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Abstract

Diffusion Transformer (DiT) has emerged as the new
trend of generative diffusion models on image generation.
In view of extremely slow convergence in typical DiT, re-
cent breakthroughs have been driven by mask strategy that
significantly improves the training efficiency of DiT with
additional intra-image contextual learning. Despite this
progress, mask strategy still suffers from two inherent lim-
itations: (a) training-inference discrepancy and (b) fuzzy
relations between mask reconstruction & generative diffu-
sion process, resulting in sub-optimal training of DiT. In
this work, we address these limitations by novelly unleash-
ing the self-supervised discrimination knowledge to boost
DiT training. Technically, we frame our DiT in a teacher-
student manner. The teacher-student discriminative pairs
are built on the diffusion noises along the same Probability
Flow Ordinary Differential Equation (PF-ODE). Instead of
applying mask reconstruction loss over both DiT encoder
and decoder, we decouple DiT encoder and decoder to sep-
arately tackle discriminative and generative objectives. In
particular, by encoding discriminative pairs with student
and teacher DiT encoders, a new discriminative loss is de-
signed to encourage the inter-image alignment in the self-
supervised embedding space. After that, student samples
are fed into student DiT decoder to perform the typical gen-
erative diffusion task. Extensive experiments are conducted
on ImageNet dataset, and our method achieves a competi-
tive balance between training cost and generative capacity.

1. Introduction

Recent computer vision field has witnessed the rise of diffu-
sion models [29, 43, 62, 67] in powerful and scalable gen-
erative architectures for image generation. Such practical
generative model pushes the limits of a series of CV ap-
plications, including text-to-image synthesis [2, 53, 54, 57],
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Figure 1. Conceptual comparison between (a) our SD-DiT and (b)
MaskDiT. MaskDiT integrates generative diffusion process with
mask reconstruction auxiliary task, and the whole DiT encoder
plus decoder are jointly optimized for the two tasks. In contrast,
our SD-DiT frames mask modeling on the basis of discrimina-
tion knowledge distilling in a self-supervised manner, pursuing the
inter-image alignment in the joint embedding space of teacher and
student encoder. DiT encoder and decoder are decoupled to sepa-
rately tackle discriminative and generative diffusion objectives.

video generation [7, 23, 30, 80], and 3D generation [15, 76].

A recent pioneering practice is the Diffusion Trans-
former (DiT) [49], which inherits the impressive scaling
properties of Transformers [72] and significantly improves
the capacity & scalability of diffusion models. Unfortu-
nately, similar to Vision Transformers [18], the training
of DiT usually suffers from slow convergence and heavy
computation burden issues. The recent works [21, 81]
then turn their focus on investigating the way to accelerate
the training convergence of DiT. Many consider combin-
ing the Transformer-based diffusion process with additional
mask reconstruction objective via the popular mask strat-
egy [10, 16, 25]. In particular, MDT [21] simultaneously
encodes both the complete and masked image input, in or-
der to enhance the intra-image contextual learning among
the associated patches. MaskDiT [81] integrates generative
diffusion process with mask reconstruction auxiliary task to
optimize the whole DiT encoder and decoder (see Fig. 1b).
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Although significantly improved training efficiency is
attained, these DiT architectures with mask strategy still
struggle with extremely high-fidelity image synthesis and
suffer from several inherent limitations. (1) Training-
inference discrepancy: Mask strategy inevitably intro-
duces learnable mask tokens for triggering mask reconstruc-
tion during DiT training, but no artificial mask token is in-
volved for generative diffusion process at inference. This
training-inference discrepancy severely limits the genera-
tive capacity of learned DiT. Note that to alleviate such
discrepancy, MDT introduces additional dual-path interac-
tion between complete and masked inputs during training,
while sacrificing much higher computational and memory
cost. (2) Fuzzy relations between mask reconstruction
& generative diffusion process: Most mask-based DiT
structures process both the visible and learnable mask to-
kens via the same DiT decoder to jointly enable mask re-
construction and generative diffusion process, leaving the
inherent different peculiarity of each objective not fully ex-
ploited. It is noteworthy that such mask modeling can be re-
garded as intra-image reconstruction derived from the same
data distribution (e.g., from p,omask t0 P, for noised data
in MaskDiT). Instead, the generative diffusion process aims
to model the translations between the real data distribution
Pdata and a different noised data distribution p,. This issue
is also observed in MaskDiT, where mask reconstruction
objective will gradually overwhelm generative objective at
the late training stage. Accordingly, the joint training of the
two distinct objectives with fuzzy relations results in sub-
optimal training of DiT when applied to generative task.

