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Abstract

Embodied agents operating in complex and uncertain
environments face considerable challenges. While some
advanced agents handle complex manipulation tasks with
proficiency, their success often hinges on extensive train-
ing data to develop their capabilities. In contrast, humans
typically rely on recalling past experiences and analogous
situations to solve new problems. Aiming to emulate this
human approach in robotics, we introduce the Retrieval-
Augmented Embodied Agent (RAEA). This innovative sys-
tem equips robots with a form of shared memory, signifi-
cantly enhancing their performance. Our approach inte-
grates a policy retriever, allowing robots to access rele-
vant strategies from an external policy memory bank based
on multi-modal inputs. Additionally, a policy generator is
employed to assimilate these strategies into the learning
process, enabling robots to formulate effective responses
to tasks. Extensive testing of RAEA in both simulated
and real-world scenarios demonstrates its superior perfor-
mance over traditional methods, representing a major leap
forward in robotic technology.

1. Introduction

The swift advancement of foundation models in areas
like natural language processing and computer vision has
sparked interest in the robotics community to create embod-
ied agents capable of comprehending human instructions
and responding aptly to their environment. Despite this
enthusiasm, crafting agents that seamlessly interact with
the physical world remains a formidable task. deep neural
networks store knowledge—such as recognizing objects or
interpreting commands—implicitly within their neural net-
work parameters. This dependence on implicit knowledge
storage demands a significant number of parameters and a
wide range of training data. However, recent studies have
shown that the scalability in terms of both training data and
model size falls short [4, 77] when compared to foundation
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Figure 1. The overview of our retrieval-augmented embodied
agents. We utilize a policy retriever to extract policies from a pol-
icy memory bank, which contains large-scale robotic data across
multiple embodiments. Then, we use the policy generator to refer-
ence the retrieved policy and output actions for the current input.

models in other domains, such as Large Language Models.
This insight has inspired the creation of embodied agents
designed to learn efficiently with limited data and model
sizes. To augment their capabilities, it’s becoming increas-
ingly important for these agents to access external reposito-
ries of physical knowledge, thereby expanding their capac-
ity to understand and interact with the world.

The ability to tap into an external repository of behav-
ioral memory mirrors the learning process observed in hu-
man infants, who often remember and mimic the actions of
adults or animals when presented with analogous scenarios
from their memory. This ability is crucial for successfully
navigating unknown environments and performing tasks
that demand specific knowledge, like exploring unfamiliar
rooms or handling new objects. Consequently, the question
naturally arises: How can we harness the wealth of open-
source, multi-embodiment data to enhance the precision of
robots in manipulation tasks? This inquiry not only probes
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the potential of robotic learning but also seeks to bridge the
gap between human cognitive processes and robotic appli-
cations.

In this paper, we present Retrieval-Augmented Embod-
ied Agents (RAEA), which leverage an external policy
memory bank containing analogous scenarios, whether in
terms of instructions, observations, or a combination of
both, related to the ongoing task. We outline the overview
of our framework in Figure 1. The policies retrieved
from this memory, along with other relevant data, provide
a rich resource for both the training and testing phases.
In our methodology, we make use of the recently open-
sourced Open X-Embodiment [46], a large-scale repository
of robotic datasets. Open X-Embodiment contains an exten-
sive array of tasks, applications, embodiments, and diverse
environmental settings from various research labs. This
extensive dataset serves as the cornerstone for our exter-
nal policy banks, enriching the knowledge base of RAEA.
By tapping into this vast repository, RAEA can access a
broader spectrum of robotic experiences, thereby improv-
ing its adaptability and effectiveness in various tasks.

To realize our objectives, we introduce two innovative
modules: a policy retriever and a policy generator. The pol-
icy retriever is adept at handling multiple input modalities,
categorized into two main types: instructions and observa-
tions. For controlling robots, it accepts text and audio as in-
structional inputs, and images, videos, and point clouds as
observational inputs. It identifies policy candidates from the
memory bank that align closely with the current input. Fur-
thermore, we have developed the policy generator, which
initially processes the information in the retrieved policies,
including observation, instruction, action, and propriocep-
tive state. It then employs a cross-attention module to in-
tegrate knowledge from various retrieved policies into the
main policy networks for action prediction. In this way,
the policy generator leverages the retrieved policies as con-
textual examples, aiding the model in producing actionable
responses based on the current input.

