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Figure 1. Our SNI-SLAM leverages the correlation of multi-modal features in the environment to conduct semantic SLAM based on

Neural Radiance Fields (NeRF). This modeling strategy achieves not only higher accuracy compared with existing NeRF-based SLAM,

but also enables real-time semantic mapping. We propose a feature collaboration method between appearance, geometry, and semantics,

which significantly enhances the feature representation capabilities. Fused Appearance (orange box): Shadowing on the chair caused by

light is eliminated. Fused Geometry (blue box): The inconsistency of the cabinet bottom edge is improved. Fused Semantic (red box):

The distinction between table leg and floor is enhanced.

Abstract

We propose SNI-SLAM, a semantic SLAM system utiliz-

ing neural implicit representation, that simultaneously per-

forms accurate semantic mapping, high-quality surface re-

construction, and robust camera tracking. In this system,

we introduce hierarchical semantic representation to allow

multi-level semantic comprehension for top-down struc-

tured semantic mapping of the scene. In addition, to fully

utilize the correlation between multiple attributes of the en-

vironment, we integrate appearance, geometry and seman-

tic features through cross-attention for feature collabora-

tion. This strategy enables a more multifaceted understand-

ing of the environment, thereby allowing SNI-SLAM to re-

*Equal Contribution. †Corresponding Author.

main robust even when single attribute is defective. Then,

we design an internal fusion-based decoder to obtain se-

mantic, RGB, Truncated Signed Distance Field (TSDF) val-

ues from multi-level features for accurate decoding. Fur-

thermore, we propose a feature loss to update the scene

representation at the feature level. Compared with low-

level losses such as RGB loss and depth loss, our fea-

ture loss is capable of guiding the network optimization

on a higher-level. Our SNI-SLAM method demonstrates

superior performance over all recent NeRF-based SLAM

methods in terms of mapping and tracking accuracy on

Replica and ScanNet datasets, while also showing excel-

lent capabilities in accurate semantic segmentation and

real-time semantic mapping. Codes will be available at

https://github.com/IRMVLab/SNI-SLAM.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction

Dense semantic Simultaneous Localization and Map-

ping (SLAM) is a fundamental challenge in robotics [24,

35] and autonomous driving [19, 41, 44, 45]. It incorporates

semantic understanding of the environment into map con-

struction and estimates camera pose simultaneously. Com-

pared with traditional SLAM, semantic SLAM is capable of

identifying, categorizing, and relating entities in the scene

as well as generating semantic maps.

Traditional semantic SLAM has limitations including

its inability to predict unknown areas and high stor-

age space requirements [20]. Recently, Neural Radiance

Fields (NeRF) [22] have shown remarkable capability in

scene representation, promising to address these limitations.

Compared with traditional SLAM mapping representations

such as TSDF and point cloud, this implicit scene represen-

tation benefits from continuous modeling and low storage

cost. Following the advantages of implicit representation,

NeRF-based SLAM [16, 40, 46, 50, 54] methods have been

developed. However, most existing NeRF-SLAM systems

establish RGB maps, where color information is not di-

rectly suitable for downstream tasks such as navigation. In

the meantime, there has been some works [52, 53] demon-

strating that NeRF can jointly learn geometric and semantic

representations. However, these works require hours of of-

fline training to obtain semantic scene representation, which

is impractical for semantic SLAM that inherently demands

real-time performance. Therefore, developing a semantic

SLAM system based on NeRF is essential and challenging.

For semantic NeRF-based SLAM, there are two chal-

lenges: 1) Appearance, geometry and semantic information

are interrelated, so processing them independently will lose

interact connections, leading to an incomplete understand-

ing of the image or scene. 2) As the appearance of a scene,

such as color, varies under different views, leveraging se-

mantic multi-view consistency to optimize appearance will

affect the details of the appearance, and vice versa.

For the first challenge, MSeg3D [18] fuses geometry and

semantic features to obtain more accurate semantic segmen-

tation results. However, this work does not take advantage

of appearance information as another modality to enhance

semantic expression from the visual structural perspective.

