
SEAS: ShapE-Aligned Supervision for Person Re-Identification

Haidong Zhu Pranav Budhwant Zhaoheng Zheng Ram Nevatia
University of Southern California

{haodongz, budhwant, zhaoheng.zheng, nevatia}@usc.edu

Abstract

We introduce SEAS, using ShapE-Aligned Supervision,
to enhance appearance-based person re-identification.
When recognizing an individual’s identity, existing methods
primarily rely on appearance, which can be influenced by
the background environment due to a lack of body shape
awareness. Although some methods attempt to incorpo-
rate other modalities, such as gait or body shape, they
encode the additional modality separately, resulting in ex-
tra computational costs and lacking an inherent connection
with appearance. In this paper, we explore the use of im-
plicit 3-D body shape representations as pixel-level guid-
ance to augment the extraction of identity features with body
shape knowledge, in addition to appearance. Using body
shape as supervision, rather than as input, provides shape-
aware enhancements without any increase in computational
cost and delivers coherent integration with pixel-wise ap-
pearance features. Moreover, for video-based person re-
identification, we align pixel-level features across frames
with shape awareness to ensure temporal consistency. Our
results demonstrate that incorporating body shape as pixel-
level supervision reduces rank-1 errors by 1.4% for frame-
based and by 2.5% for video-based re-identification tasks,
respectively, and can also be generalized to other existing
appearance-based person re-identification methods.

1. Introduction
Person re-identification [35, 67], which aims to identify an
individual from a collection of pedestrian images or videos
captured by non-overlapping cameras, is a crucial task for
biometric understanding. Existing methods [20, 33, 65, 89]
primarily focus on a person’s appearance, which can be af-
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Figure 1. Rank-1 accuracy of using SEAS on ResNet-50 back-
bone on frame-based (MSMT17 [68] and Market1501 [81]). and
PSTA as encoders compared with other state-of-the-art methods
on and video-based (LS-VID [37] and MARS [82]) person re-
identification datasets.

fected by environmental variations as the appearance is of-
ten intertwined with the background. We explore the use
of 3-D body shape as supervision to enhance the human-
centric appearance and demonstrate significant improve-
ment on public datasets compared to other state-of-the-art
methods, as illustrated in Figure 1.

When introducing a second modality, existing re-
identification methods [5, 40, 52, 78] often employ a sep-
arate branch alongside appearance for person identifica-
tion. While these methods can enhance the features for
re-identification, they encode each modality independently,
thereby diminishing the integration of the two input modali-
ties and weakening their connection. Additionally, the extra
encoder required introduces new parameters to the network,
leading to increased model size and computational cost.

In this paper, we introduce the use of human body
ShapE-Aligned Supervision, abbreviated as SEAS, to en-
hance appearance-based re-identification methods. Instead
of using a secondary modality as model input, we utilize
it to guide the generation of identity features with a train-
able body shape extractor. This extractor takes identity
feature maps from the identity encoder and converts them
into pixel-level features that represent 3-D body shapes.
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Throughout training, we direct the encoder to augment fea-
ture extraction with pixel-level shape-related information
by supervising the generation of body shapes with an ex-
ternal pretrained model. This also causes the identity fea-
ture map to maintain more appearance information across a
wider area in the body image, as it is the input for decoding
pixel-level body shape features. During inference, the ex-
tractor is discarded, allowing the encoder to adeptly extract
both shape and appearance-related information without in-
curring extra time cost. This supervision can be adapted to
various encoders, as we demonstrate later in Section 4.3.

As the model input can either be a single frame or a video
consisting of multiple consecutive frames, we employ dif-
ferent strategies to leverage the 3-D body shape in augment-
ing appearance. For frame-based person re-identification,
where the input is a single RGB image, we incorporate a
pixel-level implicit representation as supplementary guid-
ance to provide body shape details in conjunction with ap-
pearance. During training, after the encoder produces the
feature map, we attach a series of deconvolutional layers,
functioning as the extractor, to upscale this map to a pixel-
level representation. We supervise the decoded features
from the extractor using the feature map generated by the
PIFu [55] encoder with pixel-level shape guidance.

Different from a single frame, video input provides a
consistent appearance across multiple frames since they de-
pict the same person. Therefore, we integrate cross-frame
appearance consistency with body shape alignment during
training based on the per-pixel implicit body representation.
We project the pixel-level features of each point on the body
in every frame of the same video onto a unified body model
and reduce the variance of the features at the same point,
enforcing point-level consistency. This alignment generates
a shared body model that captures appearance in 3-D space,
allowing the identity encoder to extract features for both ap-
pearance and body shape with temporal consistency.