To address these limitations, our work paves a new way
to frame mask modeling of DiT training on the basis of dis-
crimination knowledge distilling in a self-supervised fash-
ion. We propose a novel Diffusion Transformer model with
Self-supervised Discrimination, namely SD-DiT, that pur-
sues highly-efficient learning of DiT with higher generative
capacity. Technically, SD-DiT shapes the discrimination
knowledge distilling in a teacher-student scheme. As shown
in Fig. la, the input discriminative pairs of teacher and
student DiT encoders are derived from different diffusion
noises (i.e., ps, and p,, along the same Probability Flow
Ordinary Differential Equation (PF-ODE) of EDM [34]).
More importantly, different from typical mask strategy that
triggers mask reconstruction objective over both DiT en-
coder and decoder, SD-DiT decouples DiT encoder and
decoder to separately perform discrimination knowledge
distilling and generative diffusion process. Our launching
point is to fully exploit the mutual but also fuzzy relations
between self-supervised discrimination distillation and gen-
erative diffusion process through such decoupled DiT de-
sign. Eventually, we devise a new discriminative loss to en-
force the inter-image alignment of encoded visible tokens
between teacher and student DiT encoders in the joint em-

bedding space. Next, SD-DiT only feeds student samples
into student DiT decoder for performing the conventional
generative diffusion objective. Note that here our discrim-
inative loss can be interpreted as inter-image translation
between teacher sample (approximately real data distribu-
tion pyaa) and student sample (noised data distribution p,,),
which better aligns with generative diffusion objective than
conventional intra-image mask reconstruction objective. As
such, the joint optimization of discriminative and genera-
tive diffusion objectives strengthens DiT training both ef-
fectively and efficiently.

In the meantime, the student branch (student DiT en-
coder plus decoder) in our decoupled DiT design com-
pletely retains the same regular noise in EDM and mod-
ules as in the generative modeling at inference. The ad-
ditional teacher DiT encoder is simply updated as the Ex-
ponential Moving Average (EMA) of student DiT encoder
in a light-weight fashion, without incurring a heavy com-
putational burden for self-supervised discrimination. In
this way, our SD-DiT not only preserves the training effi-
ciency of mask modeling, but also elegantly circumvents
the training-inference discrepancy issue.

The main contribution of this work is the proposal of
Diffusion Transformer structure that fully unleashes the
power of self-supervised discrimination to facilitate DiT
training. This also leads to the elegant view of how a
training-efficient DiT architecture should be designed for
fully exploiting the mutual but also fuzzy relations between
mask modeling and generative diffusion process, and how
to bridge the training-inference discrepancy tailored to gen-
erative task. Through extensive experiments on ImageNet-
256x256, we demonstrate that our SD-DiT consistently
seeks a better training speed-performance trade-off when
compared to state-of-the-art DiT models.

2. Related Work

Diffusion Models. Denoising diffusion probabilistic
models (DDPMs) [29] greatly accelerate the develop-
ment of generative models, especially the tasks of text
conditioned image synthesis [2, 46, 53, 54, 57], image
editing [6, 12, 26, 42, 44, 48] and personalized image gen-
eration [20, 56]. As a score-based model [65, 66], DDPMs
introduce a forward process to gradually add Gaussian
noise to the data according to Stochastic Differential
Equation [67], and the iterative denoising procedures are
employed to generate high-quality samples. To tackle such
a time-consuming iterative nature of DDPM, fast sampling
strategies [28, 34, 41, 58, 63] and training diffusion in
the latent space [54, 73] are proposed. Besides, several
innovations for improving the network architecture of
diffusion models are attained to handle various challenging
generation tasks. Convolutional UNet [55] is the de-facto
configuration from recent diffusion models [29] and
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ADM [17] further boosts the generation quality of UNet
with scalable model size, including the adaptive group
normalization [75], the attention blocks [60, 70] and the
residual blocks from BigGAN [5].

Diffusion Transformers. Transformers [72] provide a
new paradigm to connect various domains across lan-
guage [16], vision [4, 25, 37, 39, 78, 79, 82], and multi-
modalities [38, 52], with remarkable scaling properties in
terms of model size [33] and pre-training efficiency [25].
Recently, some Transformer-based diffusion models [3, 32,
49, 77] are proposed to exploit the advantages of Trans-
former architecture in diffusion models. For example, Gen-
ViT [77] first presents that Vision Transformer (ViT) [18]
has the potential for image generation. Based on ViT with
long skip connections, U-ViT [3] is specifically designed
for the diffusion model which is characterized by integrat-
ing the time, the specific condition, and the noisy image
patches as tokens. DiT [49] systematically studies the scal-
ing behaviors of Transformers under the Latent Diffusion
Models (LDMs) [54] framework, and achieves better gener-
ation quality than the U-Net counterparts with a scaling-up
high-capacity backbone. In this work, we take the conven-
tional DiT blocks as backbone network and the generative
diffusion task is implemented as LDMs.