Moreover, mutual reinforcement of different modalities is

not explored either. In this paper, we use the individual

characteristics of appearance, semantics, and geometry, to

design a mutual collaboration and enhancement approach

between these modalities based on cross-attention. This de-

sign enables improvements for each modality respectively.

For the second challenge, Semantic-NeRF [52] appends

a segmentation renderer before injecting viewing directions

into the Multi-layer Perceptron (MLP). However, the im-

pact of semantic optimization on appearance and geometric

expression is not explored. To address this challenge, we

propose a one-way correlation approach between different

modalities by improving the decoder design and rendering

process. This allows valuable information from one modal-

ity to enhance other modalities without affecting the origi-

nal representation or being influenced in the reverse.

Overall, we provide the following contributions:

• We present SNI-SLAM, a dense RGB-D semantic SLAM

system based on NeRF, which can achieve accurate 3D

semantic segmentation by real-time mapping. We intro-

duce hierarchical semantic encoding for precisely con-

structing semantic maps. In addition, we utilize a feature

loss to guide the network optimization on a higher-level,

resulting in superior scene optimization results.

• We perform an advanced feature collaboration approach

to integrate geometry, appearance, and semantic features

based on cross-attention. This design enables mutual re-

inforcement between different features. Moreover, we in-

troduce a new decoder for one-way correlation to achieve

enhanced decoding results without mutual interference.

• Extensive evaluations are conducted on two challenging

datasets, Replica [38] and ScanNet [5], to demonstrate

our method attains state-of-the-art performance compared

with existing NeRF-based SLAM in mapping, tracking,

and semantic segmentation.

2. Related Work

Semantic SLAM. Visual odometry [2, 7, 10, 27, 33, 43]

and real-time dense mapping [6, 12, 15, 34, 49] are capable

of localization and scene reconstruction. Semantic SLAM

combines the advantages of visual odometry and real-time

dense mapping, while integrating semantic information to

achieve higher level understanding of the environment [24].

This technology enables the robot to understand its own

position and the meaning of the elements in the environ-

ment. SLAM++ [36] is object-aware RGB-D SLAM that

uses joint pose graph to represent object-level information

in the scene. Kimera [35] relies on RGB-D or stereo sens-

ing to generate dense semantic mesh maps and uses visual-

inertial odometry for the motion estimation. These methods

utilize explicit modeling for 3D semantic reconstruction.

However, this representation requires considerable storage

space and is insufficient for detailed reconstruction. In this

paper, we leverage the advantages of neural implicit repre-

sentaion for conducting high-fidelity semantic SLAM with

minimal storage space.

Neural implicit SLAM. Neural implicit representation [8,

9, 25, 29, 51] is a novel 3D representation approach that

uses neural network to learn geometric representation and

appearance information of the environment. This technique

has a wide range of applications, such as new view synthe-

sis [22, 26], object pose estimation [3, 13, 14, 32, 48] and

surface reconstruction [29, 47, 51]. Neural implicit repre-
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Figure 2. An overview of SNI-SLAM. Our method takes an RGB-D stream as input. RGB images are fed into semantic feature extractor

to obtain semantic features. These features are then transformed into appearance features through appearance MLP Hθ . Geometry features

are derived from ray sampling and then processed through geometry MLP Eθ . Subsequently, these three types of features are fused using

cross-attention based feature fusion and generate feature map. This feature map, the input RGB-D, and the segmentation results obtained

from segmentation network serve as supervision signals. Generated features are obtained by interpolation of scene representation, then

these features are utilized for feature loss construction as well as to obtain the generated RGB, depth and semantics through decoding and

rendering process. Supervision and generated information are used for loss construction to update scene representation and MLP network.

We use hierarchical semantic representation for semantic mapping. For camera tracking, we utilize loss functions to optimize camera pose.