As SEAS can be applied to both frame and video-based
re-identification, we assess it with both settings. For frame-
based re-identification, we evaluate SEAS with ResNet-50
on Market1501 [81] and MSMT17 [68]. For video-based
re-identification, we test it with PSTA [65] on MARS [82]
and LS-VID [37]. Our results show a 1.4% and 2.5% av-
erage reduction in rank-1 errors for frame and video-based
re-identification compared to state-of-the-art methods.

In summary, our contributions are as follows: 1) we in-
troduce SEAS, applying shape-aligned supervision to per-
son re-identification, utilizing 3-D body features in addition
to appearance without additional cost during inference; 2)
we propose a pixel-level feature alignment across frames in
video-based re-identification for temporal consistency; and
3) we present the superior performance and adaptability to
other encoders of using SEAS for both image and video-
based re-identification through extensive experiments.

2. Related Works

Appearance-based Person Re-Identification relies on
the visual appearance of individuals in images for identifica-
tion [25, 31, 46, 70, 83, 91]. Earlier works were focusing on
processing the entire image [2, 30, 60, 64, 71, 84], match-
ing the query image with gallery images using the highest
response of appearance similarities. Recently, the focus has
shifted toward part-based feature extraction strategies for
re-identification, aimed at minimizing background biases
and concentrating more on human appearance for identity
matching. These approaches include part-based recogni-
tion [10, 17, 24, 33, 38, 59, 89] and attention-based meth-
ods [7, 58, 65, 79]. However, these attention-driven meth-
ods tend to generate smaller attention maps, leading to a
reliance on a limited portion of the image instead of the ap-
pearance of the whole body.

External Modalities for Re-Identification serve as ad-
ditional guidance for identifying a person by offering extra
distinguishable information beyond appearance. Two of the
most common modalities besides appearance are gait [3, 16,
39, 85, 86] and 3-D body shape [5, 40, 45, 66, 78]. Gait
can be captured from long distances but requires videos as
input with specific walking patterns. For 3-D body mod-
eling, existing methods [19, 40, 88] employ shape priors
from SMPL [43]. However, these methods don’t accurately
model the body shape and encode the body shape sepa-
rately, not integrating it comprehensively with appearance.
As there has been development of other body shape recon-
struction methods with implicit representation, integrating
these reconstructions can further provide additional guid-
ance to appearance in the input images.

Body Shape Reconstruction has seen significant im-
provement over recent years. Earlier efforts are primarily
focused on explicit methods [43, 49] which include strong
priors concerning body shape. However, recent research
trends are shifting towards more advanced implicit repre-
sentations, such as implicit functions [14, 48, 51, 55, 56, 61]
and Neural Radiance Fields (NeRF) [29, 50, 69, 80, 87].
Some approaches are now attempting to bridge between
SMPL-based methods [43] and refine the final reconstruc-
tion results [73, 74, 87]. While most of these methods ex-
hibit promising properties for fine-grained body shape re-
construction and rendering, their potential utility for down-
stream vision tasks remains largely unexplored.

3. Method

As an enhancement to existing appearance-based person re-
identification models, SEAS decodes body shape with an
extractor that follows the identity feature encoder generat-
ing convolutional features for re-identification, as illustrated
in Figure 2. During inference, only the identity encoder is
retained, ensuring there is no additional computational cost.
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Figure 2. Person re-identification uses implicit body shape extraction as supervision, with (left) the identity feature encoder along with the
SEAS pipeline, and (right) a brief overview of the PIFu [55] pipeline. Trapezoids in the figures are trainable models and GAP stands for
Global Average Pooling. Dotted lines are used only during training and are excluded during inference.

In the following subsections, we start by providing a
brief overview of the person re-identification task and the
feature encoders used to generate identity features in Sec-
tion 3.1. We then detail SEAS in Section 3.2 and provide
an in-depth discussion on the training and inference phases
with further analysis in Section 3.3.

3.1. Identity Feature Encoder

When taking a video V = {Ii} or a single frame image I
as input, person re-identification aims to encode the corre-
sponding identity feature F ID from the input modality and
use it to search in the gallery for the best match. The label
of the feature with the highest response in the gallery is con-
sidered as the prediction. As we have two different types of
input, videos and single frames, we have two model varia-
tions for the feature encoding.