Self-supervised Learning with Diffusion Models. With
the dominant status of Transformers in vision and language,
the mask strategy from self-supervised learning [4, 16, 25]
has greatly propelled the development of generative models.
Following the paradigm of bidirectional generative model-
ing [51], MaskGiT [10] and MUSE [11] aim at predict-
ing randomly masked visual tokens which were first tok-
enized from images by a discrete VQ-VAE [19, 71]. It-
erative decoding is further utilized to rapidly generate an
image. Moreover, MAGE [36] employs such masked to-
ken modeling to unify representation pre-training and im-
age generation. On the other hand, diffusion models built
upon Transformers [18, 49] could be well integrated with
the mask image modeling [74]. For example, inspired
by MAE [25], MDT [21] and Mask-DiT [81] take advan-
tage of the asymmetrical encoder-decoder of MAE and
add the learning objective loss of reconstructing masked
tokens (without discrete tokenizers) to the original gener-
ative diffusion loss. Such combination with mask mod-
eling remarkably improves the training efficiency and the
contextual reasoning ability of the Diffusion Transformer
(i.e., DiT). It is noteworthy that mask modeling is built
upon the intra-view reconstruction while the typical self-
supervised methods with discriminative joint embedding
pretraining [8, 9, 13, 14, 22, 24] focus on the inter-view
alignment (invariance). Different from existing mask strat-
egy with intra-image contextual learning, our SD-DiT paves
a new way to endow mask modeling in DiT with self-
supervised discrimination ability via inter-image alignment.

3. Approach

In this paper, we devise a Diffusion Transformer with Self-
supervised Discrimination (SD-DiT) to frame mask model-
ing in efficient DiT training as self-supervised discrimina-
tion knowledge distilling. This section starts with a brief
review of the preliminaries of diffusion models. Then,
the overall decoupled architecture for discriminative and
generative objectives is elaborated. After that, two differ-
ent kinds of objectives for generative diffusion process and
mask modeling, i.e., generative loss and discriminative loss,
are introduced. Finally, the overall objective of SD-DiT at
the training stage is provided.

3.1. Preliminaries

Diffusion models introduce a forward process to progres-
sively add Gaussian noise to the data distribution pyy, ()
by a Stochastic Differential Equation (SDE) [67] over time:

dzy = p(z, t)dt + g(t)dwy, (1

where p and g are the drift and diffusion coefficients, and
w is the standard Brownian motion. With the time flowing
from O to T, we denote the marginal distribution of z; as
pt(z). Based on such an SDE, Song er al. [67] define the
probability flow ordinary differential equation (PF-ODE) in
the reverse-time sample generation process:

oy = (e, 1) — 5o(t)Valogp@)ldt. @)
Recent EDM [34] proposes to add Gaussian noise with
mean zero and standard deviation ¢ into the data distri-
bution. Specifically, EDM utilizes p, (z) instead of p.(z)
and configures p(x,t) := 0 and g(t) := /2t in Eq. (2).
In this case, the resulting perturbed distribution is given by
Po () = paaa(@) * N'(0,5°I), where  denotes the convo-
lution operation. In other words, the real data £y ~ Paa ()
can be directly diffused as:

Z, =20 +n, n~N(0,0°). 3)
And the corresponding PF-ODE in EDM is presented as:
dex = -0V, IngU(x)dU7 (S [Uminy Umax]a 4)

where V logp,(z) is the score function [67]. As such,
diffusion models are basically regarded as score-based gen-
erative models [63, 65, 67]. To avoid numerical instabil-
ity in ODE solving, o, is a small positive value and thus
Do () A Daa(z), While opmax is large enough so that
Do (Z) 18 close to a tractable Gaussian distribution. The
training objective of EDM is to minimize the expected Lo
denoising loss for £g ~ pyaa(z) separately for each o, by
parameterizing a denoiser network as Dy:

Eao~paws Enn(0,021) | Do (To +n,0) — 0|3 (5)
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Figure 2. The overview of our SD-DiT. During training, the stu-
dent view is diffused with regular noise as in EDM formulation,
while the teacher view is derived from fixed minimum noise of the
consistency function that is close to real data distribution. SD-DiT
feeds the discriminative pair into teacher and student DiT encoders
to perform self-supervised discriminative process within the joint
embedding space. Meanwhile, only the student DiT encoder and
DiT decoder undertake the generative diffusion process. At infer-
ence, all patches are fed into student branch for sampling.

The estimated score function is thus measured as:
Ve logps(x) = (Dg(xs,0) —x,)/0°. (6)

Based on the formulation of EDM, Consistency Models [64,
68] propose to learn a consistency function whose outputs
of arbitrary pairs on the PF-ODE trajectory (Eq. (4)) are
consistent with Z, . ~ Do, (€) & Pyaa(x). Formally, the
consistency function is defined as:

[:(Z5,0) = 20, @)

and reflects an important property of self-consistency:
f(xaa G) = f($0/7 O',), a, o e [Umina O'max]~ (®)

The diffusion noising schedule in our SD-DiT follows the

basic formulation of EDM. And the discrimination objec-
tive in our SD-DiT is framed on the basis of the theory of
the consistency function (Eq. (7)).

