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Figure 1. Qualitative comparison of previous state-of-the-art [33] with our method.

Abstract

Tone mapping techniques, aiming to convert high dynamic
range (HDR) images to high-quality low dynamic range
(LDR) images for display, play a more crucial role in
real-world vision systems with the increasing application
of HDR images. However, obtaining paired HDR and
high-quality LDR images is difficult, posing a challenge
to deep learning based tone mapping methods. To over-
come this challenge, we propose a novel zero-shot tone
mapping framework that utilizes shared structure knowl-
edge, allowing us to transfer a pre-trained mapping model
from the LDR domain to HDR fields without paired train-
ing data. Our approach involves decomposing both the
LDR and HDR images into two components: structural in-
formation and tonal information. To preserve the original
image’s structure, we modify the reverse sampling process
of a diffusion model and explicitly incorporate the struc-
ture information into the intermediate results. Additionally,
for improved image details, we introduce a dual-control
network architecture that enables different types of condi-
tional inputs to control different scales of the output. Ex-
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perimental results demonstrate the effectiveness of our ap-
proach, surpassing previous state-of-the-art methods both
qualitatively and quantitatively. Moreover, our model ex-
hibits versatility and can be applied to other low-level vi-
sion tasks without retraining. The code is available at
https://github.com/ZSDM-HDR/Zero-Shot-Diffusion-HDR.

1. Introduction

Tone mapping, a long-standing computer vision task, fo-
cuses on imaging high dynamic range (HDR) scenes by
converting HDR images to high-quality low dynamic range
(LDR) images. Unlike LDR, HDR images typically possess
a wider bitwidth, resulting in greater diversity in the distri-
bution of pixel values, which captures more information es-
pecially in extreme cases such as backlit scenes. While hu-
man eyes effortlessly perceive both HDR and LDR scenes,
general displayers struggle to accurately present the abun-
dant information contained in HDR images. Therefore, the
crucial task of mapping this high range visual information
into LDR spaces with both natural appearance and accurate
structure becomes imperative for real-world vision systems.

In recent years, there has been a rise in the use of
deep learning-based methods for tone mapping. How-
ever, obtaining the ideal paired training data is particu-
larly challenging due to the inherent difficulty in captur-
ing both HDR and high-quality LDR images for natural
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scenes [3, 33]. To address this challenge, many researchers
employ the adversarial learning framework in training their
networks [25, 33, 41]. Despite the utilization of a unified
loss function combining a natural style term and a structure-
preserving term, the concurrent optimization of these objec-
tives during training can diminish their individual effective-
ness. This occurs due to their potential divergence in opti-
mization directions. Consequently, the resulting output may
fall short of neither a natural-look tone nor accurate struc-
tures, leading to an unsatisfying outcome. In addition, these
methods require a large number of HDR images as training
samples, which is also challenging as compared to readily
available LDR image datasets [11].

Differently, we approach the issue of unpaired data by
adopting a zero-shot method which aims to transfer a map-
ping model trained on the LDR domain to HDR domain
with less readily training data. To achieve this, transferable
knowledge is crucial to bridge the gap between the LDR and
HDR domains, as shown in Fig.2. However, in the field of
tone mapping, it remains an ongoing challenge to discover a
shared knowledge that has an equivalent distribution in both
the HDR and LDR domains.

From this perspective, we aim to identify suitable shared
knowledge for addressing the zero-shot tone mapping is-
sue. To achieve this, we propose a novel methodology that
involves decomposing the original image into two distinct
components: tonal information and structural information.
Our analysis, illustrated in Fig.4, reveals that the structural
information exhibits a high similarity in distribution over
the HDR and LDR domains. This observation highlights
the potential of the structural information as a unified shared
knowledge that can bridge the gap between the two do-
mains. Hence, we train a conditional diffusion model to
generate images that have an immersive tone as high-quality
LDR images and the same structure as the input original
images under the guidance of the original structural infor-
mation of images from LDR datasets. During inference, the
structural information of the HDR image is extracted and
fed to the model. The structural information has the same
distribution over the HDR domain and the LDR domain,
bridging the gap between training and inference. Under this
framework, we further propose a dual-control network ar-
chitecture to enhance the image quality. We also propose
a structure refinement operation, seamlessly integrated into
the reverse sampling iterations, that explicitly combines the
structure of the original image and the tone of the predicted
image. Additionally, except for HDR image tone mapping,
some other low-level vision tasks can also be understood as
changing the tone while preserving the structure, thus the
proposed method can be used as a general solution to these
tasks without re-training.