To process single-frame inputs, we first resize the input
image to 256×128 and employ a ResNet-50 [21] initialized
with parameters trained on ImageNet [54] to encode the im-
age I into its corresponding feature map Fmap. This map is
the output from the last convolutional layer in the encoder,
which retains spatial information. We then apply a global
average pooling (GAP) layer to pool the Fmap, transform-
ing the H ×W × C feature maps into a 1× 1× C feature
vector F ID used for re-identification following

F ID = GAP(Fmap). (1)

Similar to the extraction of the feature map from a single
image, when using a video as input with sequential images
{Ii}, we utilize a shared ResNet-50 [21] to encode each
frame into its corresponding feature maps {Fmap

i }. We fol-
low PSTA [65] and construct the pyramid spatial and tem-
poral attention to aggregate features from different frames,
resulting in the final feature map Fmap. As the encoder is
not the contribution of this work, more details are available
in [65]. We then follow Equation 1 to transform the feature
map into a feature vector for identification.

3.2. SEAS: Shape-Aligned Supervision

To use the 3-D shape information as guidance to input
frames for re-identification, we introduce SEAS, shape-
aligned supervision, to enhance the identity encoder with
body shape alongside appearance. We apply SEAS for
frame-based and video-based tasks separately as single
frames primarily emphasize extracting features from an in-
dividual image, while frames within a video are intrinsically
interlinked and can be represented by a shared 3-D body
model. Given these considerations, we employ pixel-level
implicit representation [55, 56] to supervise single frame in-
put. For videos, we introduce per-pixel feature calibration
atop implicit features to emphasize temporal consistency.

SEAS for Frame-based Re-Identification. We inte-
grate pixel-level representations extracted from pretrained
PIFu [55] as supervision for framewise body shape gen-
erated from SEAS. PIFu [55], as depicted on the right of
Figure 2, characterizes body shape using a feature map that
implicitly records whether points in 3-D space are inside
or outside the object. Given an input image I , PIFu extracts
per-pixel level features F P with an encoder. For each pixel,
PIFu combines a depth value, denoted as z, with its associ-
ated feature F P (x, y) sampled from the feature map, and
uses their concatenation as input to an MLP network to de-
code the signed distance value at that specific depth. The
signed distance [11, 48] indicates the distance to the near-
est surface, with the sign determining whether the point is
inside or outside the object. By aggregating these dense
signed distance values in 3-D space, PIFu can reconstruct
the object’s surface by locating the zero-value surface.

We employ the extracted pixel-level body shape repre-
sentation F P to guide the extraction of body shapes using
the encoded identity feature map Fmap. Since Fmap em-
anates from the last convolutional layer of the identity fea-
ture encoder, it retains the highest level of semantic repre-
sentation, along with spatial information before global av-
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Figure 3. Feature calibration across different frames. We use a
point near the left knee as an example. We warp the 2-D points
using a shared 3-D body shape and project them onto the feature
maps Fmap to extract point-level features with interpolation, fol-
lowed by a calibration loss Lcali. to reduce the variance of features
for corresponding points across different frames that are visible
and mapped to the same location on the shared body shape.

erage pooling. Furthermore, as we employ the feature post-
pooling directly for identification in frame-based input per
Equation 1, leveraging Fmap to decode body shape infor-
mation ensures maximal preservation of body features in
the final identification representation F ID. Given the pool-
ing operations in the identity and PIFu feature encoders, we
upscale Fmap to align with the size of F P as follows:

F body = UpConv · . . . · UpConv(Fmap). (2)

Here, F body represents the decoded per-pixel feature
map for the body shape. The UpConv sequence consists of
2-D transposed convolutions, BatchNorm, and ReLU, fol-
lowed by 2-D convolutions, BatchNorm, and ReLU, in that
order. We exclude BatchNorm and ReLU from the final
UpConv step because F P may include non-positive values.
The width and height of the feature map are doubled with
each UpConv layer, with the total number of layers deter-
mined by the size difference between Fmap and F body .

With the extracted body shape feature F body and the
corresponding PIFu-encoded feature F P , we apply Lrec to
train the identity encoder and the extractor in SEAS using
the smooth L1 loss following

Lrec =
1

HW

∑
SmoothL1(F body,F P ) (3)

to compute the average of per-pixel differences across fea-
ture maps of size H × W . The smooth L1 loss generates
reasonable gradients near the zero point of the differences
and prevents the model from overly penalizing values with
large deviations from zero.