3.2. Overall Architecture

The motivation of our SD-DiT is to exploit self-supervised
discrimination to facilitate the efficient training of Diffu-
sion Transformer. Fig. 2 illustrates the overall architecture

of SD-DiT, which triggers mask modeling as discrimination
knowledge distilling in a teacher-student scheme. Decou-
pled Encoder-Decoder Structure. Technically, our SD-
DiT consists of teacher/student DiT encoders and one DiT
decoder, and the core generative objective is framed on the
basis of latent space as LDM [54]. The additional discrim-
inative objective is shaped as inter-image alignment among
teacher and student DiT encoders in self-supervised joint-
embedding space [1, 9]. Considering the fuzzy relations
between mask modeling and generative diffusion process,
here we leverage a decoupled encoder-decoder structure
to perform the joint training of generative and discrimina-
tive objectives, rather than optimizing the whole encoder-
decoder with mask reconstruction objective as in existing
methods [81]. Specifically, SD-DiT feeds the discrimina-
tive pairs into teacher and student DiT encoders to con-
duct discrimination knowledge distilling. After that, only
student samples are fed into student DiT decoder to per-
form generative diffusion process. In this decoupled de-
sign, the discriminative objective only updates DiT encoder
by empowering it with inter-image discriminative capacity.
Meanwhile, DiT decoder is solely optimized with genera-
tive objective by retaining the same regular noise to nicely
mimic the generative diffusion process at inference.
Discriminative Pairs. In an effort to trigger discrimina-
tive objective, we construct the input discriminative pairs
based on the EDM formulation (Eq. (3)). Since the student
branch (including student DiT encoder and decoder) will
perform both the generative and discriminative objectives,
here the student view should be diffused regularly within a
large range, similar to MaskDiT [81]: 2, = o +n, n ~
N(0,021), 0s € [Omin,Omax]- For the teacher view, we
take inspiration from the InfoMin principle [69] in self-
supervised learning, and choose the fixed minimum noise
of the consistency function [64, 68] to construct input sam-
ples: 2, = o +n, n ~ N(0,02, I). As such, the noised
distribution of teacher view can be the closest one to the
original data distribution (Zy, ~ P, (Z) &~ Paaa(z)) and
far away from the noised student view. Note that we em-
pirically evaluate various teacher noise across [min, Gmax]
in Sec. 4.4, and attain the similar observations as in In-
foMin principle [69]: The noised teacher view too close to
the noised student view could be harmful to self-supervised
discriminative learning. Accordingly, we use the fixed min-
imum noise for teacher view in practice.

3.3. Generative Objective

Inspired by the training efficiency and location contextual
awareness [21, 81] brought by mask strategy, we follow the
typical mask modeling techniques (e.g., [25]) to frame the
generative objective via asymmetric encoder-decoder struc-
ture along the student branch.

Mask Strategy. The image will be divided into n non-
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overlapping patches through the patch embedding layer of
DiT. Let M denote the binary random mask with the same
size of non-overlapping patches. It is worth noting that
MAE and MaskDiT additionally leverage the mask M to
learn additional mask tokens in mask reconstruction auxil-
iary task. Instead, our SD-DiT solely utilizes the mask M to
separate the noised student view into visible patches (v, =
Zss © (1 — M)) and invisible patches (D, = £, © M),
where © indicates element-wise multiplication on patches.
Student Branch. Given the visible and invisible patches
via mask strategy, the student branch applies the typical
asymmetric encoder-decoder architecture [25, 81] to im-
prove the training efficiency. The student DiT encoder can
be built with various DiT-Small/Base/XL backbones, while
the lightweight student DiT decoder consists of a fixed num-
ber of blocks (i.e., 8 DiT blocks, similar to the configu-
rations of MAE [25].). The student DiT encoder Sy only
operates over the visible patch and obtains the visible to-
kens Sp(v,). Then the student decoder Gy is fed with the
complete token set H. Such an asymmetric paradigm with
a high mask ratio proposed by MAE [25] greatly reduces
the training cost because the main computation burden is
carried on the large-scale encoder.

Generative Loss. Recall that in existing mask modeling
techniques (e.g., MAE and MaskDiT), the input token set H
of decoder commonly augments the visible tokens Sp(v,,)
with learnable mask tokens, according to the positions of
the mask M. The mask reconstruction auxiliary task is in-
cluded to recover the learnable mask tokens from the invis-
ible patches v. It is noteworthy that such mask reconstruc-
tion objective can benefit the representation learning, but
leaves the inherent different peculiarity of mask modeling
and generative objectives under-exploited. MaskDiT also
points out the fuzzy relations between these two objectives,
where mask reconstruction loss will gradually overwhelm
the generative objective at the late training stage.