We follow [16] for geometry and appearance scene representation.

sentation with SLAM is our main focus. iMAP [40] intro-

duces a single MLP network to achieve real-time mapping

and localization of the scene. NICE-SLAM [54] adopts

hierarchical feature grid as scene representation, enabling

more accurate mapping. ESLAM [16] uses multi-scale

axis-aligned feature planes, reducing the memory consump-

tion growth. Vox-Fusion [50] is based on octree manage-

ment for incremental mapping. Previous works have proved

the feasibility for neural networks to model color and geo-

metric information in the environment. However, the poten-

tial of neural implicit representation goes far beyond this,

as it can be used to encode semantic information [52, 53].

vMAP [17] is an object-level dense SLAM system that

utilizes semantic segmentation results for object associa-

tion, but it does not perform semantic mapping. NIDS-

SLAM [11] uses ORB-SLAM3 [2] for tracking and Instant-

NGP [28] for mapping. For the processing of semantic

information, it maps the segmentation results to color en-

codings for optimization of network. However, this work

does not integrate semantic with other features of the envi-

ronment, such as geometry and appearance. In this paper,

we introduce cross-attention based feature fusion to incor-

porate semantic, appearance, and geometry features, thus

improving the accuracy of mapping, tracking, and semantic

segmentaion.

3. Method

The overview of our method is shown in Fig. 2. Given an

input RGB-D frames I = {ci, di}
N
i=1

, we perform dense se-

mantic mapping and real-time tracking by jointly optimiz-

ing the scene representation, the MLP network and camera

pose. Sec. 3.1 describes how to integrate geometric, seman-

tic, and appearance features through feature fusion based on

cross-attention. Sec. 3.2 presents the hierarchical semantic

mapping and localization process, including semantic rep-

resentation, a new decoder design, volume rendering, and

camera tracking. Sec. 3.3 introduces the loss functions.

3.1. Cross­Attention based Feature Fusion

Geometry, semantics and appearance are interconnected.

For semantic and appearance features, the appearance of an

object may vary under changing light conditions or viewing

angle, but its semantic feature usually remains the same.

This stability makes semantic feature an important tool for

recognizing and understanding objects. In the meantime,

the appearance feature of an object can also enhance our un-

derstanding of its semantic information. By observing the

color, brightness, or texture of an object, we can infer which

category an object belongs to. For geometry and semantic,

robots can recognize and use geometric feature to locate and

quantify the position and shape of an object. This informa-

tion can then be utilized to infer the likely nature or identity

of the object. In addition, semantic information can be used

to improve understanding of the geometry and location of

objects.

Considering the correlation among features, we employ

cross-attention to fuse geometry feature fg , semantic fea-

ture fs, and appearance feature fa. The input RGB image

is passed through a pretrained semantic segmentation net-
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work to obtain semantic feature fs. In this work, we uti-

lize an universal feature extractor Dinov2 [30], followed by

segmentation head to construct the segmentation network.

The extracted semantic feature lacks specificity to the en-

vironment as it is derived from a pretrained segmentation

network. Therefore, we utilize real-time updated appear-

ance MLP Hθ to transform the semantic feature into ap-

pearance feature fg = Hθ(fs). This MLP network stores

environment-specific appearance information. For geom-

etry feature, we first obtain the coordinates of 3D points

{pi}
N
i=1

through ray sampling. Then, we use a NeRF-based

frequency encoding [25] to get vector γ(p):

γ(p) = (sin20πp, cos20πp, . . . , sin2L−1πp, cos2L−1πp), (1)

where L defines the total count of frequencies used. We use

L = 6 for 3D coordinates. γ(p) is processed through geom-

etry MLP Eθ(γ(p)) to obtain geometry feature fg , which

stores geometry information of the environment.