SEAS for Video-based Re-Identification. Video input
includes appearance consistency across frames for the same
individual, while an encoder without such correspondence

awareness might generate disparate features due to varying
poses or image resolutions. Inspired by [50], which sug-
gests that the per-pixel appearance of the same body part
can be decoded from the same point-level features even with
different poses, maintaining pixel-level feature consistency
enforces appearance consistency across frames. Therefore,
in addition to SEAS for single frames, we integrate fea-
ture calibration for points across multiple frames that corre-
spond to the same body part, as depicted in Figure 3, which
ensures temporal consistency at the pixel level.

To align the body shape across different frames, we
adopt three steps for feature calibration: 1) extract the per-
pixel level features, 2) determine the correspondence be-
tween points across various frames and project the per-pixel
features onto a shared body shape, and 3) align the features
from different frames that represent the same point. We uti-
lize the feature maps from the identity encoder {Fmap

i } as
our input since they also maintain the highest level of se-
mantic representations and can avoid the potential conflict
between the alignment and {F P

i } during supervision.
With the extracted framewise per-pixel features, we es-

tablish dense correspondence using SMPL [43], which pro-
vides a predefined body shape with 6,890 vertices on the
body surface, ensuring each point has a specific order and
representation. For different frames in the video {Ii}, we
first warp the images using a shared body shape model to
build pixel-level point correspondence between the frames
and the shared body shape. We then sample k points on the
body shape and locate their corresponding points in each
frame, gathering the corresponding pixel-level features us-
ing bilinear interpolation from the nearest four points on the
feature map. As points may be occluded, we use the normal
to determine visibility and accordingly filter the features.

After collecting the features of these k points from the
frames in which they are visible, we calculate the variance
of the features for each point and aggregate them following

Lcali. =
1

kn

∑
k

∑
n

Variance(Fmap
i (xi, yi)) (4)

where n represents the number of frames in which the sam-
pled points are visible. By minimizing the variance for the
sampled k points, we can integrate the temporal consistency
across different frames within a single video.

3.3. Training and Inference

During training, we employ three different losses: the re-
identification loss LID, the reconstruction loss Lrec, which
supervises the 3-D shape features produced by the SEAS
extractor, and the feature calibration loss Lcali. for video-
based re-identification, aligning features of the same body
part across various frames. We provide more details about
LID in Section 4.1. The overall loss is defined as

L = LID + λ1Lrec + λ2Lcali. (5)
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where λ1 and λ2 are hyperparameters to balance the differ-
ent loss terms. λ2 is set to 0 when SEAS is applied exclu-
sively to frame-based re-identification tasks.

During inference, we detach SEAS from the identity en-
coder, keeping only the encoder for identity feature extrac-
tion. We process its output feature Fmap and convert it into
F ID for person identification using global average pool-
ing. Since the body shape features can be noisy, we re-
place each gallery feature with the average of features from
non-overlapping cameras and find the highest response of
cosine similarity. This ensures the number of gallery exam-
ples does not change for a fair comparison.

Discussion. As the input to the body shape extractor is
the output from the identity feature encoder, the only data
used to decode body shapes originates from this encoder.
Since pixel-level body shapes are predicted using the infor-
mation from pixel-level features, this process facilitates a
pixel-level integration of appearance and body shape infor-
mation. This ensures that the feature map Fmap, which is
used for re-identification after global average pooling, not
only is explicitly shape-aware but also maximally retains
the pixel-level appearance information for the body area to
decode pixel-level body shapes, instead of focusing on a
small patch of it for re-identification. Additionally, when
processing video inputs, employing a shared body shape
projector aligns different points from various input perspec-
tives into a unified space. This alignment provides explicit
temporal consistency across frames, allowing the encoder to
extract temporally coherent information inherently. We ver-
ify this with multiple model variations as well as attention
visualization, which we present later in Section 4.3.

Compared with existing methods [5, 40] that explicitly
decode body shapes from images and use them for identifi-
cation, SEAS differs in two main aspects: 1) SEAS does not
explicitly require 3-D reconstruction as guidance for iden-
tification, while it preserves it as implicit supervision for
pixel-level coherence with appearance. 2) SEAS directly
connects the appearance and shape across different frames
within a video. Existing methods [5, 40] reconstruct the
frame-wise body shapes and do not aggregate the temporal
information across different frames, while SEAS can ex-
plicitly provide such guidance with variance computation
on the same vertex of the SMPL body to offer more appear-
ance consistency without extra computational cost during
inference, as only the encoder is needed.