The efficacy of our proposed Retrieval-Augmented Em-
bodied Agent (RAEA) is demonstrated through extensive
testing over two simulation benchmarks and real-world
datasets, as illustrated in Figure 2. This approach not only
showcases the versatility and practical ability of our frame-
work.

In summary, our contributions are as follows:
• We present Retriveal-Augmented Embodied Agents

(RAEA) that utilized the wealth of knowledge from an
external policy memory bank with multiple embodiment
data to facilitate prediction for robotic action.

• Our framework features a policy retriever adept at pro-
cessing various input modalities. Complementing this,
we have crafted a policy generator that leverages retrieved
scenarios to improve the model’s ability to generalize

across various situations.
• To validate the efficacy of our proposed methodology,

we have conducted extensive evaluations in both real-
world settings and two simulated environments. The re-
sults from these tests strongly affirm the effectiveness and
practicality of our approach.

Overall, our work introduces a versatile and modular
retrieval-augmentation framework for embodied agents.
This provides a novel and insightful perspective on the de-
sign of robotic models, integrating advanced memory capa-
bilities.

2. Related Works
Retrieval-Augmented Models. A notable trend in Natural
Language Processing (NLP) involves leveraging external
memory to enhance the performance of language models.
This approach retrieves documents relevant to the input
text from an external database, allowing language models
(generators) to use this retrieved information to make more
informed predictions. Typically, the external memory
consists of a collection of text passages or a structured
knowledge base [69–71]. Subsequent works extend the re-
trieval augmentation techniques to computer vision models
and multi-modal models. The most representative works
including Re-Imagen [12] as a caption-to-image generator,
MuRAG [11] performs question-answering using retrieved
images. RA-C3M [72] uses retrieval for either text or
image generation.RA-CLIP [68] and REACT [37] integrate
the retrieval-augmentation technique for CLIP pretraining.
Our approach, however, diverges from these prior works.
While the aforementioned studies focus on enhancing
language and vision models, our research is specifically
geared towards robotics. We aim to search for policies
that have been executed in scenarios similar to the current
context, using them as in-context examples.

Models for Embodied Agents. In the field of embodied
agents [1–3, 6, 10, 13, 14, 28, 30, 39, 42, 44, 49, 56–
59, 62, 65] and robotics [8, 9, 18, 25, 45, 47, 63, 66, 75, 76],
foundation models have become a crucial research focus,
revolutionizing the interaction between AI systems
and physical environments. This body of work in-
cludes studies on representation pre-training and the
application of language and vision-language mod-
els [27, 29, 30, 39, 42, 55, 61] as embodied agents. Our
research contributes to this growing body of knowledge,
presenting a supplementary retrieval-based approach
designed to enhance policy learning in robotics. This
approach integrates with existing foundation models,
providing a novel perspective on how to augment the
capabilities of embodied agents in diverse and dynamic
settings.
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Figure 2. Examples of simulated and real-world environments that we used for evaluation.

Robotics Datasets. The robotics learning community
has developed a variety of open-source datasets that are
instrumental in advancing robot learning. These tasks
spanning grasping [5, 16, 19, 20, 32, 35, 40], pushing in-
teractions [17, 60, 73], sets of objects and models [75–85],
and teleoperated demonstrations [8, 86–95]. Typically,
these datasets are extensive and are often focused on
specific robotic embodiments, exemplified by the Bridge
Data [18, 34, 64] and RH20T [21]. RoboNet [15] and
Open X-Embodiment [46] stand out as two large-scale
datasets that incorporate multiple robotic embodiments.
These datasets are frequently utilized for pretraining
purposes [46], especially for the visual backbone in robotic
models [7, 43, 53]. In our research, we leverage the exten-
sive cross-embodiment data as a foundational knowledge
base. This enables us to retrieve relevant policies that
facilitate training in the current environment, effectively
utilizing the rich diversity of the datasets to enhance our
model’s adaptability and performance.

3. Methodology
We introduce Retrieval-Augmented Embodied Agents, ca-
pable of retrieving relevant scenarios and generating actions
based on the current scene and accompanying instructions.
As illustrated in Figure 3, when presented with an input,
be it an observation or an instruction-observation pair, our
system employs a retriever to fetch pertinent policies from
an external memory bank. Significantly, these embodied
agents are equipped to interact with humans through various
modalities like text and audio, and they use diverse sensors
to perceive their environment. In order to broaden the spec-
trum of applications for our approach, we have designed
a multi-modal policy retriever (in §3.2), featuring a dense
retriever with a mixed-modal encoder capable of encoding
diverse modalities in various combinations. Additionally,
we’ve constructed a policy generator (in §3.3)based on the
Transformer architecture. This generator processes the re-
trieved policies individually and leverages cross-attention
to incorporate the extracted information from the retrieved
policies into the primary model branch.

