and LogitNorm [46]; the com-
pared MisD methods including MSP [18], CRL [36] and
FMFP [61]. For training regularization methods, we adopt
MSP score by default. As shown in Table 2, failure detec-
tion performance can be significantly improved with RCL,
and we highlight two groups of comparisons:

• RCL v.s. OOD detection methods. In Table 2 and
Fig. 7, we also confirm the observation in recent studies
[2, 22, 24, 63, 64] that those representative OOD detection
methods often have much worse MisD performance than
MSP. Consequently, although effective for OOD detection,
those methods struggle to outperform MSP when evaluated
under the unified failure detection setting. More specifi-
cally, KNN and LogitNorm yield comparable (sometimes
slightly better or worse) performance with MSP, while En-
ergy and MaxLogit typically perform worse than MSP. Our
RCL can consistently achieve better failure detection per-
formance across different datasets and architectures.

• RCL v.s. MisD methods. As shown in Table 2 and
Fig. 7, although CRL and FMFP are good at MisD, their
OOD detection performance is undesirable, which further
limits their unified failure detection ability. For instance,
CRL consistently performs worse than MSP on challeng-
ing datasets like CIFAR-100. The proposed RCL success-
fully addresses this problem, e.g., it improves AUROC of
OOD detection by 8.18% and 6.21% for CRL and FMFP,
respectively. Finally, the failure detection performance can
be remarkably enhanced.

The above comparison suggests that RCL can equip the
model with both good MisD and OOD detection ability,
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Table 2. MisD, OOD detection and unified failure detection Performance on CIFAR-10 and CIFAR-100 with different network architec-
tures. The highest score on each column is shown in bold, and we use darker color to represent higher performance.

Architecture Method MisD OOD Detection Failure Detection ID-ACC
AURC↓ FPR95↓ AUROC↑ FPR95↓ AUROC↑ AURC↓ FPR95↓ AUROC↑

CIFAR-10

ResNet110

MSP 8.96 45.72 90.43 39.54 89.86 18.81 40.64 91.07 94.31
Energy 14.25 67.13 85.35 43.57 91.31 23.85 57.63 89.01 94.31
MaxLogit 14.02 67.14 85.65 45.45 90.97 24.02 57.03 88.89 94.31
KNN 8.06 38.14 90.73 33.26 91.29 16.50 32.69 91.98 94.31
LogitNorm 14.06 42.61 87.88 22.77 94.23 23.95 35.63 91.83 92.50

CRL 6.56 21.86 93.61 29.74 91.13 15.98 24.15 93.57 93.66
w/ RCL 6.56 22.59 93.59 21.65 94.33 14.26 20.55 94.82 93.63
FMFP 5.26 20.29 94.01 20.03 94.13 11.60 18.37 94.96 94.42
w/ RCL 4.60 18.77 94.34 18.59 94.81 9.98 17.60 95.39 94.81

WRN-28-10

MSP 4.52 29.77 93.29 32.94 92.26 10.52 29.87 93.55 95.86
Energy 7.29 63.21 90.17 35.44 93.42 13.21 45.97 92.35 95.86
MaxLogit 7.24 63.21 90.28 34.91 93.41 13.10 45.48 92.40 95.86
KNN 3.90 25.50 93.95 22.84 94.05 8.24 23.09 94.69 95.86
LogitNorm 6.48 33.89 90.54 11.41 97.40 10.22 27.30 94.29 95.34

CRL 3.94 24.17 94.51 24.79 93.16 9.39 21.72 94.68 95.37
w/ RCL 3.42 19.37 94.84 11.99 97.01 6.72 14.89 96.39 95.75
FMFP 2.22 15.14 95.90 12.01 96.51 4.75 11.92 96.74 96.51
w/ RCL 2.27 13.68 95.71 11.32 96.80 4.62 11.69 96.76 96.58

CIFAR-100

ResNet110

MSP 90.38 52.07 84.80 70.14 73.29 143.68 56.82 83.60 73.04
Energy 122.30 73.43 77.92 69.73 76.22 165.91 70.77 80.22 73.04
MaxLogit 119.51 73.21 78.74 69.66 75.95 164.08 70.50 80.68 73.04
KNN 101.22 59.72 81.97 67.26 77.83 145.32 59.75 83.56 73.04
LogitNorm 121.61 66.30 79.37 52.72 82.19 148.26 59.88 83.68 73.13

CRL 76.93 41.40 86.92 73.05 71.97 139.17 56.25 84.16 73.92
w/ RCL 80.56 46.68 86.14 56.82 80.95 123.90 46.98 87.73 74.04
FMFP 67.91 40.86 86.86 68.46 72.91 132.87 52.94 84.18 75.87
w/ RCL 67.25 43.09 87.11 59.63 79.12 122.69 47.46 86.75 75.71

WRN-28-10

MSP 46.49 41.10 88.47 64.13 77.49 112.03 49.30 86.66 80.83
Energy 57.44 51.96 84.77 64.37 79.14 121.15 55.80 84.95 80.83
MaxLogit 56.10 51.71 85.37 64.52 78.90 120.02 55.66 85.28 80.84
KNN 49.52 45.73 87.15 60.12 80.33 109.66 48.81 86.97 80.84
LogitNorm 73.19 62.23 81.57 43.75 85.11 122.90 53.26 85.80 79.25

CRL 45.38 38.47 88.63 63.45 76.70 111.84 49.80 86.38 80.67
w/ RCL 47.46 41.18 88.46 50.89 82.24 104.33 41.69 88.79 80.26
FMFP 37.12 33.61 90.09 56.18 79.85 92.64 42.69 88.38 82.05
w/ RCL 40.98 36.87 89.35 49.87 83.11 93.65 39.78 89.34 81.48

building on existing MisD methods such as CRL and FMFP.
As a result, it establishes a strong unified failure detector,
consistently and significantly outperforming the MSP base-
line (which is considered as the existing state-of-the-art fail-
ure detection method [3, 22]). In addition, RCL is also
simple to use and implement, without relying on auxiliary
misclassified or outlier data. Due to space constraints, we
provide more experimental results (e.g., ViT experiments,
order of learning MisD and OOD detection) in Appendix.