To alleviate this limitation, we discard the mask recon-
struction loss and optimize the DiT decoder with only gen-
erative loss. Formally, for the complete token set H, we
remove the learnable mask tokens and directly insert the in-
visible patches ¥ onto the visible tokens Sy (v, ), according
to the positions of mask M. Next, the generative loss op-
erates over the compete tokens, which is measured in the
form of EDM (Eq. (5)):

L= EmONPden~N(0,o§I)||D0(x0 +n,05, M) — x0H§7 )

where Dy denotes student branch including the student DiT
encoder Sy and DiT decoder Gy.

3.4. Discriminative Objective

Unlike typical mask modeling with mask reconstruction
loss, our SD-DiT paves a new way to frame mask model-
ing of DiT training on the basis of discrimination knowl-

edge distilling in a self-supervised manner. Inspired by self-
distilling loss in ViT-based self-supervised methods (i.e.,
DINO [9] and iBOT [82]), we design discriminative loss to
enforce the inter-image alignment of encoded visible tokens
between teacher and student DiT encoders.

Specifically, the teacher sample z,, is fed into teacher
DiT encoder Ty, yielding the output tokens Ty (5, ). Next,
SD-DiT performs discriminative loss over the visible tokens
between teacher ey = Ty (2,,) and student es = Sp(v,)
in the joint encoding space. A three-layer projection head
Jo operates on eg and et and outputs the softmax probabil-
ity distribution over K dimensions. By denoting the dis-
tribution on each student and teacher token as Ps, and Pr,
(¢ € (1 — M) indicates the index of visible tokens.), the
softmax probability distribution of student is measured as:

P — exp(Jo(es,)/Ts) k]

i K . ?
> =1 exp(Jjo(es,)/s)[k]

where the student temperature 75 controls the sharpness of

the softmax distribution. A similar formulation also holds

for teacher: Pr, with teacher temperature 7r. For each visi-

ble token 7, the discrimination loss targets aligning the dis-

tribution between teacher and student by minimizing the
cross-entropy loss:

Lp(i) = =) Pr,log(Ps,). (11)
k

(10)

The final discrimination loss is calculated over all visible
patch tokens and the [CLS] token:
ch(liilM). > Lp(i)+ Lp([cLs)). (12)
i€(1—M)
Besides, we adopt the centering technique in DINO to avoid
feature collapse, where the batch mean statistic is used to
whiten the features before softmax during each training iter-
ation. For simplicity, here we leave the details of centering
and the complete pseudo-codes to supplementary materials.
In summary, the overall training loss is the combina-
tion of discrimination loss and generative loss: Lp + Lg.
The parameters of student branch (student DiT encoder and
decoder) are optimized by this overall loss. And teacher
DiT encoder (parameterized as Ty/) is updated as the ex-
ponential moving average (EMA) of student DiT encoder:
Tor = BTer + (1 — B)Sp. Here 8 is a momentum coef-
ficient. During training, the teacher is updated by EMA
without SGD back-propagation, thereby only requiring ex-
tremely lightweight computational cost. At inference, the
teacher is completely removed and no burden is introduced.

4. Experiments
4.1. Implementation Details

In this section, we provide the settings of model architec-
ture, training setup, and evaluation details. We list the de-
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tailed configurations in supplementary material.

Model Architecture. The basic Transformer blocks in
our backbone network fully adopt the DiT [49] block which
fuses conditional time and class embedding with adap-
tive layer normalization [50]. We follow the paradigm of
LDM [54] and DiT to perform diffusion generation in the la-
tent space of the frozen pre-trained VAE model [54], which
downsamples a 256 x 256 x 3 image into a 32 x 32 x 4 la-
tent variable. Inspired by [25, 81], we adopt the asymmetric
encoder-decoder for generative diffusion process. The stu-
dent DiT encoder Sy employs DiT-Small/Base/XL-2 (patch
size: 2) and the small-scale DiT decoder Gy contains 8
DiT blocks, similar to the configurations of MAE. For the
discriminative objective, we mainly follow the settings of
iBOT [82] and DINO [9]. The teacher DiT encoder 7y is
the EMA of student encoder, and the momentum coefficient
increases from 0.996 to 0.999 at the end of training. The
three-layer projection head jy outputs the [CLS] and patch
tokens with K = 8,192 dimension for softmax probability
distribution in discriminative loss Eq. (11).