To summarize, our contributions are listed as follows:
* Under the zero-shot paradigm, we introduce a structure-
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Figure 2. Schematic of our tone-structure decomposition and zero-
shot framework. Structural information that distributes samely
over HDR and LDR domains is utilized as the input of the net-
work.

preserving tone mapping framework that extracts the
structure information in both HDR and LDR images as
shared knowledge that guides the mapping model to yield
images with both accurate structure and immersive tone.

* We propose a dual-control network architecture for better
luminance retention and detail information retention.

* We propose a structure refinement operation that modifies
the structure of intermediate results of the reverse sam-
pling process.

» Experiments on the benchmark datasets illustrate the su-
periority of our method. We also apply our model to other
tasks without re-training and achieve promising results.

2. Related Work

Traditional Tone Mapping Methods. Tone mapping
serves as a considerable technique for mapping the pixel
values of HDR images to LDR counterparts. Due to the
poor performance of simple linear scaling [36], early re-
searchers use logarithmic tone curves [13], but these ap-
proaches exhibit limited performance due to contrast loss.
Subsequently, some researchers have explored more com-
plicated tone mapping methods [14, 24, 26] aligned with
the responses of the human visual system, introducing other
challenges such as the halo effect. Although numerous tech-
niques have been put forward to mitigate the shortcomings
of traditional tone mapping algorithms, such as bilateral fil-
ters [6], robust averaging [2], decomposition of image de-
tails using 10 and 11 sparsity [17], and operations at the fine
scale of image gradients [29], the artifacts and deviations
from reality still persist.

Deep Learning Based Tone Mapping Methods. Re-
cently, deep learning (DL) has stepped into HDR tone map-
ping. Hou et al. [11] train a network to adjust HDR images
based on their log-transformed luminance map. Panetta
et al. view the tone mapping as an image enhancement
task and train a network on a low-light image enhancement
dataset. Recently, more works have emerged, focusing on
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either delicate network architectures [4, 37] or more effec-
tive training strategies [3, 33].

Despite the outstanding performance that DL-based
methods achieve on various low-level vision tasks, they suf-
fer from the lack of paired training data when struggling for
tone mapping. To tackle this, researchers have developed
two main approaches. One approach [4] directly uses a no-
reference image quality metric (such as normalized Lapla-
cian pyramid distance) as the loss function, but risks over-
fitting this specific metric. More works [25, 32, 33, 40] be-
long to the other approach that adopts an adversarial train-
ing strategy, with an adversarial loss term to ensure the nat-
ural style and a reconstruction loss term to ensure structure
consistency. These works can be further classified into the
pseudo-paired scheme and the unpaired scheme. Among
the former, Rana et al. [25] try several traditional tone map-
ping operators on each HDR image before training, rank
them by tone mapped quality index (TMQI) [38], and pick
the best-performing one as the reference to calculate the re-
construction loss. Whereas, the performance of the network
is restricted by the traditional operators they use. Among
the latter, Vinker et al. [33] proposed to calculate the recon-
struction loss based on Pearson correlation that doesn’t re-
quire an LDR reference. However, for both of the schemes,
the commingling of the two distinct objectives, along with
potential differences in their optimization directions, may
result in their mutual dilution. This can lead to suboptimal
outcomes where both the tone and structure of the output
fall short of expectations.