3.1. Preliminaries

Notations. The framework consists of a policy retriever R
and a policy generator module G. The retrieval module R

takes an input sequence r = {i, o} and searches the r from
an external policy memory bank. It returns a list of policy
m = {i, o, a, p}, where p is the policy, i represents the in-
struction, o denotes the observation, a is the action, p is the
proprioception. The term proprioceptive robot state is used
to describe a robot’s intrinsic awareness of its own posi-
tioning and movement within a given space, which includes
factors like joint angles, velocity, torque, and other phys-
ical statuses. The term actions refers to the specific tasks
or operations executed by the robot. The policy generator
G then takes the input sequence x and the retrieved policy
M = {m1,m2, · · · ,mn} and returns the action a, where a
represent continuous actions that control the robots.

3.2. Policy Retriever

Overview. A policy retriever R takes a query q (e.g., the
instruction-observation pair x) with multi-modal informa-
tion from the policy memory bank M , and returns a rele-
vance score r(q,m). We follow prior retrieval works [33],
in which the retriever r is a bi-encoder architecture,

r(q,m) = EQ(q)
TEM (m) (1)

Here, we employ two key encoders: EQ, responsible for
encoding queries, and EM , which encodes the memory
to yield dense vectors representing query and memory
policies, respectively. Given that our input and memory
consist of multi-modal documents, we leverage EQ and
EM as mixed-modal encoders capable of handling various
modalities. The architecture of mixed-modal encoders can
be designed in multiple ways. In our specific context, we
introduce a multi-modal retrieval approach that adeptly
accommodates multiple modalities. When dealing with
a multi-modal input for policy learning, we partition it
into two distinct components: an instruction segment
and an observation segment. The instruction segment
typically contains human instructions in different formats,
including text or audio, while the observation segment
can encompass images, videos, or point cloud data. Each
modality type is separately encoded using off-the-shelf,
pre-trained multi-modality encoders, which we will discuss
specifically in the next section.

Multi-Modal Encoders. The primary aim of multi-
modal encoders is to equip embodied agents with the
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Figure 3. The framework of policy retriever (top) and policy generator (bottom) in our work. The policy retriever retrieves the relevant
policy based on multi-modal input, and the policy generator processes a list of retrieved policies to help train in the current environment.

capability to handle a wide range of modalities, adapting
to various scenarios. Specifically, we conceptualize the
encoder as a mapping function, denoted by P (·). Typically,
for each modality, a specialized model is needed to extract
useful modality-specific representations. These are then
projected onto a feature plane, ensuring uniformity in
the shape of feature tensors across all modalities through
projection layers. Following this, we average the vectors
representing these modalities, normalizing their L2 norms
to 1, thus generating a consolidated vector representation
of the document. This encoding technique is uniformly
applied to both EQ and EM . The final step involves
assessing the similarity of cross-modality features between
the query and the memory.

There are a number of options [67] for the multi-modal
model when it comes to handling different modalities. For
example, CLIP [52] or T5 [54] could be used for text and
image processing. In our case, we utilize ImageBind [23], a
high-performance encoder proficient across six modalities,
for processing diverse input types. With the help of
ImageBind, we are spared from managing many numbers
of heterogeneous modal encoders. This mapping function
P (·) maps all modalities to a unified latent embedding,
greatly enhancing the efficiency of comparing feature
similarity for retrieval purposes. For the retrieval process,
we execute the Maximum Inner Product Search within the
memory space, yielding a ranked list of candidates based

on their relevance scores. From this list, we select the final
k policies for further analysis and processing.

Retrieval Strategy. We discuss three key factors in
obtaining/sampling informative retrieved policies for the
generator in practice.

Relevance: The retrieval of policies must be closely
aligned with the input sequence, covering either instruc-
tions, observations, or both. Without this alignment, the
retrieved policies fail to provide meaningful contributions
to the modeling of the primary input sequence. To ascertain
the relevance of these policies, we employ a dense retriever
score based on modality encoders.