4. Experiments

4.1. Experimental Details

Datasets. For our experiments, we utilize Market1501 [81]
with MSMT17 [68] for frame-based person re-identification
and MARS [82] in conjunction with LS-VID [37] for video-
based person re-identification.

Market1501 [81] and MSMT17 [68] serve as two
datasets for the person re-identification public benchmark
with single-frame images as input. Market1501 [81] in-
cludes 1,501 identities, with 750 designated for training and
the remaining 751 for testing, captured across six cameras.
The training set, gallery, and query consist of 12,936, 3,368,
and 19,732 cropped images, respectively. MSMT17 [68]
comprises 4,101 identities, with 1,041 for training and
3,060 for testing. Images are collected from 15 cameras (12
for outdoor scenes and 3 for indoor scenes) with the num-
bers of images for training, gallery, and query at 30,248,
82,161, and 11,659, respectively.

MARS [82] and LS-VID [37] are two public datasets for
video-based re-identification. MARS [82] contains 1,261
unique identities and a total of 17,503 tracklets, with 625
identities reserved for training and 636 for testing. LS-
VID [37] includes 842 identities for training and 2,730 for
testing, with training sequences comprising 8,298 video
segments, while the gallery and query sets contain 11,310
and 1,980 segments, respectively.

Implementation Details. In our pipeline, we use two
shape representations for guidance: PIFu [55] for both
videos and frames, and SMPL [43] for videos. Since ap-
pearance is largely preserved in images, we use the pre-
trained PIFu surface model [55] and keep it forzen during
training for shape guidance, accompanied by a pretrained
DeepLab-v3 [6] to remove the background. For SMPL [43],
we follow SPIN [34] to extract the 3-D body shapes for
each frame. The number of points used for training, k, is
set to 500. We empirically set λ1 as 1 for both cases and
λ2 as 0.001 for video-based re-identification. During infer-
ence, we calculate the pairwise cosine similarity between
the query and gallery examples for both videos and images.

For frame-based person re-identification, we resize the
input images to 256× 128 and use a ResNet-50 [21] to en-
code the features into Fmap. The shape extractor, which
follows the feature map, includes 2 UpConv operations to
upscale the feature map to its pixel-level implicit represen-
tation feature map F P . Each UpConv operation increases
the feature dimension by 2 on both height and width. Dur-
ing training, we incorporate a Triplet loss Ltriplet [57] with
a 0.3 margin, along with a Cross Entropy loss LCE as

LID = Ltriplet + LCE . (6)

We train the model for 120 epochs, starting with a learning
rate of 3.5e−4 using the Adam optimizer, and reduce it by
1
10 at epoch 40 and 70.

For video-based re-identification, we follow PSTA [65]
and use the ResNet-50 as our feature encoder, followed by
a three-layer pyramid for spatial and temporal attention ex-
traction and aggregation. We include a Triplet loss Ltriplet

[57] with 0.3 as margin along with a Cross Entropy loss
LCE as Equation 6. We train the model for 500 epochs
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with the Adam optimizer, with an initial learning rate set
at 3.5e−4. We reduce the learning rate by 0.3 at epochs
70, 140, 210, 310, and 410. During training, we randomly
select 8 frames from each clip. In the inference phase for
MARS [82], we select 8 frames per video, starting with
the first frame and proceeding at intervals of 8 frames. If a
video’s length doesn’t permit an 8-frame interval, we halve
the interval until 8 frames can be selected. For LS-VID,
we utilize all available frames in the video and average the
features from the last layer of PSTA as its representation.

We conduct all our experiments on a machine equipped
with 2 A100 GPUs, and recommend using 1 GPU with
24GB memory for training frame-based datasets and 2 for
video-based datasets. The training time for frame-based re-
identification ranges from 12 to 30 hours; for video-based
re-identification, it varies between one to three days, de-
pending on the datasets used and the I/O speed.

Baseline Methods. For frame-based re-identification,
we build SEAS on a ResNet-50 encoder and compare it with
multiple state-of-the-art methods, including earlier ReID
methods [9, 12], recent transformer-based approaches [8,
13, 22, 89, 90], and others [18, 36, 47, 53, 63, 75–77].
In addition, we compare with some other re-identification
methods [5, 40] that use 3-D body shape in addition to ap-
pearance. We assess the methods based on rank-1 accuracy
and mean average precision (mAP) for comparison.