Diffusion-based Generative Models. Denoising dif-
fusion probabilistic models (DDPM) is a type of genera-
tive model that learns to yield desired data samples from a
Gaussian noise through a multistep denoising process [10].
These models have demonstrated several advantages, in-
cluding more stable training, resistance to overfitting, and a
more interpretable latent space compared to GANs [5] and
other earlier generative models. Diffusion denoising im-
plicit models (DDIM) [31] further accelerate the sampling
process for pre-trained diffusion models. Diffusion mod-
els have been applied across various tasks, such as super-
resolution [34], denoising [12], image translation [28], in-
painting [20] and low-light image enhancement [35]. More
recently, some works [23, 39] focus on exploring versatile
and effective approaches to adding control to foundation
models such as Stable Diffusion [27], so as to acquire im-
ages with the desired contents more accurately.

3. Proposed Method

In this section, we present our zero-shot tone mapping
framework with tone-structure decomposition. We begin by
discussing the decomposition method in Section 3.1, which
involves separating the HDR/LDR images into tonal and
structural information. Next, in Section 3.2, we introduce

the concept of utilizing the structure information as shared
knowledge within a zero-shot framework. In the final Sec-
tion 3.3, we present our structure-preserving framework for
mapping HDR images to LDR images. The overall frame-
work architecture is illustrated in Figure 3.

3.1. Tone-Structure Decomposition

Tone-structure decomposition, dubbed 7'SD(), is a tech-
nique introduced to disentangle the tonal information and
structural information from the original image.

In the context of image processing, the term “structure”
refers to the spatial relationships of visual elements within
an image, which plays a crucial role in conveying informa-
tion. Preserving the image structure is particularly impor-
tant in tasks like tone mapping, as it ensures the retention of
the original content features and details of the image.

Then, the rest “tone” refers to the distribution of light
and dark values across different areas within the image. By
adjusting the “tone” term, one can change the overall bright-
ness, contrast, and distribution of tonal values. This helps
achieve desired visual effects and enhances the image’s ap-
pearance.

Therefore, to extract the “structure” information from
the “tone” information, we adopt a value-independent rep-
resentation, so-called mean subtracted contrast normalized
coefficients (MSCN) [21]. We choose the mean value and
standard deviation to represent the distributions of the tone.
Moreover, we calculate them for each local patch to retain
spatial information that is crucial in low-level vision tasks.
Mathematically, in this paper, the tonal information of an
image is represented by the local mean value map and the
local standard deviation map, given as:
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where w denotes a Gaussian filter kernel. To extract the
structural information and reduce its correlation with the
tonal information, we normalize the pixel values using the
local mean values and local standard deviations, given as:

i o = L@5) = p(ij)
(i,4) = —

o(i,j) +e
where ¢ is a small value to avoid dividing by zero. This

formula is the same as the definition of MSCN coefficients
introduced in [21].

3)

3.2. Zero-Shot Strategy for Tone Mapping

In this subsection, from the perspective of zero-shot ap-
proach, we explain how our proposed tone-structure decom-
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Figure 3. Inference pipeline of the proposed structure-preserving diffusion model. In each iteration, an intermediate result is first generated
by a dual-control block, then modified by a structure refinement operation to acquire more accurate structural information.
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Figure 4. Left: distributions of MSCN coefficients (linearly nor-
malized) over HDR and LDR datasets. Right: HDR image and
its LDR counterpart produced by [33], together with their MSCN
maps (enhanced for visualization).

position enables the model trained with natural LDR images
to process HDR images.