Then, we leverage the structural property of geometry to

guide attention. fg is used as Q, fa is used as K, and fs is

used as V , to perform cross-attention calculation to obtain

fused semantic feature Ts:

Ts = softmax(
fgf

T
a

√

||fa||22
)fs. (2)

Through this fusion, the weighted combination of seman-

tic information is dynamically adjusted based on geome-

try and appearance feature matches, thereby minimizing the

influence of incorrect semantic predictions by highlighting

matches and downplaying mismatches. Moreover, we uti-

lize fa, fg and fused semantic features Ts as V , Q and K,

to obtain fused appearance feature Ta respectively:

Ta = softmax(
fg · T

T
s

√

||Ts||22
)fa. (3)

The fused appearance feature Ta is enhanced through cross-

attention, but it may lose some fine-grained details present

in the original appearance feature fa. Therefore, we con-

catenate fa and Ta, and then pass concatenated feature

through fusion MLP Fθ. This fusion preserves the aug-

mented information from Ta while also integrating the finer

details from fa, thus achieving a more enriched appear-

ance representation. Then, the result is concatenated with

fg and Ts to obtain feature map FM = {fg, T
′
a, Ts}.

This multi-modal feature fusion approach based on cross-

attention facilitates interaction and mutual learning among

features from different modalities, resulting in more accu-

rate feature representation.

3.2. Hierarchical Semantic Mapping

Currently, existing NeRF-based semantic modeling

methods employ single-level neural implicit representa-

tion, regardless of whether they use voxel grid [42] or

Coarse-level Feature Fine-level Feature

Figure 3. Visualization of coarse-level and fine-level features.

Coarse-level feature captures general structure and arrangement of

components. Fine-level feature provides more fine-grained details.

MLP [23, 52]. However, their performances are often lim-

ited when dealing with complex scenarios. We discover that

using a hierarchical approach is more effective for semantic

representation of the environment. When looking at a scene,

we first grasp the overall layout and identify the main ob-

jects to develop a coarse understanding. After that, we shift

our focus to more finely detailed. This top-down approach

allows us to understand and process complex semantic in-

formation more naturally and efficiently. Therefore, we em-

ploy coarse-to-fine semantic modeling for scene representa-

tion in this paper. Moreover, we design a fusion-based de-

coder to obtain semantic, color, SDF values, then achieve

semantic, RGB, depth images through rendering process.

Coarse-to-fine Semantic Representation. We utilize fea-

ture planes [16] to store features, which saves storage space

compared with voxel grid [50, 54]. For semantic map-

ping, we employ a coarse-to-fine semantic representation.

For each feature plane, we use two different levels of spa-

tial resolution, where {F coarse
s−xy , F coarse

s−xz , F coarse
s−yz } repre-

sent coarse level features, {F fine
s−xy, F

fine
s−xz, F

fine
s−yz} represent

fine level features, visualization of coarse and fine seman-

tic features are shown in Fig. 3. For a given coordinate, we

then concatenate the corresponding coarse and fine feature.

We demonstrate empirically that the introduction of multi-

level semantic representations improves the performance of

implicit semantic modeling and provides finer and richer se-

mantic understanding.

Decoder Design. There are typically two common de-

signs for decoders in existing models. One approach [16]

uses separate decoder networks to process different fea-

tures. Another approach [50] utilizes the decoder network

to obtain geometric and color information from a single fea-

ture. However, both approaches suffer because these de-

coders optimize independently without interaction. In our

work, we incorporate the idea of feature collaboration into

decoder module to obtain SDF, RGB, and semantic values

from geometry, appearance and semantic features. Inside

the decoder, we concatenate geometry feature with appear-

ance and semantic features, then the concatenated feature

passes through MLP network to obtain color decoding in-

formation. This design provides one-way correlation to en-

sure that improvement and application of the features occur

only in one direction, thereby preventing mutual interfer-

21170



ence between the features. In addition, it also facilitates

information exchange between features, improving the net-

work’s understanding of them. Considering the complexity

of rich semantic categories, a larger hidden layer is neces-

sary for comprehensive modeling. In this work, we use 256

dimension hidden layer for semantic decoding.