For video-based re-identification, we compare with sev-
eral state-of-the-art models, including models with 2-D
convolutions [15, 23, 28, 32, 41, 42, 65], 3-D convolu-
tions [1, 19, 26, 27], and ViT-based methods [4, 13, 72],
measuring rank-1 accuracy and mAP. Following PSTA [65],
we use a ResNet-50 [21] as our per-frame image encoder,
followed by the pyramid spatial-temporal aggregation.

4.2. Results and Analysis

Results for Frame-based Re-ID. We present the numer-
ical results for frame-based person re-identification in Ta-
ble 1, comparing the application of SEAS on ResNet-50
with other state-of-the-art methods on Market1501 [62] and
MSMT17 [68] in terms of rank-1 accuracy and mean av-
erage precision (mAP). Using SEAS with ResNet-50 as
the image encoder outperforms all other methods on both
datasets across these metrics. On Market1501 [62], ResNet-
50 with SEAS achieves a rank-1 accuracy of 98.6% and an
mAP of 98.9%, surpassing SOLIDER [8], which had the
previous highest rank-1 accuracy of 96.9% with external
training data. We also observe significant improvements
on MSMT17 [68], with rank-1 accuracy increasing from
90.7% to 91.7% and mAP from 77.1% to 92.8%.

Moreover, we also include a comparison with explicit
appearance reconstruction as in SAN [30] and other meth-
ods [5, 40] using body shapes. SAN includes a decoder-
like structure for explicitly reconstructing the appearance

Method Market1501 [81] MSMT17 [68]

Rank-1 mAP Rank-1 mAP

ViT-B [13] 94.0 87.6 82.8 63.6
TransReID [22] 95.2 89.5 86.2 69.4
AAFormer [90] 95.4 87.7 83.6 63.2
AGW [75] 95.5 89.5 81.2 59.7
FlipReID [47] 95.5 89.6 85.6 68.0
CAL [53] 95.5 89.5 84.2 64.0
PFD [63] 95.5 89.7 83.8 64.4
SAN [30] 96.1 88.0 79.2 55.7
LDS [76] 95.8 90.4 86.5 67.2
DiP [36] 95.8 90.3 87.3 71.8
MPN [12] 96.4 90.1 83.5 62.7
MSINet [18] 95.3 89.6 81.0 59.6
SCSN [9] 95.7 88.5 83.8 58.5
PHA [77] 96.1 90.2 86.1 68.9
PASS ViT-B [89] 96.9 93.3 89.7 74.3
SOLIDER [8] 96.9 93.9 90.7 77.1

ASSP* [5] 95.0 87.3 - -
3DInvarReID* [40] 95.1 87.9 80.8 59.1

Baseline (ResNet-50) 94.1 83.2 73.8 47.2
SEAS (ResNet-50) 98.6 98.9 91.7 92.8

Table 1. Rank-1 accuracy and mAP on Market1501 [81] and
MSMT17 [68] datasets. We bold the numbers that are the best
performance and underline the second best ones. Methods ending
with (*) include 3-D body shapes in addition to appearance.

of the entire body, even when occlusions are present. We
note that using SEAS outperforms SAN on both datasets;
the gap is more significant on MSMT17 [68], where occlu-
sions are more common, making the reconstruction of the
entire body appearance impractical. Compared with other
methods that use features of 3-D body shapes [5, 40] for
identification, ResNet-50 with SEAS also shows significant
improvement. The use of a body shape extractor with pixel-
level body shape guidance establishes a stronger connection
between shape and observed appearance, providing a more
complete understanding for person re-identification.

Results for Video-based Re-ID. In addition to single-
frame-based person re-identification, we present our results
for video-based datasets [37, 82] in Table 2. Across both
datasets, we note a significant improvement over other base-
line methods. For MARS [82], the highest rank-1 and mAP
from the current state-of-the-art methods are 91.5% and
87.2%, respectively. In comparison, our method achieves
95.1% for rank-1 and 96.7% for mAP, surpassing the exist-
ing baselines and reducing the errors from 8.5% to 4.9%.
We also observe a performance boost on LS-VID [37].
Against the best performance for rank-1 and mAP, both
from CAViT [72], which stand at 89.2% and 79.2%, using a
PSTA with SEAS enhanced with Lcali. exceeds these met-
rics, reaching a rank-1 of 90.5% and an mAP of 93.4%. This
demonstrates the efficacy of SEAS with simple encoders
over other methods that leverage vision transformers.
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Method MARS [82] LS-VID [37]