To explain the rationality of the proposed tone-structure
decomposition, an example is given in Fig.4, including
HDR images and their LDR counterparts produced by the
tone mapping method of [33], together with their MSCN
maps. Despite the huge difference between the HDR and
the tone mapped image, their MSCN maps are nearly the
same, with only minor differences caused by imperfect
tone mapping. Moreover, we calculated the local mean
values, local standard deviations and MSCN coefficients
of 105 HDR images from HDRPS dataset [7] and 100
high-quality natural LDR images randomly selected from
Flick2K dataset [18] respectively. Bar graphs of MSCN
coefficients are illustrated in Fig.4, showing that the distri-
butions of MSCN coefficients are approximately the same
over the two domains. To indicate the similarity of distribu-
tions quantitatively, we calculate the Jensen-Shannon (JS)
divergence of local mean values, local standard deviations
and MSCN coefficients, which are 0.365, 0.184 and 0.002
respectively. Considering that the JS divergence of the two
distributions of MSCN is far below 0.1, which is a com-
monly used threshold to judge whether two distributions are
similar, the MSCN coefficients can be approximately con-
sidered to be samely distributed over the HDR and LDR
domains.

Therefore, we treat the extracted “structure” informa-

tion from the HDR and LDR images as a form of shared
knowledge, serving as a crucial bridge between the two do-
mains, illustrated in Fig.2. To begin, we independently train
a mapping model within the LDR domain, utilizing paired
LDR images and the corresponding decomposed “struc-
ture” information as the ground truth and the input respec-
tively. Subsequently, by sharing a shared distribution, we
replace the LDR “structure” features with the HDR “struc-
ture” features. This substitution enables the transfer of the
pre-trained model from the LDR domain to the HDR do-
main. Consequently, we obtain a mapping model that ef-
fectively transforms imperceptible HDR inputs into high-
quality LDR outputs by leveraging the shared information
contained in the “structure” features. By employing this ap-
proach, we exploit the extracted “structure” information to
bridge the gap between HDR and LDR domains, facilitating
the generation of superior LDR images from HDR inputs.

3.3. Structure Preserving Diffusion Framework

In this section, we detail our structure-preserving diffusion
framework, including a generation process with a dual-
control block and a structure refinement process in each
sampling iteration, demonstrated in Fig.3.

3.3.1 Dual-Control Network Architecture

As shown in Fig.5, we utilize two different types of con-
ditions to control the output. The main network can be
bifurcated into a generation branch and an implicit con-
trol branch. The former is implemented as a fixed-weight
Stable Diffusion v1.5, which samples a natural image from
Gaussian noise in the latent space. The latter receives two
different conditions at different scales to control the spa-
tial information of different frequencies by different hints.
The adopted pre-trained foundation model holds a wealth
of prior tone information, enabling our model to yield more
natural-look images.

Fine-Scale Control: Basically, the MSCN map is uti-
lized as the main conditional input, which is fed to the first
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layer of the implicit control branch. The intermediate re-
sults of each scale are added to the feature maps of the cor-
responding decoder layers of the generation branch, con-
trolling the contents of the generated image in an implicit
manner.

Coarse-Scale Control: However, MSCN maps are cal-
culated by a local normalization operation that significantly
eliminates the luminance information. Thus, if using the
MSCN map as the only condition, though the structure of
the output images is consistent with the original image, the
luminance may suffer from distortion. For example, the rel-
ative intensity of luminance between different parts of the
image may be incorrect, leading to an unnatural appear-
ance. Thus, another type of conditional input containing
luminance information is required.

An intuitive and straightforward approach is to directly
use the luma map (Y channel in the YUV color space) of the
original image as conditional input. However, this results
in domain shift between training and inference, because an
accurate luma map is not available during inference. Thus,
we design a novel approach discussed below.

In the training phase, we use the Gaussian blurred luma
map as luminance guidance. In the inference phase, similar
to [33], we first adjust the Y channel of the HDR image
using a global tone mapping curve given by

- Y (i,J)
Y.(i,7) = log(A———== log(A , 4
(i,4) = log( maz(y) €)/logA+¢), 4
where ) is decided by minimizing the cross entropy of the
histogram of the HDR image and the histogram of natural
LDR images:

min — zl: H,(Y.)logH;(LDR). (5)

Then the adjusted Y channel is blurred by Gaussian filter
and input to the network. This strategy can solve the domain
shift problem in that the luminance guidance is a low-pass
luma map during both training and inference. The network
is expected to generate fine-scale textures using the infor-
mation contained in MSCN maps and to generate coarser-
scale components by leveraging the low-pass luma maps.
Besides, to avoid the blurred luma map affecting the gen-
eration of image details, we input it at a coarser-grained
scale compared with MSCN maps. More specifically, the
luma map is first convoluted and downsampled, then con-
catenated with the feature maps of the first scale and fed to
the second scale. This architecture ensures that the contents
added to the finest scale of the generation branch are only
decided by the MSCN map that contains abundant details.