Training Setup.  Following previous Transformer-based
diffusion models [21, 49, 81], we conduct all the exper-
iments on ImageNet-1K with 256x256 resolution and a
batch size of 256. We adopt the most common settings of
DiT, e.g., AdamW [40] optimizer with a constant le — 4
learning rate and no weight decay. Without specified stat-
ing, the mask ratio is set to 0.2 on the student view, and no
mask is applied on the teacher view. No data augmentation
is employed for both student and teacher inputs since our
model will learn the discrimination among various noised
views. Notice that the mixed precision might lead to nan-
loss during training, so we only apply mixed precision for
evaluation on small scale backbone (DiT-S) and transfer to
full precision for large scale backbone (DiT-B and DiT-XL).
All experiments are conducted on 8 x 80GB-A100 GPUs.
Evaluations. To evaluate both the diversity and quality
of our generative model, we utilize the most commonly
adopted Fréchet Inception Distance (FID) [27] as evalua-
tion metric. For fair comparison with previous works [21,
49, 81], we report FID-50K from ADM’s TensorFlow eval-
uation suite [17] with the reference batch. We report the
FID scores of the class-conditional sampling. Besides, we
provide more supporting metrics including Inception Score
(IS) [59], sFID [45] and Precision/Recall [35].

4.2. Training Speed vs. Performance

Here we evaluate our SD-DiT with regard to both train-
ing speed and generative performance. Fig. 3 shows the
training speed (i.e., training steps per second) and FID-
50K score of SD-DiT in comparison to state-of-the-art DiT
models (DiT [49], MDT [21], and MaskDiT [81]) on 8 x
A100 GPUs. For fair comparison, the backbone network of
each run is built on the same scale of DiT-S/2, same batch

20.0 80
mmm 80% patches —e— FID score
1751 mmm 100% + 70% patches

100% patches

15.01 mmm 50% patches

70
I 60

*509
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Figure 3. Training speed (training steps per second) vs. gener-
ative performance (FID-50K score) for our SD-DiT, MDT, DiT,
and MaskDiT on 8 x A100 GPUs. We also label each run with
the number of input patches.

size (256) and training iterations (400k). For SD-DiT and
MaskDiT, we follow MDT and implement them with the
same Float32 precision. For a comprehensive analysis, we
also label each run with the number of input patches. As
shown in Fig. 3, our SD-DiT (FID: 48.39; speed: 9.2 step-
s/sec or 0.11 sec/step) obtains better generative performance
with faster training speed than MDT (FID: 53.46; speed: 2.4
steps/sec or 0.42 sec/step) and DiT (FID: 68.40, 5.03 step-
s/sec or 0.20 sec/step). This is due to that MDT simulta-
neously forwards and backwards both the complete (100%)
and visible patches (70%), and DiT operates over the com-
plete (100%) patches, thereby resulting in slower training
speed. In contrast, our SD-DiT and MaskDiT only forward
and backward partial patches (80%/50%), leading to faster
training speed. Furthermore, unlike MaskDiT that opti-
mizes the whole encoder-decoder with mask reconstruction
objective, our SD-DiT adopts a decoupled encoder-decoder
structure to better exploit the mutual but also fuzzy relations
between generative and discriminative objectives, leading
to the best FID-50K score. The results basically demon-
strate the effectiveness of our SD-DiT which seeks a com-
petitive training speed-performance trade-off.

4.3. Performance Comparison

Comparison among Backbones in Different Scales.
Tab. 1 provides comprehensive comparisons between our
SD-DiT and several DiT-based state-of-the-arts under three
different model sizes (DiT-S/B/XL). Notice that Mask-DiT
only conducts experiments on DiT-XL backbone so we do
not report its results on DiT-S and DiT-B backbones. The
batch size of all models is set as 256 for fair comparison.
Specifically, under the same small-scale backbone (DiT-S),
our SD-DiT-S (48.39) exhibits better performance than DiT-
S (68.40) and MDT-S (53.46) by a large margin. This sig-
nificant performance improvement of FID score is consis-
tently observed when transferring to the larger scale back-
bones (DiT-B, DiT-XL). The results clearly validate the ad-
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Method Training Steps(k)  FID-50K
DiT-S/2 [49] 400 68.40
MDT-S/2 [21] 400 53.46
SD-DiT-S/2 400 48.39
DiT-B/2 [49] 400 43.47
MDT-B/2 [21] 400 34.33
SD-DiT-B/2 400 28.62
DiT-XL/2 [49] 7000 9.62
MaskDiT-XL/2 [81] 1300 12.15
MDT-XL/2 [21] 1300 9.60
SD-DiT-XL/2 1100 9.66
SD-DiT-XL/2 1300 9.01

Table 1. Performance comparison with state-of-the-art DiT-based
approaches under various model sizes on ImageNet 256 x256 for
class-conditional image generation (batch size: 256).