Rendering. We sample N points on the ray {pn}
N
i=1

to

generate color c(pn), semantic s(pn) and TSDF d(pn) val-

ues of these points through decoder Dθ(pn). Then, we use

SDF-based rendering method proposed in StyleSDF [31] to

convert SDF values into volume densities:

σg(pn) =
1

αg

· Sigmoid

(

−
d(pn)

αg

)

,

σs(pn) =
1

αs

· Sigmoid

(

−
d(pn)

αs

)

,

(4)

where αg represents a learnable parameter that determines

the level of sharpness along the surface boundary. Another

learnable parameter αs is used for semantic rendering. Vol-

ume density σg(pn) is subsequently utilized in rendering

both the color and depth associated with each ray to obtain

rendered color ĉ and depth d̂:

wg = exp

(

−

n−1
∑

i=1

σg(pi)

)

(1− exp(−σg(pn))) ,

ĉ =
N
∑

n=1

wg · c(pn), d̂ =
N
∑

n=1

wg · zn.

(5)

In this context, zn represents the depth of point pn in rela-

tion to the camera’s pose. σs(pn) is used in semantic ren-

dering and obtain rendered semantic ŝ:

ws = exp

(

−

n−1
∑

i=1

σs(pi)

)

(1− exp(−σs(pn))) ,

ŝ =

N
∑

n=1

ws · s(pn).

(6)

3.3. Loss Functions

We sample M pixels from input images and refer to

paper [1] for the definition of free space loss. This loss

compels the MLP network to predict values for points p ∈
P fs
m that are positioned between the camera optical center

and the truncation region of the surface:

Lfs =
1

|M |

∑

m∈M

1

|P fs
m |

∑

p∈P
fs
m

(d(p)− 1)2. (7)

For points within the truncated region and close to the sur-

face, we follow [16] for loss function:

Ltr =
1

|M |

∑

m∈M

1

|P tr
m |

∑

p∈P tr
m

(z(p) + T · d(p)−D(m))2,

(8)

where z(p) is the depth of point p on the plane in relation to

the camera, T is truncation distance. D(m) is depth of the

ray measured by the sensor. P tr
m represents the set of points

located within the truncation region on the ray m.

Semantic Loss. For the supervision of semantic informa-

tion, we use cross-entropy loss. It is worth noting that in

the process of rendering semantic, we detach the gradient

to prevent the semantic loss from interfering with the opti-

mization of geometry and appearance features:

Ls = −
∑

m∈M

L
∑

l=1

pl(m) · logp̂l(m), (9)

where pl represents multi-class semantic probability at class

l of the ground truth map.

Feature Loss. When only using color, depth, and seman-

tic values as supervision signals, the MLP network will

overly focus on less significant details and ignore some

more salient features. To address this problem, feature loss

is constructed and utilized to provide additional guidance

for updating feature plane and MLP network. By providing

direct supervision on intermediate features, this higher-level

loss enables the scene representaion to preserve important

details:

Lf = ∥fextract − finterp∥1, (10)

where fextract represents the feature map generated in Sec.

3.1, finterp stands for features obtained by the interpolation

from the feature planes. The extracted features are more

accurate and used as supervision signals.

Color and Depth Loss. The input is RGB-D frames con-

taining ground truth RGB and depth values. We construct

color and depth loss by comparing the rendered RGB and

depth values with the ground truth values. These loss func-

tions are then utilized for updating the network:

Lc =
1

|M |

|M |
∑

i=0

∥Ci − C
gt
i ∥,

Ld =
1

|M |

|M |
∑

i=0

∥Di −D
gt
i ∥,

(11)

where Ci, Di are rendered RGB and depth values, C
gt
i , D

gt
i

are ground truth values.

The complete loss function L is the weighted sum of the

above losses:

L = λfsLfs+λtrLtr+λsLs+λfLf+λcLc+λdLd, (12)

where λfs, λtr, λs, λf , λc, λd are weighting coefficients.