3.3.2 Structure-Refinement Operation

Though MSCN maps are taken as the conditional input, it
is an implicit constraint and cannot ensure that the result

Algorithm 1 Structure-Preserving Sampling Process

I: ll'orivo-oriajori = TSD(IOT’L)
2. fort=T,T—-1,...,1do
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4: if ¢ > t( then )

5: pi—1,0i-1, 11 = TSDA(D(ZLD)
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Figure 5. Network architecture of the dual-control block, which
receives two types of conditions to control the generated image
implicitly.

is completely consistent with the original structure. There-
fore, we further propose a structure refinement operation
(SRO), seamlessly integrated with the diffusion sampling
process, by explicitly injecting the original structural in-
formation into both the intermediate results of each diffu-
sion sampling iteration and the final output. This structure-
preserving diffusion process is summarized in Alg.1, whose
technical details are discussed below.

Consider a reverse diffusion sampling process that starts
from a pure Gaussian noise. This process is random, thus
the results may suffer from structure distortion even if con-
ditional hints are input to the network. Besides, the struc-
tural difference between the generated intermediate results
and the desired output may accumulate during the iterative
process, which may lead to unacceptable distortion in the
final output. Therefore, we propose to refine the structure
of the intermediate results in the reverse sampling process
to avoid the accumulation of structural distortion.

In each sampling iteration pg(z;—1|z:), we first subtract
the predicted noise from the result of the previous iteration

26134



as the original DDPM does:
z, o 1 (Z 1-— (673 c
T Vet VToa !

The initial estimate of the intermediate embedding z;_; is
then converted from the latent space to the image domain
using the pre-trained decoder D, and further decomposed
into tonal information and structural information using our
proposed tone-structure decomposition 7°'SD() introduced
in 3.1, given as:

pi1,0-1,L—1 = TSD(D(2_,)), (7)

(24,1, 0)). (6)

where D denotes the decoder part of the variational autoen-
coder used by Stable Diffusion. Among the three compo-
nents of the predicted intermediate result, p;—1 and o1
remain unchanged while the MSCN I_iis replaced by the
MSCN of the original HDR image I,.;. This step preserves
the tonal style of the predicted image and refines its struc-
ture. The recombined components are then reconstructed to
form a modified image. We introduced a tunable parame-
ter ~v that is multiplied by o;_; to control the strength of
edge enhancement. Afterward, the modified intermediate
result is converted to the latent space and mixed with ran-
dom noise for the subsequent iterations:

21 = E(We—1 + Y0t 1Tpm) + &1, (8)

where £ is an auxiliary encoder trained along with the im-
plicit control branch to match D, and €, is timestep-related
random noise.

Besides, in practice, we found that if the SRO is con-
ducted in each iteration, though the hallucinating artifacts
can be reduced in the final result, the contrast and edge in-
tensities of the whole image would also be reduced. This
may be ascribed to the excessively strong constraint im-
posed by the SRO, diminishing the diversity of the gener-
ated contents. Hence, to trade-off between structural accu-
racy and subjective visual effect, we empirically set a criti-
cal point ¢y, and the SRO would not be conducted after the
timestep reaches g, allowing the diffusion model to gener-
ate more visually pleasing textures in the last few iterations.

Note that the previous discussion and the illustration of
Fig. 3 is based on DDPM sampling process for simplicity.
In case of DDIM in real practice, the SRO is slightly modi-
fied, which is detailed in our supplementary material.