50 —e— DIiT-XL/2
—— MaskDiT-XL/2

40 —+— SD-DiT-XL/2
n 30
[

20

10

0

0.0 0.5 1.0 1.5 2.0 2.5

Training steps 1e6
Figure 4. Comparison of convergence speed with SOTA DiT-based
approaches in DiT-XL backbone (batch size: 256). The results of
DiT and MaskDiT are directly cited from MaskDiT [81]. Our SD-
DiT-XL/2 consistently outperforms DiT-XL/2 and MaskDiT-XL/2
across training steps, leading to better training convergence.

vantage of self-supervised discrimination knowledge distill-
ing for mask modeling in Diffusion Transformer.

Comparison on Convergence Speed in Large Scale
Backbone. Here we evaluate the convergence speed of
our SD-DiT-XL/2 based on large-scale backbone. Fig. 4 il-
lustrates the comparison of convergence speed by showing
the FID scores in different training steps for our SD-DiT
and various baselines. The batch size of each run is set as
256 for fair comparisons, and the maximum training step is
2400k. Note that the results of DiT and MaskDiT in dif-
ferent steps are directly copied from the reported results in
MaskDiT [81]. As shown in Fig. 4, SD-DiT persistently
reflects better training convergence than DiT and MaskDiT
across the whole training steps. The detailed performance
comparisons against MDT are listed in Tab. 1, where our
SD-DiT (FID: 9.01) brings higher results than MDT (FID:
9.60) and MaskDiT (FID: 12.15) with 1300k training steps.
It is worthy noting that SD-DiT trained with 1300k steps
outperforms typical DiT with 7000k steps (FID: 9.01 vs.
9.62), achieving about 5x faster training progress. In ad-
dition, SD-DiT (1100k steps) achieves a comparable FID

Method Cost(Iterx BS) FID] sFID| IST PrectRect

VQGAN [19] - 15.78 783 - - -
BigGAN-deep [5] - 6.95 7.36 171.4 0.87 0.28
StyleGAN [61] - 230 4.02 265.12 0.78 0.53

-DDPM [47] - 1226 - - 070 0.62
MaskGIT [10] 1387kx256 6.18 - 182.1 0.80 0.51
CDM [31] - 488 - 15871 - -

ADM [17] 1980kx256 10.94 6.02 100.98 0.69 0.63
ADM-U [17] — 749 5.13 127.49 0.72 0.63
LDM-8 [54] 4800kx64 1551 - 79.03 0.65 0.63
LDM-4 [54] 178kx 1200 10.56 - 103.49 0.71 0.62

MaskDiT-XL/2[81] 2000kx 1024 5.69 10.34 177.99 0.74 0.60

DiT-XL/2 [49] 7000k x256 9.62 6.85 121.50 0.67 0.67
MDT-XL/2 [21] 2500k x256 7.41 4.95 121.22 0.72 0.64
SD-DiT-XL/2 2400kx256 7.21 5.17 144.68 0.72 0.61

Table 2. Performance comparison with state-of-the-art methods on
ImageNet 256 X256 for class-conditional image generation. Simi-
lar to most DiT-based approaches, here we report the results of our
SD-DiT in DiT-XL backbone with 256 batch size, while MaskDiT
reports results with the largest batch size (1024).

Method | FID

SD-DiT 53.72
w/o Discriminative Objective (Lp) 62.84
w/o Mask Strategy (mask ratio=0) 58.92

Table 3. Ablation studies on SD-DiT-S/2 with 400k training steps.

performance with MDT (1300k steps) (9.66 vs. 9.60).
Such fast convergence again confirms the power of self-
supervised discrimination for facilitating DiT training.
Comparison with State-of-the-Art Generative Meth-
ods. Tab. 2 summarizes the performance comparison
against state-of-the-art generative methods. We strictly
follow MDT [21] to list the cost comparison column as
“IterxBatchsize”. We follow the most DiT-based ap-
proaches and report the results in DiT-XL backbone with
larger training iterations (2400k). Generally, under the same
batch size of 256, our SD-DiT-XL/2 achieves a better FID
score than DiT-XL/2 and MDT-XL/2. Although MaskDiT-
XL/2 obtains the best FID score among all DiT-based meth-
ods, it benefits from the extremely large batch size of 1024.
A more fair comparison between our SD-DiT and MaskDiT
can be referred to Fig. 4, where each run is trained with
the same batch size (256). In that figure, SD-DiT-XL/2
leads to consistent performance boost against MaskDiT-
XL/2, which clearly validates our proposal.

4.4. Ablation Study

We conduct ablation study to examine each component in
SD-DiT. Considering that DiT training is computationally
expensive, we adopt a lightweight setting for efficient eval-
uation: using small scale backbone (DiT-S) with 400k train-
ing steps, bs 256 and 50% mask ratio unless specified.