Input Modality: Our methodology divides the input
into two distinct segments: instructions and observations,
each tailored to process specific input modalities. The
observation component is adept at recalling comparable
scenes or objects, thereby enabling the model to com-
prehend scenarios not encountered in its training dataset.
Concurrently, the instruction segment recapitulates ac-
tions previously executed during training. This flexible
framework allows for either independent or combined
usage of these segments, contingent on the computational
resources and specific application contexts. This approach
bears a resemblance to in-context learning, wherein the
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Large Language Model (LLM) is presented with scenarios
that are similar, albeit not identical, to enhance response
quality. Typically, we employ instruction-observation pairs
at the onset of a frame, subsequently relying solely on the
observation for the remainder of the frame until the next
user interaction. It’s noteworthy that this strategy can be
integrated with recent advancements in Large Multi-Modal
Models, facilitating real-time corrections of the robot’s
actions.
Diversity: We discovered that diversity in the policy mem-
ory bank is crucial for effective performance. Selecting the
top-ranked actions based on relevance scores often leads
to the inclusion of duplicate or very similar instruction and
observation. This redundancy can detrimentally impact the
performance of the generator. This challenge is particularly
acute given that our action bank comprises fragments of
videos. To optimize the efficacy of retrieval-based meth-
ods, it’s essential to ensure a diverse range of in-context
samples. These diverse samples are instrumental in aiding
policy networks to effectively learn from demonstrations,
both in training and testing stages. To address the issue of
redundancy, our approach involves bypassing a candidate
action if its relevance score is too closely aligned (e.g.,
exceeding 0.9) with the query or actions already retrieved.
Additionally, to further enhance diversity, we propose a
unique strategy of random token dropout from the query
used in retrieval, approximately 70% of tokens. This
approach serves as a regularization mechanism during
training and has been observed to significantly improve the
generator’s performance. We also include embodiment data
of embodiment that are different from the robot that we
used for evaluation. We observed that even with variations
in embodiment, this diverse dataset still aids the policy
network in its learning process.

Data Format of Retrieved Policy. For every policy
retriever, our framework covers a set of elements m that
either influence or result from control processes. Subse-
quently, we introduce our policy generator and demonstrate
how it effectively utilizes this diverse spectrum of informa-
tion for enhancing policy learning.

3.3. Policy Generator

The policy generator is designed to effectively utilize the
valuable information in the retrieved policy to facilitate the
training of the policy for the current input. We reuse the fea-
ture representation of instruction and observation from the
policy retrieval network (as in §3.2), thus avoiding redun-
dant computations that constitute over 95% of the total. For
actions and proprioceptive states, we address the variabil-
ity across different robots by setting a maximum limit for
both, capped at nine. We employ an action encoder and a
proprioception encoder – both comprising multi-layer per-

ceptrons (MLPs) – to generate corresponding tokens. These
tokens are then integrated with the instruction-observation
tokens, ensuring a seamless and effective incorporation of
the retrieved policy’s data into the current policy training
framework. We add a state token between different states,
i.e., a learnable token between action and proprioception to-
kens, to split the data of two states. We use absolute position
embedding to ensure the tokens are in order.

Given a list of retrieved policies M = (m1, ...,mK),
we concatenated these tokens based on the relevance score.
We use absolute position embedding to maintain the order
of tokenized representations. We concatenate their tokens
according to their relevance scores. We employ a policy to-
ken to demarcate tokens from different policies. Once these
tokens are combined, we utilize the Transformer architec-
ture as the foundation for our retrieved policy processor.
To effectively incorporate the retrieved policies M into the
generator, we leverage cross-attention mechanisms. This
approach allows for the integration of pertinent information
from the retrieved models into the main network, enhancing
the overall efficacy of the system.

Particularly, give an input sequence from retrieved po-
lices, denoted as F r ∈ Rh×w×c, and other input sequences
from main input F x ∈ Rh×w×c, for simplicity, we assume
two tensors have the same size. The F r is projected into a
query (Q) and key (K), and F x is projected into value (V).
Thus, we formulate our cross-attention (SC) as follows:

Qi = F rWQ
i (2)

Ki = SC(F x, ri)W
K
i , Vi = SC(F x, ri)W

V
i , (3)

Vi = Vi + P (Vi) (4)

where SC(·, ri) is a MLP layer for aggregation in the ith

head with the down-sampling rate of ri, and P (·) is a depth-
wise convolutional layer for projection. Finally, we calcu-
lated the attention tensor by:

hi = Softmax(
QiK

T
i√

dh
Vi) (5)

where dh is the dimension. The streamlined design of the
cross-attention mechanism ensures that valuable represen-
tations from retrieved policies are effectively incorporated
into the main network, enhancing policy learning for the
current input. To optimize this process, we implement be-
havior cloning, using mean squared loss as our primary op-
timization objective.