4. Experiments

In this section, we first illustrate the implementation details
of the proposed method. Then we compare our results with
previous state-of-the-art tone mapping methods both qual-
itatively and quantitatively. Ablation studies are then con-
ducted to validate the contributions of the proposed designs.
Besides, we apply our model to a different task without re-
training, showing the generalization ability of our method.

Table 1. Quantitative comparisons on the HDRPS dataset. The
TMQI scores are taken from [37]

Method ‘ TMQIT NIQE] HDR-free
Liang et al. [16] 0.8650 - -
Shibata et al. [30] | 0.877 -
ETMO [32] 0.8652

DeepTMO [25] 0.88 2.519

WX X X X

Vinker et al. [33] | 0.8861  3.174
LA-Net [37] 0.8759 2524
Proposed 0.8915  2.340

4.1. Implementation Details

We train our model on the Flickr2K dataset [18] consist-
ing of 2650 high-quality natural LDR images. The MSCN
maps and low-pass luma maps of the images in this dataset
are used as conditional inputs in the training phase, and no
HDR images are required during training. In the initial 200
epochs, we only train the implicit control branch using the
AdamW optimizer [19] with batch size 8 and learning rate
le~®. The auxiliary encoder is not included in the network
in this stage. Afterward, we plug the decoding-encoding
process into the pipeline and train the encoder jointly with
the control branch for another 200 epochs. The weights of
the generation branch are always fixed. More settings of hy-
perparameters can be found in the supplementary material.

Pre-Processing: During inference, considering that the
diffusion models are adept at processing images of fixed
sizes, we first divide the image into overlapping patches
with the same size as the training patches. Each of the
patches is generated respectively, and the overlapped parts
are weighted-summed to avoid discontinuity.

Post-Processing: After the whole image is generated,
we recover each color channel using a formula widely
adopted by previous methods [4, 8, 33]:

Coih = Yyreal O /Y )", ©)
where i € {R, G, B} denotes the index of the color chan-
nel, Y and Y),..q are the Y channel of the original HDR
image and the output of the diffusion model respectively.

4.2. Quantitative Comparisons

We test our model on the HDRPS dataset [7], a benchmark
test set including 105 HDR images. We choose state-of-
the-art deep learning (DL) based tone mapping methods for
comparison: DeepTMO [25], Vinker et al. [33] and LA-Net
[37]. Also, we compare to state-of-the-art DL-free methods:
Liang et al. [16] and Shibata et al. [30]. We calculate the
TMQI [38] and NIQE [22] as metrics of their performance,
listed in Tab.1. TMQI is an objective image quality met-
ric for tone mapped images, taking both structural fidelity
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linearly scaled HDR scene LA-Net [37]

DeepTMO [25]

Vinker et al. [33] Propsed

Figure 6. Visual comparisons on HDRPS dataset [7]. Our method performs best in both bright regions and dark regions.

and statistical naturalness into consideration. NIQE is a no-
reference image quality metric based on natural scene statis-
tic model, which is suitable for evaluating the tone mapping
results in that no ground truth is available.

As illustrated in Tab.1, our algorithm performs best on
both metrics, indicating that the proposed method is supe-
rior to previous methods in terms of both structure retention
and the naturalness of appearance. Moreover, our algorithm
is a zero-shot framework, requiring only LDR training data
that are more readily available than HDR images.

4.3. Qualitative Comparisons

We demonstrate the visual results on the benchmark dataset
in Fig.6. As depicted, LA-Net[37] and DeepTMO[33] tend
to produce images with higher saturation, but the structure
of bright regions is hardly visible (bounded in red boxes),
resulting in considerable information loss. Vinker ef al.’s
method performs slightly better in bright regions, but the
image details in dark regions (bounded in yellow boxes) are
still not satisfying enough, and unacceptable artifacts some-
times occur (note the bottom row). Our method, however,
can preserve or even enhance the details in both bright and
dark regions, yielding more informative images compared
with previous state-of-the-arts. More results are included in
the supplementary material.