Effect of Discriminative Objective. Tab. 3 details the
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Figure 5. FID vs. mask ratio on SD-DiT-S/2 with 400k steps.

performances of ablated runs of our SD-DiT. Specifically,
the first row shows the FID score (53.7) of our complete
SD-DiT-S/2 with 50% mask ratio. Next, by removing dis-
criminative objective (Lp) and the corresponding teacher
branch from SD-DiT (2nd row), the generative performance
drops by a large margin. This demonstrates the merit of our
self-supervised discrimination tailored to Diffusion Trans-
former. In addition, when removing mask strategy of SD-
DiT (3rd row), a clear performance drop is attained, which
highlights the effectiveness of mask strategy that triggers
the learning of intra-image contextual awareness [21, 81].

Effect of Mask Ratio. To further seek the sweet point of
the balance between generative and discriminative task, we
vary mask ratio from O to 1 and show the corresponding FID
scores in Fig. 5. As shown in Fig. 5, the best performance
of our SD-DiT is attained when the mask ratio is 20%, and
thus we adopt this ratio practically in all experiments of
Sec. 4.3. We additionally show the performance of MDT-
S/2 trained with 600K steps under its optimal 30% mask ra-
tio (the fixed green dashed line in Fig. 5, 50.3), which is in-
ferior to our SD-DiT-S/2 with 400k steps (20% mask ratio,
48.4). Moreover, MaskDiT points out one interesting obser-
vation with regard to mask ratio: MaskDiT with 75% mask
ratio achieves an extremely degraded FID score (121.16 of
MaskDiT-XL/2). In other words, when 75% patches par-
ticipate in the mask reconstruction task and only 25% local
patches focus on the generative task, the generative abil-
ity of MaskDiT will be significantly weakened. This re-
veals the fuzzy relations between mask reconstruction and
the generative task. Instead, in our SD-DiT-S/2, even when
the mask ratio is increased to 90%, the corresponding FID
score (61.0) is still higher than that of DiT-S/2 with 400k
steps (68.40 in Tab. 1). These findings clearly verify that
our design could alleviate the negative effect of fuzzy rela-
tions between mask modeling and generative task.

Effect of Noise of Teacher View. Recall that in our SD-
DiT, the noise of student view is set as z,, = Zo +
n, n ~ N(0,02]), 05 € [Omin, Tmax] based on EDM for-
mulation (Eq. (3)). Following EDM [34] and Consistency
Model [64, 68], we set omin = 0.002 and o, = 80. Here
we further test the effect of noise of teacher view. Specif-

65

60
a
w 55

. /" ~-SD-DIT N

A Same distribution  "_
el ---Distribution of o5 TS
45 | TTTTT e

0.002 0.005 0.01 0.1 03 05 1.0 10 20 80
Teacher noise scale

Figure 6. FID vs. teacher noise on SD-DiT-S/2 with 400k steps.

ically, we first set the noise of teacher view from the same
distribution as student view, i.e., Lo, = ZTo + 1, N ~
N(0,021), o1 € [Omin, Omax)- As depicted in the yellow
dashed line in Fig. 6, the corresponding FID (63.4) is some-
what unsatisfying. This result shows that teacher noise de-
rived from the same distribution of student noise can not
make the discriminative loss practical for generative task.
Such observation aligns with InfoMin principle [69] in self-
supervised learning: reducing the mutual information be-
tween two variant views can bring a good pre-train model
learning with sufficient view-invariance. That’s why we
choose the fixed minimum noise as in Consistency Mod-
els [64, 68] for teacher view, i.e., To, = To + N, N ~
N (0,02, 1). In this way, the noise distribution of teacher
view can be the closest one to the original data distribution
(Z5y ~ Pdaa()) and far away from student view. We em-
pirically evaluate various teacher noise within [Omin, Timax]
(see the red curve in Fig. 6), and the fixed minimum noise
(scale: 0.002) can get the best performance (53.7). Further-
more, we draw the approximate log-normal probability den-
sity distribution (PDF) of og based on EDM (see the black
dashed line in Fig. 6). When the fixed oy is set within the
scale with high density (e.g., 0.3 and 0.5 close to the mean
of o), the corresponding FID of SD-DiT drops drastically
(e.g., 66.2 when o = 0.5) and is even worse than the case
of the same distribution (yellow dashed line). This again re-
veals that the noise scale of teacher view should be far away
from the distribution of og.

5. Conclusions

In this work, we propose a Diffusion Transformer archi-
tecture, namely SD-DiT, to facilitate the training process
by unleashing the power of self-supervised discrimination.
SD-DiT novelly frames mask modeling in a teacher-student
manner to jointly execute discriminative and generative dif-
fusion processes in a decoupled encoder-decoder structure.
Such design nicely explores the mutual but also fuzzy re-
lations between mask modeling and generative objective,
leading to both effective and efficient DiT training. Experi-
ments conducted on ImageNet validate the competitiveness
of SD-DiT when compared to SOTA DiT-based approaches.
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