4. Experiments
We evaluate models using multiple simulated benchmarks,
including Franka Kitchen [22], MetaWorld [74], and
Maniskill-2 [24] and real-world environment. We show that
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Figure 4. Left: The setup of our Franka real robot. Right: The example of some tasks that we collected.
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Figure 5. Performance of RAEA in Franka Kitchen with 10 or 25 demonstrations

our retrieval-augmented embodied agents significantly im-
prove the generalization ability. Notably, we have taken
precautions to ensure that the policy memory bank does not
contain any data from the datasets used in our training and
testing phases, thereby eliminating the possibility of bias or
cheating in the test set.

4.1. Simulation Experiments.

We conduct our simulation on three benchmarks, Franka
Kitchen [22], Meta-World [74], and Maniskill-2 [24]. A
brief summary of these benchmarks can be found in the
Appendix.

Evaluation: We assess our approach through 30 roll-
outs derived from the behavior cloning (BC) learned policy.
Our primary metric for evaluation is the mean success rate

of the final policy. Additionally, when presenting metrics
for the task suite, we calculate the average mean success
rate across various camera configurations.

Experimental results on Franka Kitchen & Meta-
World. In our experiments, we conducted a comparative
analysis of our model, RAEA, against two established state-
of-the-art methods: R3M [43], popular in Franka Kitchen
applications, and BLIP-2 [36], a leading vision-language
model, and Embodied-GPT [41], a vision-language model
designed for robotics. We trained our policy network
using a few-shot learning approach, employing datasets
comprising either ten or twenty-five demonstrations.
The performance of these models was evaluated through
100 randomized trials across five distinct tasks in each
benchmark. These evaluations were executed under two

17990



0

20

40

60

80

100

Bin_Left Bin_Right Button_Left Button_Right Assembly_Left Assembly_Right Drawer_Left Drawer_Right Hammer_Left Hammer_Right

Su
cc

es
s 

(%
)

Performance comparison in Meta-World with 10 demonstrations

R3M BLIP-2 EmbodiedGPT RAEA (Ours)

0

20

40

60

80

100

Bin_Left Bin_Right Button_Left Button_Right Assembly_Left Assembly_Right Drawer_Left Drawer_Right Hammer_Left Hammer_Right

Su
cc

es
s 

(%
)

Performance comparison in Meta-World with 10 demonstrations

R3M BLIP-2 EmbodiedGPT RAEA (Ours)

Figure 6. Performance of RAEA in Meta-World with 10 or 25 demonstrations

different settings: each involved five separate runs and was
conducted from two unique camera perspectives, relying
solely on visual observations. The results, depicted in
Figures 5 and 6, for the Franka Kitchen and Meta-World
benchmarks respectively, unequivocally demonstrate that
RAEA surpasses the baseline methods in effectiveness.
This superiority is particularly noticeable in low-data
scenarios, such as those with only ten demonstrations,
further underscoring RAEA’s robustness and efficiency in
environments with limited data availability.

Experimental results on Maniskill-2. We evaluated
our model’s performance in two distinct experimental
settings: one using solely image-based observations and
the other combining images with point cloud data. For
comparison, we benchmarked our model against well-
established methods, specifically ResNet152 [26] and Swin
Transformer Base [38], both pre-trained on the ImageNet
dataset. In the experiments that involved both images
and point clouds, the feature representation of point cloud
data for the baseline models was initially processed using
PointNet [51]. This representation was subsequently
integrated with the image branch, following the procedure
described in Maniskill-2. In both experimental scenarios,
our method consistently surpassed the performance of the
two baseline models, as illustrated in Table 1. Remarkably,
in the setting that utilized dual-modal observations, our
RAEA model demonstrated a significantly higher average
success rate. This highlights the robust generalizability and
effectiveness of our approach.

4.2. Real-Robot Experiments

Datasets. Our collected dataset comprises n = 60 tasks.
These tasks vary from straightforward pick-and-place
actions, such as “pick up the yellow cube” to more complex
contact-rich tasks like “open the drawer and put the pen
inside,” as well as tasks demanding to reason, i.e., “sort
the cube with the same color.” There are 70 objects in the
experiments. Each task is exemplified through 30 human-
collected trajectories. Further, every task is annotated with
5 distinct instructions. Figure 4 demonstrate some example
and workspace setup for our real-world experiments.