4. Experiments

Datasets. We evaluate the performance of SNI-SLAM on

three datasets, including 8 synthetic scenes on Replica [38]
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Methods Reconstruction Localization

Depth L1[cm] ↓ Acc.[cm] ↓ Comp.[cm] ↓ Comp.Ratio(%) ↑ ATE Mean[cm] ↓ ATE RMSE[cm] ↓

iMAP* [40] 4.645 3.624 4.934 80.515 3.118 4.153

NICE-SLAM [54] 1.903 2.373 2.645 91.137 1.795 2.503

Vox-Fusion [50] 2.913 1.882 2.563 90.936 1.027 1.473

Co-SLAM [46] 1.513 2.104 2.082 93.435 0.935 1.059

ESLAM [16] 0.945 2.082 1.754 96.427 0.545 0.678

SNI-SLAM (Ours) 0.766 1.942 1.702 96.624 0.397 0.456

Table 1. Quantitative comparison of map reconstruction and localization accuracy for our proposed SNI-SLAM and other NeRF-based

dense SLAM methods. The results are average of 8 scenes on the Replica dataset [38]. To ensure more objectivity in the results, each scene

is tested and averaged with five independent runs. Our work outperforms previous works, indicating that our semantic-SLAM system has

promising SLAM performance. For the details of the evaluations for each scene, please refer to the supplementary.

NICE

SLAM

room-0 office-2 office-4

Vox

Fusion
 

ESLAM

Ours

Ground 

Truth

Figure 4. Qualitative comparison on scene reconstruction of our method and baseline. The ground truth images and details are rendered

with ReplicaViewer software [38]. We visualize 3 selected scenes of Replica dataset [38] and details are highlighted with colorful boxes.

Our method achieves more accurate detailed geometry and higher completion, especially in places that have limited observations.
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Methods room0 room1 room2 office0 Avg.

NIDS-SLAM [11] 82.45 84.08 76.99 85.94 82.37

SNI-SLAM (Ours) 88.42 87.43 86.16 87.63 87.41

Table 2. Quantitative comparison of SNI-SLAM with existing

semantic NeRF-based SLAM method NIDS-SLAM [11] for se-

mantic segmentation metrics mIoU(%) on 4 scenes of the Replica

dataset [38], as its results are only reported on such scenes. For

a fair comparison with NIDS-SLAM [11], the results are obtained

using ground truth semantic label for supervision. For one scene,

we calculate mIoU between rendered and ground truth semantic

maps calculated every 50 frames to obtain average mIoU. Our

method outperforms NIDS-SLAM [11]. The performance of SNI-

SLAM on other scenes is provided in the supplementary.

and 4 real-world scenes on ScanNet [5], both with semantic

ground truth annotations, and 5 real-world scenes on TUM

RGB-D [39] without semantic ground truth annotations.

Metrics. To evaluate the SLAM system, we use metrics

from Co-SLAM [46]. For mesh reconstruction metrics, we

use Depth L1 (cm), Accuracy (cm), Completion (cm), and

Completion ratio(%) with a threshold of 5cm. Also, we

use ATE [39] for tracking accuracy evaluation. Semantic

segmentation is evaluated with respect to mIoU [21] metric.

Baselines. We compare the metrics of the semantic seg-

mentation accuracy with NIDS-SLAM [11], which is the

only semantic NeRF-SLAM method to the best of our

knowledge. For SLAM accuracy, we compare our method

with state-of-the-art NeRF-based dense visual SLAM meth-

ods [16, 37, 40, 46, 50, 54]. For more detailed explanation,

please refer to supplementary.

Implementation Details. We use 16-channel feature vec-

tors to represent semantic, geometry and appearance fea-

tures. The decoder MLP has two layers and the hidden

layer dimension is 32. We run SNI-SLAM on NVIDIA

RTX 4090 GPU. Please refer to the supplementary for fur-

ther details of our implementation.

4.1. Experimental Results

Replica dataset [38]. As shown in Tab. 1, our method

achieves the highest accuracy compared with other NeRF-

based SLAM methods and up to 32% relative increase in

tracking accuracy. Accuracy (cm) is calculated based on the

error between reconstructed points and ground truth points.

Vox-Fusion [50] achieves the highest Accuracy (cm) be-

cause it only reconstructs observed areas and ignores er-

rors in predicted unseen regions, but this strategy results

in nearly worst Completion (cm) and Completion ratio (%)

metrics compared with other NeRF-SLAM methods.