Moreover, in Fig.7, we illustrate the results on some im-

i

3 -l ,"_ < \ = e | \ \ e i \
HDR scene LA-Net [37] Vinker et. al[33] Proposed

Figure 7. Visual comparisons on HDR+ dataset.

ages with extremely high luminance contrast from HDR+
dataset [9]. Previous methods encounter difficulties in such
scenarios, leading to significant banding artifacts and tex-
ture loss. However, our method successfully produces vi-
sually appealing results, which can be attributed to the pro-
posed tone-structure decomposition that reduces the corre-
lation between structure and exposure.

4.4. Ablation Study

To validate the contribution of the proposed network archi-
tecture (introduced in 3.3.1) and structure-refinement oper-
ation (introduced in 3.3.2) respectively, we conducted abla-
tion studies.

Dual-Type Dual-Scale Conditional Input. To evalu-
ate the efficacy of the proposed dual-type dual-scale con-

26136




VIS Image NIR Image

DenseFuse [15]

Zhu et al. [42] Proposed

Figure 8. Comparisons of different VIS-NIR fusion methods on VIS-NIR Scene dataset [1]. Our method produces highly detailed images.

no luma input single scale input dual scale input

Figure 9. Ablation study of dual-type dual-scale conditional input.
The proposed architecture generates images with more natural lu-
minance and more abundant details.

ditional input architecture, we train three versions of net-
works: (a). only using MSCN as conditional input; (b).
inputting MSCN and luma map at the same scale; (c). in-
putting MSCN and luma map at different scales. Visual
comparisons are shown in Fig.9, indicating that the gener-
ated image would suffer from luminance distortion if only
inputting MSCN maps. One failure case is shown in the
left of each group, where the lit letters appear to be darker
than the background, contradicting the real-world case. The
generated luminance would appear more realistic if feeding
luma maps additionally. The proposed architecture further
enhances the image details by inputting the low-pass lumi-
nance map in a coarser scale, bounded in the yellow box.
Structure-Preserving Diffusion Process with SRO. In
our default implementation, the SRO is conducted in the
earlier iterations and the last iteration of DDIM. To study
the potential alternatives, we try different strategies by con-
ducting SRO at different iterations in the reverse sampling
process. Quantitative results are reported in Tab.2, indicat-
ing that our default strategy leads to the best image quality.

4.5. Generalization to Other Tasks

Except for HDR image tone mapping, our model can be di-
rectly applied to some other tasks without re-training, ow-
ing to the generalization ability of the proposed algorithm.
Take visible (VIS) and near-infrared (NIR) image fusion as
an example, which aims to yield an image combining the
structure of both modalities while remaining the same style

Table 2. Ablation study on structure-refinement operation indi-
cates our default strategy of SRO is the most effective.

Strategy ‘ TMQIT

no SRO 0.7210

at last iteration 0.8257

at earlier iterations 0.7297

at all iterations 0.8260
proposed (o = 10,7 = 20) | 0.8915

as the VIS image. This is similar to tone mapping in that the
structure and tone should be processed differently. We first
simply average a pair of VIS and NIR images to generate a
reference image that contains all of the structures but has a
dissatisfying tone, and then use this reference image as the
input of our model to produce a visually pleasing image.

The output images are shown in Fig.8, along with the re-
sults of previous methods. The proposed method can better
combine the detail of the VIS and NIR images and enhance
them, producing superior results to previous methods. The
promising results indicate that our structure-preserving dif-
fusion model has a strong generalization ability. We believe
that our method can be utilized as a general approach for
image enhancement.

5. Conclusion

In this paper, we propose a structure-preserving diffusion
model mainly for HDR image tone mapping, tailored in a
zero-shot framework that requires no HDR images during
training. A tone-structure decomposition method is pro-
posed for both structure-preserving and mapping the source
and target samples to a shared domain. The network ar-
chitecture and reverse sampling steps are further modified
for better image quality. Results on the benchmark dataset
for HDR tone mapping show the superiority of our method,
and results on other tasks indicate the strong generalization
ability of the method.
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