Implementation details. We use an AdamW opti-
mizer, starting with an initial learning rate of 3e-5, and
implement a weight decay of 1e-6. Our learning rate
scheduler is designed to linearly decay, incorporating a
warm-up phase that spans the initial 2% of the total training
duration. Additionally, we apply gradient clipping set at a
value of 1.0 to maintain stability during training. To assess
the efficacy of our approach, all experiments are conducted
over 10 trials, from which we calculate the mean success
rate.

Additionally, we perform ablation studies to delve
into various questions related to our model’s performance
and capabilities.

1. Does Utilizing Multiple Modalities Improve General-
izability? Our embodied agents are equipped to support
multi-modal inputs. This section examines the benefits
of integrating multiple modalities. Table 2 demonstrates
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Table 1. Experiments on Manisill-2 over six rigid body and soft body tasks. Our method consistently outperforms Baseline in all environ-
ments. All metrics are reported in percentage (%) with the best ones bolded.

Methods PickCube StackCube PickSingleYCB Fill Hang Excavate

Observation Modality: Image

ResNet152 [26] 40.1 86.3 22.1 52.4 82.6 12.0

Swin-Base [38] 41.3 83.5 28.5 49.0 82.7 14.8

RAEA 56.7 93.6 40.2 63.8 87.1 22.4

Observation Modality: Point Cloud + Image

ResNet152 + PointNet [26, 51] 56.6 90.7 28.4 46.9 85.7 18.4

Swin-Base + PointNet [38, 51] 44.0 90.1 30.6 45.5 86.4 17.0

RAEA 62.7 91.0 43.8 71.7 88.1 24.0

Table 2. Ablation study on the effect of using different modalities
for real-world environments.

Method Instruction Observation Success Rate

RAEA

Text Image 54

Text+Audio Image 56

Text+Audio Image + Point Cloud 65

Image Image 58

Image+Video Image 63

Image+Video Image + Video 64

Image+Video+Text Image 69

Table 3. Ablation study on the effect of status information, i.e.,
action & proprioceptive state, in real-world data. The experiments
are conducted based on text-image pairs.

Tasks Status Success Rate

RAEA
All 54

Proprioception 39

Action & Proprioception 36

Table 4. Ablation study on the data for policy memory bank using
Franka-only or all embodiments.

Tasks Embodiments Success Rate

RAEA
All 54

Franka-Only 48

that employing more available modalities can stably yield
better performance. Notice that using the combination of
language and visual as instruction significantly enhance
the generalizability of the model, i.e., increase the success
rate from 63 to 69. Also, adopting 3D information, such as
point cloud, can be useful, which improves the success rate

from 56 to 65.

2. Does Including More Status Information in Retrieved
Policies Enhance Policy Learning? While instruction and
observation are fundamental components, our research also
delves into the impact of incorporating proprioception and
action data. As illustrated in Table 3, there is a discernible
decrease in success rate when proprioception and action
are omitted from the retrieved policy, dropping from 54 to
36. This finding highlights the critical role these elements
play in augmenting the efficacy of our learning approach.

3. Is Retrieval Across Different Embodiments Beneficial?
In our experiments, we utilized the Open X-Embodiment
as our primary policy memory bank, a dataset featuring
a variety of embodiments. Our evaluation, depicted in
Table 4, focuses on the performance implications of
using data exclusively from Franka robots compared to a
multi-embodiment dataset. We observed a slight decline
in performance with the Franka-only data. This could
be attributed to the richer diversity of environments and
commands present in the broader dataset.

5. Conclusion
Training with pre-defined datasets often leads to a limited
scope of ability and knowledge acquisition. In this pa-
per, we introduce Retrieval-Augmented Embodied Agent
(RAEA), a novel framework that enhances an embodied
agent through a policy retriever and generation process. The
primary objective of this retrieval process is to efficiently
and effectively harness valuable insights from a compre-
hensive dataset of experiences, thereby aiding the agent in
achieving its goals more proficiently. Through multiple
ablation studies, we have underscored the significance of
the various components within RAEA. Overall, our RAEA
methodology presents an innovative and practical approach
to leveraging collective knowledge from diverse datasets of
different embodiments.
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