The reconstruction of 3 scenes are shown in Fig. 4 with

interesting regions highlighted with coloured boxes. For

some narrow details, such as bottle necks and chair legs,

other methods fail to correctly reconstrcut them and blend

them into the background. Our method leverage seman-

tic information to understand object categories, appearance

Scene ID 0000 0059 0106 0207 Avg.

iMAP* [40] 55.95 32.06 17.50 11.91 29.36

NICE-SLAM [54] 8.64 12.25 8.09 5.59 8.64

Co-SLAM [46] 7.13 11.14 9.36 7.14 8.69

Vox-Fusion [50] 8.39 9.18 7.44 5.57 7.65

ESLAM [16] 7.32 8.55 7.51 5.71 7.27

SNI-SLAM (Ours) 6.90 7.38 7.19 4.70 6.54

Table 3. We compare our proposed SNI-SLAM with other existing

NeRF-based SLAM methods on ScanNet dataset [5] for tracking

metrics RMSE (cm). Our method outperforms baseline.

Method
fr1/ fr1/ fr1/ fr2/ fr3/

Avg.
desk desk2 room xyz office

NICE-SLAM [54] 4.26 4.99 34.49 31.73 3.87 15.87

Vox-Fusion [50] 3.52 6.00 19.53 1.49 26.01 11.31

Point-SLAM [37] 4.34 4.54 30.92 1.31 3.48 8.92

SNI-SLAM (Ours) 2.56 4.35 11.46 1.12 2.27 4.35

Table 4. Comparison of our SNI-SLAM with other NeRF-based

SLAM methods in tracking performance. We report RMSE (cm)

on 5 scenes of TUM RGBD dataset [39].

Methods Track. FPS ↑ Map. FPS ↑ SLAM FPS ↑ #param. ↓

w
/o

se
m

iMAP[40] 9.92 2.23 1.822 0.26M

NICE-SLAM [54] 13.70 0.20 0.198 12.2M

Vox-Fusion [50] 2.11 2.17 1.07 0.87M

Co-SLAM [46] 17.24 10.20 6.41 0.26M

ESLAM [16] 18.11 3.62 3.02 6.85M

se
m NIDS-SLAM [11] — — 0.86 – 2.13 12.6M

SNI-SLAM (Ours) 16.03 2.48 2.15 6.2M

Table 5. Runtime and memory comparison on Replica [38] (w/o

sem: without semantic mapping; sem: semantic mapping).

cues to identify texture and materials, and geometric con-

straints to maintain valid shapes, thereby achieving com-

plete modeling. Moreover, other methods have difficulty

reconstructing edges such as the corners of tables and the

seams of sofas accurately. Our method incorporates three

types of representations: appearance which has edge, color,

texture information, geometry which has 3D structure in-

formation such as size, shape, position, and semantic repre-

sentation which has advantages in distinguishing different

object categories based on boundaries. Fusing these repre-

sentations enables the network to model fine-grained details

of objects, resulting in detailed reconstruction.

As shown in Tab. 2, our method outperforms NIDS-

SLAM [11] in segmentation metrics of all scenes and

achieves up to 10% increase on mIoU.

ScanNet dataset [5]. Following previous methods [16,

46, 50, 54], we evaluate tracking accuracy on the ScanNet

dataset [5]. As shown in Tab. 3, our method also outper-

forms baseline methods and achieve 10% improvement of

accuracy in this real-world dataset.

TUM RGBD dataset [39]. As TUM dataset lacks seman-

tic labels, we utilize SAM model DEVA [4] for semantic

segmentation to obtain 2D labels for semantic mapping and

tracking. Compared with other NeRF-based SLAM meth-

ods, our method achieves up to 41% improvement in Tab. 4.
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Name HSM FL Dec FF RMSE[cm] mIoU(%)

SR 0.83 71.5

HSR ✓ 0.55 84.1

HSR+L ✓ ✓ 0.47 85.0

DHSR+L ✓ ✓ ✓ 0.43 85.3

SNI-SLAM ✓ ✓ ✓ ✓ 0.33 86.0

Table 6. Ablation study of our contributions on the office0 of

Replica [38] : (HSM) Hierarchical Semantic Mapping; (FL) Fea-

ture Loss; (Dec) Decoder Design; (FF) Cross-Attention based Fea-

ture Fusion; (SR) Semantic NeRF-based SLAM only with feature

plane as scene representaion; (HSR) Add coarse-to-fine semantic

mapping; (HSR+L), (DHSR+L) add corresponding innovation.