Rank-1 mAP Rank-1 mAP

GRL [42] 91.0 84.8 - -
TokenShift [4] 90.2 86.6 80.4 68.7
ViT [13] 89.7 86.4 85.3 76.4
TCLNet [26] 89.8 85.1 - -
AP3D [19] 90.1 85.1 - -
DenseIL [23] 90.8 87.0 - -
STMN [15] 90.5 84.5 82.1 69.2
BiCnet-TKS [27] 90.2 86.0 84.6 75.1
STRF [1] 90.3 86.1 - -
RFCnet [28] 90.7 86.3 - -
CTL [41] 91.4 86.7 - -
DSANet [32] 91.1 86.6 85.1 75.5
CAViT [72] 90.8 87.2 89.2 79.2

Baseline (PSTA) [65] 91.5 85.8 77.7 67.2
SEAS (PSTA) 95.1 96.6 90.5 93.4

Table 2. Rank-1 accuracy and mAP on MARS [82] and LS-
VID [37] datasets. In SEAS, we use ResNet-50 for identity feature
map extraction and PSTA [65] for temporal fusion.

Method Rank-1 mAP Params FLOPs

(I) Appearance Baseline (Market1501) 94.1 83.2 23.51M 4.07G

(II) Body shape
as input

+ PIFu as 2nd branch 94.1 (+0.0) 84.8 (+1.6) 34.80M 6.28G
+ PIFu concatenation 94.3 (+0.2) 85.8 (+2.6) 34.89M 4.26G

(III) Body shape
as supervision

+ SEAS (SPIN) 97.1 (+3.0) 97.8 (+14.6) 23.51M 4.07G
+ SEAS (PIFu) 98.6 (+4.5) 98.9 (+15.7) 23.51M 4.07G

(IV) SEAS w/
calibration for
video frames

Baseline (MARS) 91.5 85.8 35.43M 37.70G
+ SEAS (w/o Lcali.) 94.8 (+3.3) 96.5 (+10.7) 35.43M 37.70G
+ SEAS (w/ Lcali.) 95.1 (+3.6) 96.7 (+10.9) 35.43M 37.70G

Table 3. Model variations analysis, with ResNet-50 as the baseline
for Market1501 and PSTA [65] for MARS.

4.3. Ablation Studies and Model Variations

Module Analysis. We present model components analysis
in Table 3, comparing performance and computational costs
with other variations on Market1501 [62] and MARS [82].
Based on the input and different ways of aggregating the
body shape feature, we split the table into four categories
and have the following observations:

Enhancing Appearance with Body Shape. Compared to
the baseline method that relies solely on appearance in (I),
incorporating body shape in (II) and (III) generally demon-
strates better performance. We experiment with three varia-
tions: 1) encoding the PIFu feature with a secondary branch
encoder (ResNet-18-like) and concatenating it with the ap-
pearance feature, 2) channel-wise concatenation of PIFu
features with appearance as input, and 3) employing body
shape as supervision following SEAS. All variations result
in improved performance, confirming that the body shape
feature enhances the appearance-based method.

Using Shape as Input vs. Supervision. Compared to us-
ing body shape as input to identify the person in (II), using

Method Market1501 [81] MSMT17 [68]

Rank-1 mAP Rank-1 mAP

BoT [44] 94.5 85.9 74.1 50.2
w/ SEAS 95.9 97.5 81.3 86.2

LDS [76] 95.8 90.4 86.5 67.2
w/ SEAS 96.3 97.8 86.6 90.1

Table 4. Results for applying SEAS on BoT [44] and LDS [76].

Method MARS [82] LS-VID [37]

Rank-1 mAP Rank-1 mAP

STMN [15] 90.5 84.5 82.1 69.2
w/ SEAS 92.2 94.9 84.1 88.9

BiCnet-TKS [27] 90.2 86.0 84.6 75.1
w/ SEAS 90.1 87.9 86.7 90.8

Table 5. Results for applying SEAS on STMN [15] and BiCnet-
TKS [27] for video-based person re-identification.

body shape as supervision in (III) shows better performance
for both metrics. While employing body shape as input in-
corporates general shape information, utilizing it as super-
vision establishes a stronger connection between pixel-level
aligned body shape and appearance, as it guides the encoder
to extract shape-related information based on the appear-
ance, facilitating a more coherent integration.