5.2. Ablation and Extra Investigation

Ablation study. Table 3 reports the results of how weight
regularization and interpolation affect the MisD and OOD
detection performance, respectively. (1) Both the two strate-
gies can improve OOD detection remarkably, their integra-
tion can further reduce the forgetting of previously equipped

Table 3. Results of ablation study on CIFAR-100 with ResNet110.

Method MisD OOD detection
AURC↓ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CRL [36] 76.93 41.40 86.92 73.05 71.97
w/ RWC 87.14 50.69 85.38 54.49 82.24
w/ WSI 82.59 48.56 85.68 52.52 82.73
w/ RCL 80.56 46.68 86.14 56.82 80.95

w/ FT 90.73 51.26 84.50 51.61 84.02
w/ BI 77.76 44.69 86.52 61.13 78.90

MisD performance. (2) We also compare with direct fine-
tuning (FT) and the interpolation technique in [21, 48]
which only performs binary interpolation (BI) between the
beginning and final model. As expected, FT has good OOD
detection performance but forgets previous MisD knowl-
edge, while BI goes the opposite. Besides, the parameter
λ in Eq. (5) can flexibly control the power of regularization
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Figure 8. MisD and OOD detection performance on CIFAR-100
(ResNet110) of different regularization strength λ in Eq. (5).

term added during fine-tuning, and Fig. 8 shows its effect
on individual performance of MisD and OOD detection.
When increasing the value of λ, the freedom on changes of
weight is reduced, which hinders the OOD detection perfor-
mance but preserves more MisD ability. Nevertheless, they
are consistently remarkably better than baseline. Actually,
the unified failure detection performance is quite stable (see
Appendix). In all experiments, we empirically set λ = 1e4
for the balance of MisD and OOD detection ability without
tuning for specific dataset or network.
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Figure 9. Selective layer tuning. Left: The ℓ2 norms of “rate of
changes” on weights at different layers before and after continual
learning. Right: Comparison of the unified failure detection per-
formance used when tuning different parts of the network. The
results are obtained on ResNet110 trained on CIFAR-100.

Selective layer tuning. In our main experiments, RCL sim-
ply fine-tunes all layers with weight regularization. Here
we explore selective tuning, i.e., fixing some layers and
tuning others to improve the efficiency. To this end, we
analyze the difference between a given model and that af-
ter tuning. Formally, given a pretrained model fθ∗ and the
tuned fθfinal , we compute and visualize the norms of “rate
of changes” (∆ = 1

M

∑
i
|θfinal,i−θ∗

i |
|θ∗

i |
, where M denotes the

number of parameters) on weights at each convolution layer.
Fig. 9 (Left) shows that changes in deeper layers are signif-
icantly larger, indicating that our method mainly encodes
more reliable knowledge in deeper layers. Inspired by this,
we propose and compare different patching strategies: (1)
only fine-tune deeper layers (e.g., layers in the last block
3 of ResNet) or (2) even fix all convolutional layers and
fine-tune parameters in Batch-Normalization (BN) layers.
The failure detection performance in Fig. 9 (Right) shows
that only tuning BN layers is less effective, while tuning
the last block is both promising and efficient. Besides, our
method is also data-efficient, e.g., good performance can be
achieved when using only 10% of the original training data.

Table 4. Ablation study of continual learning strategies.

Metric MSP EWC SI MAS LwF DER

AURC↓ 143.68 123.90 127.14 124.27 125.66 114.87
FPR95↓ 56.82 46.98 48.71 46.13 46.69 39.70
AUROC↑ 83.60 87.73 87.07 87.31 87.41 89.71

Experiments with more continual learning methods. Ta-
ble 4 reports results using other continual learning methods
on CIFAR-100 / ResNet110, e.g., MAS [1], SI [56], LwF
[28] and DER [51]. They are all effective within our frame-
work. Among them, structure-based DER performs the best
but introduces additional parameters, while regularization-
based methods (MAS and SI) are effective and efficient.

The choice of OOD detection method in RCL. Many
OOD methods are post-hoc [18, 20, 27, 29, 30, 45], whose
negative effects on MisD have been revealed and well
demonstrated by recent studies. As shown in Table 2, KNN
[42] unstably performs slightly better or worse than MSP,
similar phenomenon exists when combing with MisD meth-
ods. Besides, post-hoc methods leave us little room to mod-
ify and explore the possibility of unified failure detection.
In addition to LogitNorm, we further show that when using
outlier-based method OE [19], our RCL framework yields
stronger failure detection performance and the results are
provided in Appendix.

6. Conclusive Remarks
Our work is dedicated to investigating the challenging and
gradually concerned unified failure detection problem. We
introduce “Reliable Continual Learning” which fine-tunes a
given model with reliable weight consolidation and weight
space interpolation, leading to a powerful framework to eas-
ily achieve on-demand reliability towards both misclassified
and OOD examples. We conduct extensive experiments to
verify the effectiveness of our approach, and provide extra
investigation to characterize and understand the framework
deeply. Our study also demonstrates that it is possible to
expand the reliability of a model on newly emerged fail-
ure cases without re-training it from scratch. We hope our
work inspires future research on exploiting novel learning
paradigms for unified failure detection.
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