4.2. Runtime Analysis

We evaluate runtime and parameter numbers of our SNI-

SLAM on Replica [38] in Tab. 5. Our semantic NeRF-based

SLAM is capable of semantic mapping with only a slight in-

crease in runtime and similar parameter numbers compared

with existing NeRF-based SLAM methods. Additionally,

our method runs faster with half the number of parameters

compared with exisitng baseline NIDS-SLAM [11].

4.3. Ablation Study

Tab. 6 shows multiple experiments to validate the effec-

tiveness of different component in SNI-SLAM.

Hierarchical Semantic Mapping (HSM). Tab. 6 shows

that coarse-to-fine semantic representation can significantly

increase the accuracy of semantic mapping and tracking.

Compared with single-layer representation, multi-layer se-

mantic scene representation is capable of simultaneously

taking into account the overall semantic and local semantic

features. Fig. 5 shows that single-layer representation may

not adequately represent large semantic areas like walls. It

could mis-segment walls into other labels by focusing too

much on detailed information. In contrast, a hierarchical

model can provide a more comprehensive understanding

by representing both overall semantic categories and finer-

grained details. This semantic representation achieves more

precise modeling and semantic expression.

Feature Loss (FL). We validate the effectiveness of fea-

ture loss in Tab. 6. Constructing RGB, depth, semantic loss

can only supervise information limited to one dimension,

but features is capable of abstracting more information. Uti-

lizing feature loss can force the model to learn important

but easily ignored details in images, such as small objects

or pixel details in edge regions. As shown in Fig. 5, seman-

tic rendering results of whether to add feature loss reveals

that constructing loss of geometry, appearance, and seman-

tic features can avoid missegmentation at boundaries.

Cross-Attention based Feature Fusion (FF). The ef-

fectiveness of feature fusion module is validated in Tab. 6.

Fig. 5 displays that utilizing feature fusion can distinguish

the TV screen from the background semantically. From

Ground Truth

RGB

Depth

Semantic

Residual Semantic 

w/o HSM

w/o FF

SNI-SLAM

Generated Semantic

w/o FL

Figure 5. Ablation study of semantic rendering results and ground

truth labels on office0 of Replica [38]. We visualize rendering re-

sults in different circumstances: (w/o HSM) without Hierarchical

Semantic Mapping; (w/o FL) without Feature Loss; (w/o FF) with-

out Feature Fusion. It can be seen from residuals that the whole

SNI-SLAM achieves best semantic accuracy.

RGB image, we can observe significant differences in color

between the TV and its background, indicating a substan-

tial divergence in their appearance features as well. There-

fore, appearance feature can serve as a guidance to seman-

tic feature through feature fusion, to avoid missegmentation

in the cases where semantic segmentation network makes

mistakes. This fusion strategy leverages the complementar-

ity between geometry, appearance, and semantic features,

thereby generating a more powerful feature representation.

5. Conclusion

We propose SNI-SLAM, a semantic SLAM system

based on neural implicit representation to improve dense vi-

sual mapping and tracking accuracy while providing seman-

tic mapping of the whole scene. We propose feature fusion

method based on cross-attention to enable appearance, ge-

ometry, semantic features to potentially promote each other

and engage in cross-learning. We propose coarse-to-fine se-

mantic representation to model the semantic information in

the scene at multiple levels. This representation can main-

tain the precision of overall scene semantic information,

while considering intricate semantic details. We propose

a new decoder design that enables fusion of interpolation

features from feature planes, leading to more accurate de-

coding results.
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