Pixel and Image-level Supervision. We include exper-
iments comparing the use of SMPL features generated by
SPIN [34] and PIFu features as supervision in (III). SMPL
features are image-level, and we use the reconstructed body
shape β for supervision. We observe that using either of
them as supervision enhances performance, while employ-
ing PIFu for pixel-level supervision shows the best results.
Compared with image-level supervision, pixel-level super-
vision provides a more specific guidance between pixel-
level features, making the prediction more accurate.

Cross-frame Consistency in Video. For video-based re-
identification, as shown in (IV), applying PIFu as single-
frame body shape guidance leads to improvements com-
pared to the baseline method [65]. Moreover, pixel-level
calibration across frames further enhances performance.

Time Consumption1. Since SEAS is employed only dur-
ing training, its introduction in (III) and (IV) does not in-
crease the number of parameters and FLOPs required. Con-
versely, explicitly using the body shape as input in (II) sig-
nificantly increases these two metrics.

Generalizability. To validate its generalizability, we
incorporate SEAS with other frame-based re-identification
methods such as BoT [44] and LDS [76], as well as video-

1For the calculation of FLOPs and the number of parameters, we
refer to https://github.com/facebookresearch/fvcore/
blob/main/docs/flop_count.md.
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Market1501 MARS

Input R-50 Cat. SEAS Input R-50 Cat. SEAS Input PSTA w/o cali. w/ cali.

Figure 4. GradCam visualizations on Market1501 and MARS. For Market1501, we compare the baseline ResNet-50 (R-50) with using PIFu
as input through concatenation (Cat.) and using SEAS. For MARS, we compare baseline PSTA with SEAS without and with calibration.

based re-identification models including STMN [15] and
BiCnet-TKS [27]. We present results comparing models
with and without SEAS in Tables 4 and 5, and observe im-
provements on both datasets for these settings and metrics.
We also evaluate SEAS with CTL [70] and improve rank-
1 accuracy from 98.0 to 98.6 by using the centroid of the
gallery features for matching, indicating that incorporating
SEAS generally enhances performance.

Visualization. We present attention maps overlayed
with input images in Figure 4, verifying where the model is
looking at for prediction. For Market1501, we compare the
baseline with using PIFu as input and SEAS. The baseline
ResNet-50, lacking body shape guidance, often erroneously
directs attention to the background, as highlighted by the
areas within red boxes. Introducing PIFu as input helps fo-
cus on the body by delineating its boundary, yet attention
remains confined to a narrow area. SEAS shows a more
even distribution across the body. As pixel-level body shape
features are predicted from pixel-level appearances, using
aligned body shapes as supervision ensures the appearance
features related to the body region go deeper into the net-
work and enrich the feature map with information across all
body-present regions, enhancing the identity feature vector.
Furthermore, we assess PSTA against SEAS, with and with-
out calibration, on two frames of the same video in MARS.
PSTA scatters attention across frames and focuses narrowly
on each frame, while SEAS with calibration, generates a
more expansive attention map, demonstrating its capability
in providing enriched and consistent features.

We also visualize the extracted body shapes using ex-
amples from MSMT17 [68] in Figure 5. Each example
displays the original image on the left, the SMPL from
SPIN [34] in the middle, and the PIFu [55] shape recon-
struction using the extractor on the right. The SMPL body
shape from SPIN aligns well with the overall shape of the

Figure 5. Two visualization examples from MSMT17 for SPIN
(second column) and PIFu (third column) reconstructions.

person, showing the capacity of providing dense correspon-
dence on feature maps {Fmap

i } with lower resolution. PIFu
reconstructions, while limited by the image quality in re-
identification datasets, effectively outline body shapes with
its depth and contour, showing it is helpful to guide the iden-
tity feature encoder with pixel-level shape representations.

5. Conclusion and Limitation
In this work, we introduce SEAS, using Shape-Aligned Su-
pervision, to enhance the appearance feature for person re-
identification. We utilize implicit body shape representa-
tions to supervise the training of the appearance-based iden-
tity encoder, with a shape extractor to translate the fea-
ture map into pixel-level body shapes, providing pixel-level
shape guidance. For video-based person re-identification,
we also incorporate temporal consistency across the appear-
ance of different frames within the same video by adding
pixel-level calibrations. Our method achieves state-of-the-
art performance in both frame-based and video-based per-
son re-identification evaluations on public datasets.

Limitations. The effectiveness of our proposed extrac-
tor relies on a pretrained shape encoder for supervision,
meaning the overall performance improvement correlates
with the quality of the extracted body shape features.
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